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Critical behavior of the three-dimensional Ising spin glass
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The three-dimensional nearest-neighbor Ising spin-glass model with Gaussian bonds ((J ) = 1) is stud-

ied numerically using the "large-cell" renormalization group, Estimates for the critical coupling and the
thermal exponent are K, = 1/T, = 1.2 + 0.1 and y, = I/v = 0.30 + 0 05, respectively.

The question of whether a three-dimensional spin glass
with short-ranged interactions can exhibit a phase transition
is a long-standing one. Until recently the theoretical con-
sensus, based on high-temperature series, ' exact transfer-
matrix studies and expansions around mean-field theory
was that the "lower critical dimension" d for spin glasses is
probably four. This consensus has been weakened, howev-
er, by recent numerical work suggesting the existence of a
transition in the three-dimensional Ising spin glass. In Ref.
4, referred to as I, the "defect energies" of finite systems
were used to infer the flow of the distribution of coupling
constants at zero temperature under a transformation of the
length scale. This is essentially a realization of the "large-
cell renormalization group" (LCRG)' for Ising spin glasses.
It was found that the system scales towards weak coupling
for dimension d = 2, but towards strong coupling for d = 3,
implying a phase transition for Ising glasses for d =3 but
not for d = 2. Identical conclusions were reached by McMil-
lan, 5 whose "domain-wall renormalization group" is a vari-
ant of the LCRG.

In this Rapid Communication the LCRG is extended to
finite temperatures in order to estimate the critical tempera-
ture T, and the thermal exponent y, ( = 1/v, where v is the
correlation length exponent) for Ising spin glasses in three
dimensions. The Hamiltonian is

H= — J~SiS, , S;= +1
&i.j

where the nearest-neighbor couplings {JJ] are independent
random variables drawn from a Gaussian distribution of
unit width ((J~) =1), and the spins are located at the sites
of a simple cubic lattice. In the LCRG a new distribution of
couplings, appropriate to length scale L, is derived by com-
puting the "defect free energies" for an ensemble of blocks
of linear dimension. L. The basic geometry is illustrated in
Fig. 1. Periodic boundary conditions are imposed in the y
and z directions. The spins on the two free boundaries are
fixed either all up ( [ t ) or up on one boundary and down
on the other (] J ). (This is "gauge equivalent" to the
boundary conditions described in I, where the boundary

=X

spins are fixed randomly. )
The coupling across the block is mediated by the L2

x (L —1) interior spins. The renormalized coupling K' for
this particular sample, at a particular temperature T, is given
by

K'- J'/T = (—,
' )ln(Z( I/Zl I ),

t

Zl (I t tl =Trt lt I tl exp X K~&StSJ
&v)

Here, the KI,. = J;,/T are the coupling constants in the block
and the trace is over the L (L —1) interior spins for the
boundary conditions (] ] or ] [ ) indicated. Hence, J' is
one-half of the free-energy difference between t ] and t t
boundary conditions, i.e., one-half of the defect free energy
for the block. This procedure is repeated for a large
number of independently generated samples in order to
build up a distribution Pz(K') of coupling constants at
length scale L. The spin traces are computed exactly using
the transfer-matrix technique. This requires of order 2

L 2
operations per sample, and storage for an array of 2~ ele-
ments, limiting the sample size to L ~ 4. The computations
are repeated, using a new set of samples, for each new tem-
perature T. The number of samples used per temperature
point was 600000 for L = 2, 30 000 for L = 3, and 1600 for
L = 4. As a measure of the effective coupling KL at a given
temperature we adopt the rms value KL = (K' )L, where
the average ( )z is over all samples of linear dimension L.
The function KL(K), where K = I/T is the rms value of K;,
for the bare distribution, defines the "cell-to-bond" RG
transformation for the LCRG. The implicit equation
KL (K) = K (K) defines the cell-to-cell transformation

between cell sizes L and L'. [Note that the cell-to-bond
RG is the special case L'=1 of the cell-to-cell RG: for
L = 1 the system reduces to a single bond, giving
Kt(K) = K].

A subset of the data in the range 0.7 (K ~ 1.4 is
presented in Fig. 2. The error bars shown on the L =4 data
are statistical noise due to finite sampling; for L =2, 3 the
errors are smaller than the sizes of the points. Estimates
for the critical coupling K, (=1/T, ) and the thermal ex-
ponent y, ( = I/v) for given L and L' are obtained from the
fixed point K" of the RG transformation and from the
derivatives at the fixed point, in the usual way:

K, (K') =K, ,(K'),

FIG. 1. Basic cell for the large-cell renormalization-group
transformation.

K' =K

yL L = ln [KL (K')/K ', (K') ]/ln(L /L ')
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FIG. 2. LCRG transformation functions AL(E) for 1~L «4.
About half of the L = 3 data has been omitted for the sake of clari-
ty.

K, = 1.2+0.1

y, = 0.30 + 0.05 (2)

The value of K, is comparable to that obtained by McMillan

where K/(K) indicates the derivative dKL/dK. The func-
tions KL(K) were obtained by least-squares fitting of para-
bolas to the data points. (Fitting higher-order polynomials
gave no significant improvement in the fits. ) Results for

and yiz, L for 1 ~ L' & I. ~ 4, are presented in Table I.
In the limit L ~ all LCRG estimates should converge

to the exact result. The problem is how to extrapolate from
the rather small values of I. available here. Finite-size scal-
ing suggests that the sequence y,

' converges only loga-
rithmically, y,

' —yP ' —(lnL) ', while the sequence KP''
Pgconverges as K, ' K, ' ' —I '. Accelerated convergence

should be obtained by comparing successive cell sizes, i.e.,
by using the sequences y,

L ', K, '. Unfortunately, due
to the statistical noise in the data, the uncertainties on
yr ',Kc' are larger than those on yr ',Kc', as is evi
dent from Table I. Taking account of a11 the data, we esti-
mate

(Ref. 5), K, =1.0+0.2. Comparison with the K, obtained
by Ogielski and Morgenstern6 (OM) and Bhatt and Young
(BY) is not meaningful, as these authors used the + J
model which has a different K„but is expected to have the
same y, .

The value of v implied by (2), v =y, ' = 3.3 + 0.6 is, how-
ever, significantly larger than the value obtained by McMil-
lan5 (v = 1.8 + 0.5), OM (v = 1.12 + 0.12) or BY (v = 1.3
+ 0.3). The reason for the discrepancy is not clear.

McMillan s domain-wall RG (DWRG) is similar in spirit to
the LCRG except that the effective coupling J' is obtained
from the free-energy difference between a system with fully
periodic boundary conditions and the same system with an-
tiperiodic boundary conditions in one direction. McMillan
uses Monte Carlo simulation rather than transfer matrices
to find J', and uses fewer systems ( ~1000) per tempera-
ture point. Thus, while McMillan's data cover a wide range
of L (3 «L ~6), the errors on the individual data points
must be considerably larger than in the present work. The
results of OM and BY are both based on Monte Carlo simu-
lation, OM inferring values of T, and v from a direct com-
putation of the spin-glass correlation function, BY combin-
ing a computation of the spin-glass susceptibility with a
finite-size scaling analysis for systems with linear dimension
L «20.

In an attempt to understand the discrepancy between our
result for v and those of OM and BY we have also applied
the LCRG to the + J model (defined by P (J;, ) =

z

&& [5(JJ—J)+5(J„"+J)]). The results are less consistent
for this model due to significant "even-odd" effects which
are not present for the Gaussian model. Nevertheless, the
data do suggest that the transition temperature for +J
model is somewhat lower than the value T,/J= 1.22 +0.4
quoted by OM, The estimates for K, = J/T, obtained from
the 2/1, 3/1, 4/1, 3/2, 4/2, 4/3 RG transformations are
0.62, 0.70, 0.75, 0.99, 0.93, 0.90, respectively. As a result
of even-odd effects, this sequence is nonmonotonic, in con-
trast to the equivalent sequence for the Gaussian model
(Table 1), but does suggest an extrapolated K, somewhat
larger than the OM value 0.82. Fitting the OM data for the
correlation length with a smaller T, would necessarily give a
larger value of v. ' Unfortunately the direct estimates for
y, =l/v obtained from the LCRG for the +J model have
large fluctuations due to the even-odd effects.

In conclusion, the large-cell method has been applied to
the three-dimensional Ising spin glass. The critical ex-
ponent v is found to be significantly larger than that ob-
tained by other methods using Monte Carlo simulations.
The present method has the advantage that the spin traces
are carried out exactly, whereas Monte Carlo methods have
potential equilibration problems and statistical noise due to
finite simulation times in addition to that associated with
sample averaging. The only limitation of the present
method is the restriction to relatively small cells.

TABLE I. LCRG estimates for E, and y, .

L/L' 2/1 4/1 3/2 4/2 4/3

0.852 + 0.001

0.364 + 0.003

0.947 + 0.002

0.347+ 0.004

0.986 + 0.006

0.342 + 0.014

1.097 + 0.005

0.32 + 0.01

1.105 + 0.015

0.31 + 0.03.

1.12 + 0.04

0.29 + 0.07
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