
PHYSICAL REVIEW B VOLUME 31, NUMBER 10

4f-related electronic structure of y-Ce metal
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The 4f-related valence-band density of states (DOS) of cerium metal is derived theoretically by
means of the Green s-function technique with a decoupling procedure. A model Hamiltonian in-

cludes the Anderson-type mixing term, and the f-level degeneracy and spin-orbit splitting are expli-
citly taken into account. As a result of numerical calculations it was found that the structure near
the Fermi edge of the 4f-related DOS is markedly influenced by the spin-orbit splitting if the mix-

ing strength is much smaller than the splitting as well as the thermal energy k~T. It was also re-

vealed that there appears a peak at a larger binding energy which is very sensitive to the shape of the
conduction-band DOS. It is proposed that the present result should give an explanation for the
difference between the valence-band photoemission spectra of y- and Q.-Ce metals.

Recent measurements of ultraviolet photoemission
spectroscopy (UPS) and bremsstrahlung isochromat spec-
troscopy (BIS) data have revealed significant difference in
the spectral shape near the Fermi edge between y-phase
and a-phase cerium metals and compounds. According to
W'ieliczka et al. ,

' although the gross features are similar
to those reported in the previous experiment, the near
edge peak of their UPS data with much improved resolu-
tion shows a distinct shoulder at the edge in y-phase ceri-
um metal whereas the corresponding peak in O.-phase ceri-
um metal exhibits a sharp cutoff. In BIS studies the spec-
tra are markedly different in two phases. The spectra ob-
served by Wuilloud et al. clearly indicates the presence
of a sharp peak right above the Fermi edge in the ct phase
but no such peak in the y phase. A similar feature was
also observed in HIS spectra of compounds, i.e., a-type
compounds, CeIr2 and CeRuz, which exhibit a sharp peak
near the edge while no peak is observed in the y-type
compound CeA13.

Theoretical attempts to explain the presence of the two
peaks in UPS and x-ray photoemission spectroscopy
(XPS) data have been carried out by several groups. Liu
and Ho considered the Coulomb interaction between the
localized 4f hole and itinerant d electrons and showed
that two peaks appear depending on whether the hole is
screened or unscreened by conduction electrons. In the
model proposed by Gunnarsson and Schonhammer the f
d mixing is introduced by means of the Anderson Hamil-
tonian and it was shown for the case of infinite degenera-
cy of the 4f level and zero temperature that there is a
broad 4f-related peak near the bottom of the conduction
band and a sharp one very close to the Fermi edge. How-
ever, it is difficult to explain by these models, the new
feature observed in UPS and/or BIS data of y-type Ce
metal and compounds.

In the present work in order to derive the 4f-related
density of states (DOS) at finite temperatures we general-
ize the decoupling method of the equation of motion for
the Green's function originally introduced by Lacroix
and further consider the spin-orbit splitting and orbital
degeneracy of the 4f level. The Hamiltonian includes the

Anderson-type mixing as was used in the work by Gun-
narsson and Schonhammer and explicitly distinguishes
the 4f level with different J values. The Hamiltonian is
given by

H = g e„cz~cz~+ g EzXJM, zM
k, o. J,M

+ g g

IMAM,

QXJM, Qck~+H c
k, cr JM

where ek and EJ are the energies of the conduction elec-
tron and the 4f levels with J = —, and —,', respectively, and

c|, (ck ) is the creation (annihilation) operator for the
conduction electron. The projection operator

~
a) (p

~

are
represented by X p's, which satisfy the completeness con-
dition

XQ J~( t) —exp( tHt )XQ JMexp( —tHt )

The 4f-related DOS for each J is then expressed by

(4)

To evaluate the Green's function we assume that the
potential VJMO is spherically symmetric around the Ce
ion. Then, decoupling the equation of motion for G+M(co)
in the second order with respect to the mixing interaction
we can write the Green's function GJM(co) as follows:

XQ Q+ +X~M,zM= 1 ~

J,M

Here, XQ Q indicates the projection
~

'SQ)('SQ
~

construct-
ing a vacuum space for the 4f state. The third term
represents the mixing between the 4f and conduction
states.

The Green's function for the 4f electron GJM(ro) is de-
fined by

GJ~(co)= i j dt e—xp(irot) ( [XQ Jsr(t), XJM Q j+ )

where
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I VJM, o I

GzM()=[~zM(~) c—] ~—EJ—g
k, ~ ~k

(6)

J',M'
(9)

where AJM(co), BqM(co), and C are defined by
respectively. In summations, g', the term (J',M')
= (J,M) is excluded. The expectation values appearing in
Eqs. (7) and (8) can be expressed by using the Careen's
function GJM(co) as follows:

00 ko.
~ +JM, ock ~ ™d~f (~) VJM, OGJM(~)

7T co —Ek+l 5
(10)

00

( ck~~ck~ ) = ——Im deil f(co)
1 k' ko. 1

g
()k,k'+ g .

g
VO, JM(~)GJM(~) VJM, O~—ek+E5 '

J M co —ek+E5 cu —Ek+ l 5

Therefore, Eqs. (6)—(11) form simultaneous integral equa-
tions for GJM(co), from which the 4f-related DOS is de-
rived by Eq. (5). We performed self-consistent numerical
calculations to obtain p~&z for given shapes of the
conduction-band DOS. In the course of calculations the
spin-orbit splitting 6 is chosen to be 0.3 eV from spectro-
scopic data, and also temperature (k~T) is taken to be
0.03 eU so that the calculated DOS can be compared with
HIS, UPS, and/or XPS data taken at room temperature.

For simplicity it is assumed that the mixing strength
Vq~ o is constant and therefore we can write

X (VJ"'~ o)*+&~o@~—&k) = IV(~)4J &~~
k, g

Here, W(co) is equal to the product of the conduction-
band DOS D(~) and

I VJM, 0I ' In o
presence of the d and s components of the conduction
band we assumed the following DOS (co in eV):

D( cu)= Do/I[1 —(co/2) ]'~ + [1—(a)/1. 5) ]' ], (13)

which can reproduce approximately the low-energy part
of the conduction-band DOS of La metal calculated by
Glotzel and Fritsche. Here, the Fermi energy is taken to
be 2 eV, as usually assumed, so that the Fermi edge ap-
pears at co=0, the center of the two ellipses. The parame-
ters Dz and g are chosen so as to keep the area of DOS
below the Fermi edge equal to m/2. For the sake of con-
venience to compare with the case of a single semielliptic
DOS the two parameters are taken to be 1 eV ' and 0.25,
respectively. Furthermore, the product Do I VJ~Q I

is
denoted by W.

In Fig. 1 the 4f-related DOS for the J = —, level, p~&2, is
shown for two values of 8; 0.0144 (left-hand side) and
0.0196 (right-hand side), and the bare 4f level placed at
E5&2 ———1.0 eV as indicated by the arrow. Also, in Fig. 2
the result for E5~2 ———0.8 eV is shown for the same
values of 8'. lt is noticed in these figures that the Kondo
peak appears slightly above the Fermi edge and its intensi-
ty increases with the mixing strength and also as the bare
4f level approaches to the Fermi edge. The characteristic

m (eV)

FIG. 1. Calculated 4f-related density of states, p5&z(co), as a
function of energy relative to the Fermi edge. The bare 4f level

is placed at —1 eV, and S'are taken to be 0.0144 eV (left-hand

side of the figure) and 0.0196 (right-hand side). The values of 6
and k~ T are 0.3 eV and 0.03 eV, respectively.

-2

co (eV)

FIG. 2. Calculated 4f-related density of states, p, &2(co), as a
function of energy relative to the Fermi edge. The bare 4f level
is taken at —0.8 eV, and other parameters are kept the same as
in Fig. 1.
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D (co) =Do [1—(co/2) ]'~ (14)

Again the area below the Fermi edge (co =0) is set equal to
~/2, and thus Do proves to be 1 eV '. In Fig. 3 both
p5~2 and p7/2 calculated for &=0.016 (left-hand side) and
0.02 (right-hand side) are shown. The 4f level is placed at

1 eV as in Fig. 1. It is clear that the peak at a higher
binding energy is markedly influenced by the shape of the
conduction-band DOS whereas the near edge structure ex-
hibits the feature similar to Fig. 1. If we estimate the
Kondo temperature by"

(7/2)/(5/2)

T~~ 1+ D
D exp[Egg2/(5/2) Wj, (15)

.it turns out to be 10 K for Fig. 3 (left-hand side) and
about 60K for Fig. 3 (right-hand side). Here (J) indicates
the degeneracy of J levels and D is the bandwidth. In
Fig. 3 (left-hand side) the spectral weight is dominated by

feature of the present result is that because of the spin-
orbit splitting of the 4f level the Kondo peak observed in

p&&2 is accompanied by the satellite about 0.3 eV (=b, )

below the main peak. As is shown later the satellite peak
appears above the main peak in p7/2 In the case of low
mixing as presented by Fig. 1 (left-hand side) the satellite
peak is dominant compared with the Kondo peak which is
observed almost similar to a shoulder. We believe that the
density of states illustrated by this figure corresponds to
the case of y-phase Ce metal, and the peak and shoulder
observed in UPS data' should reflect the satellite and
Kondo peak in a low mixing case. Also, no distinct peak
is expected to appear at the Fermi edge in HIS data. As
the mixing strength increases as in Fig. 1 (right-hand side)
or the bare 4f level approaches to the Fermi edge as in
Fig. 2 (left-hand side) the Kondo peak contributes to p&~2
as much as the satellite peak, and in a high mixing case
the near edge structure of p5/z is predominantly deter-
mined by the contribution of the Kondo peak as shown in
Fig. 2 (right-hand side), which should give rise to a sharp
peak at the Fermi edge both in UPS and in BIS. Howev-
er, the accuracy of the present approximation is not clear
particularly in the case of high mixing for which the re-
sult of Gunnarsson and Schonhammer is probably more
appropriate, and no quantitative arguments should be
made. We are now in the process of developing a dif-
ferent procedure in which the resolvent operator is ex-

' panded in the perturbation series. '

Finally, in order to investigate how the shape of D(co)
of the conduction band affects the 4f-related DOS we car-
ried out numerical calculations for D (co) given by a single
semielliptic shape with a full width of 4 eV; i.e.,

3
PJ

3
P4

Ul
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FIG. 3. Calculated 4f-related density of states, pzq2(co) in a
solid curve and p7/2(co) in a dashed curve. The bare 4f level is
at —1 eV, and the values of 5 and k~ T are the same as the pre-
vious ones. However, the conduction-band DOS D (co) is given
by a single semielliptic shape, and 8"s are taken to be 0.016
(left-hand side) and 0.02 {right-hand side), respectively. Notice
the marked change in the spectral shape of the structure at a
lower energy peak.

The authors acknowledge useful discussions and com-
ments made by C. Horie and Y. Kuramoto. They thank
H. Miyazaki for his critical reading of the manuscript.

p&/2 below the Fermi edge because the spin-orbit splitting
is much larger than the Kondo temperature as well as the
thermal energy k&T. As was mentioned earlier, the Kon-
do peak observed right above the Fermi edge in p7/2 is ac-
companied by the satellite peak which sits about 0.3 eV
above the main peak in contrast to the case of p»2. This
is simply because the J= —', level is located above the —',
level by 0.3 eV and the system gains this amount of ener-

gy by transferring an electron from the J= —, level to the
J = —', level in the final state.

In conclusion, we calculated numerically the 4f-related
DOS curve at finite temperature considering explicitly the
spin-orbit splitting and orbital degeneracy of the 4f level.
We believe that the present result obtained for a low mix-
ing case (Tx «T) should give an explanation to the
structure observed in UPS and HIS data of y-Ce metal
and y-type Ce compounds. In the high mixing case the
Kondo temperature estimated from Eq. (15) is almost as
much as kz T and the approximation used may not be ap-
propriate. We will report on a more general procedure for
this case in a separate paper. It should be mentioned that
the structure observed at a higher binding energy is very
sensitive to the shape of the conduction-band DOS, and
therefore the characteristic feature of the conduction-band
DOS at least at the lower energy region should be con-
sidered when the spectral shape of the peak at a higher
binding energy is to be discussed.
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