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We develop continuum elastic theories for the blue phases of cholesteric liquid crystals and for the
metallic glasses. These theories are frustrated and possess ground states with networks of defect
lines; the frustration can be relieved in a space of constant positive curvature (a sphere in four di-
mensions). The order parameter for the blue phase is a director (in R P?), and for the metallic
glasses it is a 44 rotation matrix [in SO4)]. The elastic energies are written using covariant
derivatives which are zero for the local low-energy configurations. The theories are nonlinear sigma
models. We also develop a renormalization-group analysis of disclination cores in models with R P2,
vector, SO(3), and SO(4) order-parameter spaces. The energy of disclination lines diverges logarith-
mically as their core size is taken to zero. A total divergence can be added to the energy. Through
an unusual combination of energetic and topological effects, it contributes an energy proportional to
the product of the length and strengths of the disclinations. We use this total divergence as a coun-
terterm to keep the disclination energies fixed in the continuum limit.

I. INTRODUCTION

Several condensed-matter systems have stable phases
possessing networks of defect lines. Cholesteric fluids can
have several “blue phases” in a small temperature region
between the helical and isotropic phases;! these phases
have been described as networks of —180° disclination
lines.”® Transition-metal alloys have several Frank-
Kasper phases;* these and the metallic glasses have been
described as networks of —72° disclinations.>® The
smectic-D phase’ and a similar phase of lipid-water sys-
tems® have water confined in an elaborate network of
tubes. Finally, rotating superfluids and type-II supercon-
ductors in magnetic fields have (two-dimensional) lattices
of vortex lines.’?

In this paper we develop exotic continuum field theories
to describe the first two of these systems. The director
theory of the blue phases was outlined in a paper several
years ago;® the continuum theory for metallic glasses was
outlined in a short early version of this work.'° Other
continuum theories (with more complicated order parame-
ters) have been developed both for the blue phases!!!>!
and for the metallic glasses.!> Many of the ideas
developed here (in particular the construction of the co-
variant derivatives) also apply to those theories.

These substances are frustrated: No configuration can
relax the strain energy completely. In Sec. II we will
describe this frustration in detail, and show how the de-
fect lines can act to relieve it. The frustration disappears
if one (formally) curves space onto a sphere in four dimen-
sions.!*~17 In Sec. III we describe the ideal unstrained
structure formed on this sphere. In Sec. IV we use these
ideal templates to form order parameters describing the
phases.

In Sec. V we construct the continuum theories. The lo-
cal low-energy field configurations (projections from the
ideal template) cannot be used to fill space. To construct
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frustrated free energies, we form covariant derivatives
which are zero for the ideal configurations. The covariant
derivatives will have a nonzero curvature; the curvature
represents the frustration in the natural parallel transport.
The resulting theories are nonlinear sigma models which
(renormalized properly) have ground states possessing net-
works of disclination lines.

The continuum limit in these theories is subtle. On the
one hand, the energy of disclination lines diverges loga-
rithmically as the core size is taken to zero. On the other
hand, the core size in the real materials is comparable to
the interdefect spacing. (The atomic size is comparable to
the distance between defects in metallic glasses and the
Frank-Kasper phases; the coherence length must be com-
parable to the pitch for the blue phases to be stable.!??)

In Sec. VI we give a renormalization-group analysis of
the continuum limit in these two theories. We use a total
divergence term in the free energy as a counterterm. It
acts as a surface energy, leaving the bulk behavior un-
changed but altering the energetics of the disclination
lines. Through an unusual combination of energetic and
topological effects, the total divergence term changes the
energy per unit length by an amount precisely proportion-
al to the strength of the disclination. By allowing the
magnitude of the counterterm to diverge as the core size
goes to zero, we can keep the energy of the disclination
lines fixed.

Thus we claim that the continuum theories developed
here are in the same universality class as the materials
they model. In consequence, despite the uncontrolled ap-
proximation of ignoring the core size, any properties
which are preserved in the continuum limit will be univer-
sal, and independent of the model. For example, proper-
ties of (hypothetical) defect-mediated phase transitions in
these models might explain the commonly accepted
phenomenology of the glass transition.'® As emphasized
by Nelson,!® the problem of defect entanglement may be
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crucial in understanding metallic glasses. Viscous flow,
for example, could occur after a phase transition at which
the disclination energy per unit length vanishes.

II. FRUSTRATION, LOCAL ORDER,
AND DEFECT LINES

The term frustration was introduced by Toulouse in the
study of spin glasses.?’ Spin glasses are modeled, for ex-
ample, by Ising spins on a lattice with the nearest-
neighbor bonds in the Hamiltonian chosen at random to
be ferromagnetic or antiferromagnetic. The low-energy
spin configurations will satisfy as many of these bonds as
possible. Frustration expresses the spatial competition be-
tween these bonds. Consider moving around a closed loop
(Fig. 1). The state of the first spin is arbitrary; the state
of each succeeding spin can be chosen in turn to satisfy
the bond preceding it on the path. If there are an odd
number of antiferromagnetic bonds in the loop, this
“parallel transport” will leave the last bond in its high-
energy state. Parallel transport is defined by minimizing
the energy locally as one moves around the path; when
parallel transport does not return to its initial value, the
loop is said to be frustrated.

Systems can be frustrated without including disorder
explicitly in the Hamiltonian. Consider parallel transport
of vectors on a sphere. Imagine a physical substance on
the surface which is described at each point by a unit vec-
tor tangent to the sphere, e.g., a two-dimensional XY fer-
romagnet or a two-dimensional nematic liquid crystal.

[T, ; IR,
>

FIG. 1. Frustration in spin glasses. The bonds of an Ising
spin glass are fixed random quantities, which either favor paral-
lel (ferromagnetic) or opposing (antiferromagnetic) spins. The
spins point either up or down, and are free to relax the bond en-
ergies; however, some residual energy is unavoidable. In this
figure, we satisfy each bond in turn clockwise starting from the
upper left. Because there are an odd number of antiferromag-
netic bonds, the last bond is in its high-energy state—the loop is
frustrated.

Suppose the free energy contains gradient terms which are
minimized locally by having the tangent vectors all point
in the same direction. Although one can do this along a
narrow path (defining a parallel transport), one cannot
make these gradient terms vanish in a region of finite
area. When a path crosses itself forming a loop, there will
in general be a change in the direction of the vector, and
for small loops this change will be proportional to the
area enclosed (Fig. 2). The frustration represented by this
change in direction is described by the curvature tensor #
of the sphere: If one parallel transports a vector v along a
small parallelogram with sides x and y, the change 8v in
v is given by

dvi=R pqvixty! . 2.1

For the sphere of radius «~!, if 6 and ¢ measure latitude
and longitude, respectively, then for example
.9?9¢9¢=sin29; contraction with the metric tensor gives a
scalar curvature of 2x2.2!

The two systems discussed in this paper—metallic
glasses and the blue phase—have no intrinsic disorder in
their Hamiltonians. Like the two-dimensional nematic
liquid crystal on the sphere, the models we will use for
these systems are uniformly frustrated, and many of the
tools developed in differential geometry to study curved
surfaces will be useful to us. In this section we shall
motivate these models by giving a microscopic physical
description of frustration in these two systems. We start
by describing frustration in metallic glasses, and how de-
fect lines can be used to relieve the frustration. We then
turn to the cholesteric blue phases.

FIG. 2. Frustration on a sphere. An XY ferromagnet is frus-
trated on the surface of a sphere in three dimensions. We define
a parallel transport, minimizing the energy locally along a path.
Parallel transport here from the pole to the equator, along the
equator an angle 6 and back to the pole rotates the order param-
eter an angle 6.
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We shall think of the metallic glasses as a collection of
identical atoms interacting via soft pair potentials.”?> Al-
though this may be a good description for solid argon, it
is a very simplified model for metallic glasses. (Argon, al-
though it forms amorphous clusters of 500—1000 atoms,>
does not have interesting bulk phases.) Metallic glasses
typically are made with two types of atoms—a transition
or noble metal and a metalloid.?* The stability of the me-
tallic glass is strongly dependent on the ratio of metal to
metalloid. We ignore these features of the real system;>’
we also ignore bond directionality and the effects of the
electrons on the structural properties.?® In this simplifica-
tion, we hope we are isolating the important features of
the metallic glasses from the complexities of the real sys-
tem.

In two dimensions, systems of interacting disks natural-
ly form hexagonal arrays of equilateral triangles. Each
atom is surrounded by six neighbors; the nearest-neighbor
separation is roughly the minimum of the pair potential.
In three dimensions, four atoms can form a local low-
energy tetrahedral cluster (Fig. 3), with each pair of atoms
at the pair potential minimum. Adding a fifth atom will
form a second tetrahedron, but this cannot be continued
to fill space with tetrahedra. In Fig. 4, we see five
tetrahedra sharing an edge. Since the opening angle at the
edge of a tetrahedron does not divide 360°, there is a 7.5°
gap between two of the tetrahedra. One has a choice of
closing this gap by stretching the five tetrahedra slightly,
or squeezing them to add a sixth. [The fivefold-
coordinated edges will have a lower strain energy; howev-
er, one must introduce sixfold coordinated edges (“6-
lines”) to build a lattice. Strains introduced in making a
cluster purely out of fivefold lines grow rapidly with the
radius: The sixfold lines are necessary to relax these
strains.] Nelson® has introduced the idea that the high-
strain 6-lines should be thought of as defect lines in an
ideal structure of fivefold coordinated edges.

Closest packing structures (fcc and hep) are not natur-
ally described in terms of tetrahedra and defect lines. Be-
cause of the symmetries of the crystals, octahedra are
formed which have more than one equivalent decomposi-

FIG. 3. Metallic glass tetrahedral cluster. The natural local
low-energy structure in metallic glasses is a tetrahedral cluster
of four atoms.
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FIG. 4. Frustration in metallic glasses. One cannot fill space
with undistorted tetrahedra. Five tetrahedra will fit around an
edge, leaving a gap of about 75°. Curvature can remove this
frustration; the circle formed by the five outer atoms would
have a smaller circumference for fixed radius in a space of posi-
tive curvature.

tion into tetrahedra (Fig. 5). While every atom in a
closest packing structure has twelve neighbors, Frank?’
has shown in a precise way that these structures do not lo-
cally minimize the energy. He showed that an icosahedral
cluster of thirteen atoms (one atom plus its twelve neigh-
bors) interacting via soft pair potentials has a significantly
lower energy than the nearest-neighbor cluster in fcc and
hep crystals. This icosahedral cluster can be visualized as
twenty slightly distorted tetrahedra meeting at a vertex.
Thus we can visualize the local low-energy structure ei-

FIG. 5. Closest packing structures contain octahedra. The
unit cell of the face-centered cubic structure shown here con-
tains two octahedra and eight tetrahedra.
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ther in terms of tetrahedra of four atoms or in terms of
jcosahedra of thirteen; our ideal template in the next sec-
tion will combine both features.

There are a number of transition-metal alloys which,
unlike the closest packing structures, have natural descrip-
tions as networks of 6-lines.® The description of these
Frank-Kasper* phases was originally motivated by low-
energy icosahedral cluster described above. They have
large unit cells, with up to 162 atoms. The 415 com-
pounds (e.g., NbsSn) are the simplest, with eight atoms
per cell (Fig. 6); the sixfold coordinated edges form
straight lines running in three orthogonal directions, con-
necting the niobium atoms. The tin atoms sit at the
center and the corner of the unit cell, with twelve niobium
neighbors forming a distorted icosahedron surrounding
the center. We interpret the Frank-Kasper phases as a
natural way of relieving frustration by introducing a regu-
lar pattern of defect lines. The defect lines will form an
irregular pattern in the metallic glasses.

Cholesteric fluids are, composed of long, thin chiral
molecules,?® typically 5 AX50 A. That is, the molecules
have a handedness—they differ from their mirror image.
A pair of neighboring cholesteric molecules will have
minimum energy when they sit at a very slight angle with
respect to each other. One can understand this angle by
visualizing screw threads on the surface of the molecules
(Fig. 7). (Commercial screws are right-handed.) To align
the threads on the back of one molecule with the grooves
on the front of the next, the rear molecule must be twisted
slightly to the right. The twist angle is very small; the
cholesteric pitch (the distance required to build up a 360°
rotation) is hundreds or thousands of angstroms. In the
phases of interest to us we may ignore the azimuthal

FIG. 6. Frank-Kasper phases are networks of defect lines.
Here is shown the unit cell for an 415 compound, say Nb;Sn.
Tin atoms are grey, niobium white. 12 niobium atoms form a
distorted icosahedron around each tin atom. Ten niobium
atoms and four tin atoms surround each niobium; a sixfold
coordinated edge passes through each niobium atom. These de-
fect lines form the rectangular array shown.

FIG. 7. Neighboring cholesteric molecules sit at a slight angle.
Because the molecules are chiral, the pair interaction energy be-
tween two molecules in a cholesteric is minimized when they are
slightly misaligned. Here the forward molecule is twisted slight-
ly counterclockwise (a right-handed twist).

orientations of the molecule about its axis, and the dis-
tinction between the ends of the molecule: We describe
the orientation of a molecule by a headless unit vector or
“director” 1.

Consider now a small region of cholesteric fluid, in a
local low-energy state. As one moves radially outward
from a central molecule, the molecular orientations will
gradually twist to the right (Fig. 8); as one moves along
the axis of the molecule the orientations will not change
(by symmetry). In general, the change in orientation of
the molecule is perpendicular both to the direction of

FIG. 8. Parallel transport in cholesterics. As one moves radi-
ally outward, the low energy orientation spirals to the right; as
one moves along the molecular axis the orientation is un-
changed.
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“curvature,”
R jij=—6q, 2.4)

(0,0)

(d, 0)

FIG. 9. Frustration in the blue phase. Parallel transport in
cholesterics is frustrated. The local low-energy condition (2.2)
for cholesteric fluids cannot be everywhere satisfied. Consider
the closed loop above. Start with a director @ at the origin
pointing in the X direction. As we move in the  direction, (2.2)
dictates that T rotate, until at (0,77 /2q) it lies in the Z direction.
Along the X axis, the low-energy state allows the direction of I
to remain unchanged; thus if we parallel transport #i using (2.2)
first to (d,0) and then to (d,7/2q), i will again point in the 2
direction. Finally, if we transport these two to meet at
(d /2,7m/2q), they will point in different directions, with angular
separation dgq.

motion and to the molecule; the local low-energy configu-
ration satisfies>> .

ainjz—qeijknk » (22)

where 27/q is the cholesteric pitch and € is totally an-
tisymmetric in its indices with €,3=1.

Cholesteric fluids are frustrated; it is not possible to
satisfy the energy minimization condition (2.2) in any fin-
ite volume. This can be seen by considering parallel trans-
port around an infinitesimal closed loop. (Figure 9
discusses transport around a larger loop.) If one moves an

. infinitesimal distance a, then a distance b, then back
along —a and —b, changing T to satisfy (2.2) along the
path, then T will in general be rotated to a new vector 1’
given to lowest order in a-and b by

‘nj =n; — R juarbin;
=n; —q (88 —8y;8u )axbn; . (2.3)
Thus in partyicular, an ideal low-energy state would have
3,0xn; — 3 dyn; =q*(Synp — By )40 .

The tensor %, is the analog of the curvature tensor in
differential geometry, and of the field strength tensor F¥,
in gauge theories. One can contract it to form a scalar

which is negative. We shall see in Sec. III that by work-
ing on a space of positive (metric) curvature (a sphere in
four dimensions), we can make this frustration disappear.
. [In differential geometry, parallel transport can be de-
fined on a curved manifold using the connection coeffi-
cients I'.?° If one assumes that the connection is sym-
metric (I =T";), these coefficients can be written sole-
ly in terms of the metric and its gradients, and thus are
uniquely defined by the manifold. This is normally a sen-
sible assumption, and the curvature of the connection
equals the curvature of the space. In condensed-matter
physics, space is flat; however, in cholesteric fluids, the
connection I''j =ge€;j is not symmetric and the curvature
of the connection is negative. The asymmetry is the tor-
sion tensor Tijk = %(Fijk —I“ikj)=qeijk.]

At low temperatures, cholesteric fluids have a helical
phase (Fig. 10), of the form

n(x)=ZX cos(qgz)+¥ sin(gz) . (2.5)

This phase does not satisfy the double-twist condition
(2.2). It twists in only one of the two directions perpen-
dicular to T, and locally is not the lowest-energy state.
The minimum-energy double-twist state can be achieved
in the center of a tube (Fig. 11):

n (x):?cos(qr)—asin(qr) . (2.6)

The energy density at the center of this tube will be sub-
stantially lower than that of the helical phase. (Note that
right-handed molecules, Fig. 7, produce left-handed tubes,
Fig. 11. That is, molecules with threads spiraling to the
right will orient themselves on a low-radius tube so as to
form lines spiraling to the left.) The energy density grows
with radius; strains build up as the double-twist relation
must be violated more and more. By the time n =—6
(90° tubes) the molecules twist only in the T direction,
while they bend in the 6 direction: The energy density has
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FIG. 10. Low-temperature cholesteric phase twists in one
direction. (The planes are to aid visualization; there is no densi-
ty variation in the vertical direction.)



FIG. 11. Double-twist tube is local low-energy structure.
Along the center line of the cylinder the cholesteric free energy
is minimized; moving radially outward the energy density in-
creases. i

risen above that of the spiral phase. (See also Finn and
Cladis,®® whose “cholesteric sphere of positive sign” can
be generated by parallel transport radially outward from a
center.)

We shall build model blue phases out of double-twist
tubes. Two 45° tubes will naturally sit at right angles. (If
the molecules on the surface of a tube are aligned at an
angle 6 with respect to the axis, then two tubes will align

7711

(a)

(b)

FIG. 12. (a) Right-handed corners contain s = —% defect
lines. Three double-twist tubes forming a right-handed corner.
Note that the director rotates 180° as one moves in a closed path
around the corner. There is no way to fill the corner smoothly
with directors. (b) Left-handed corners have no singularity.
Three double-twist tubes in a right-handed cholesteric forming a
left-handed corner. Note that the director rotates 360° as one
moves around the corner. The corner can be filled smoothly
with arrows pointing into the paper.

31 FRUSTRATION, CURVATURE, AND DEFECT LINES IN . . .

6283

at an angle 20 to keep the molecular orientation continu-
ous at the point of tangency. See, e.g., Fig. 7 depicting
the similar behavior of two molecules with threads.)
Three such tubes can form a corner; this corner can be ei-
ther right-handed [(Fig. 12(a)] or left-handed [Fig. 12(b)].
If the cholesteric pitch is right-handed (g > 0, as shown in
the figure), then the left-handed corners (b) contain no
singularity; fluid can fill the region between the tubes,
smoothly pointing out of the corner. Right-handed
corners (a) must contain a topological singularity, as the
director rotates 180° along a closed path on the surfaces of
the cylinders enclosing the corner.

The singularity contained by right-handed corners is an
s = — 3 disclination line (Fig. 13). These lines are charac-
teristic of the blue phases. They relax the frustration im-
posed by the double twist the same way 6-lines relax
strains in the metallic glasses.

Experimentally,' the blue phases occupy a small (~1-
K) temperature range between the isotropic phase and the
spiral phase. (The small temperature range can be ex-
plained in terms of the energetics of defect lines.> At low
temperatures you spend more energy in the “isotropic”
core of the defect than you gain from the regions of dou-
ble twist.) Up to three phases can appear in a given ma-
terial. The two lower temperature phases are crystalline;
blue phase I has a bcc translation group and blue phase 11
is simple cubic. The lattice constants (roughly the
cholesteric pitch) are wavelengths of the blue light—
Bragg reflections cause the brilliant colors. The high-
temperature phase, the “blue fog,” is amorphous (no

FIG. 13. Cross section of a

s = —+ disclination line. The director order parameter i lies

1 e .
s =—+ disclination line.

tangent to the curves in the figure. As one travels around the
defect n rotates backward halfway (— 180°).
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Bragg scattering). The existence of an apparently stable
phase amorphous on such a long length scale is very in-
teresting. There is much speculation on the existence of

ideal glassy state,?* which is approached asymptotically as

one quenches arbitrarily slowly. The fact that, in certain
parameter ranges, cholesteric fluids appear to have an
amorphous ground state may have relevance to these
ideas. (Note that the fog seems to be the most elusive of
the blue phases.)

Sachdev and Nelson®! have understood properties of the
metallic glasses as Gaussian fluctuations about the isotro-

/7
7

(b)

FIG. 14. (a) Crystalline blue phase: tube structure. Proposed
model for blue phase II, shown as an array of 45° tubes. (b) De-
JSect structure. The same model blue phase, showing the s = — %

defect lines in the unit cell.

pic state. Although Hornreich and Shtrikman3? claim
that fluctuations in the isotropic state cannot explain the
blue fog, it is possible that they are wrong. Clearly, one
must perform the analogous calculation for the blue
phase. It would be fascinating if the blue fog were a pre-
cise analog of the metallic glasses.

We can form a model blue phase out of the 45° tubes in
Fig. 12, which is consistent with the present experimental
data on blue phase IL.! (Most, although not all, of the
proposed model blue phases can be interpreted in terms of
double-twist tubes. The defect-line description can be
used in all models, because it is topological.) One can
pack these tubes into a cubic array [Fig. 14(a)], defining
the “O%” phase.> Defect lines pass through the right-
handed corners, and meet in the center of the unit cell
[Fig. 14(b)]. Each corner of the unit cell has also four de-
fect lines passing from it; the defect lines form two inter-
penetrating diamond lattices.

III. IDEAL TEMPLATES

In the preceding section we saw that cholesteric fluids
and metallic glasses are frustrated: the local low-energy
structures cannot be used to fill space. In this section, we
shall begin by seeing that both of these systems are un-
frustrated in an unphysical space—the surface S> of a
sphere in four dimensions. We shall refer to these ideal,
unfrustrated configurations as “templates” for the real
flat-space structures. The defect lines will have a natural

. interpretation as the edges of the cuts needed to flatten the

spherical templates. .

In Fig. 4, we saw that when five undistorted tetrahedra
are fit around an edge, there is a 75° gap. If we go to a
space of positive curvature, we can shorten the circumfer-
ence of a circle while keeping its radius fixed; in particu-
lar, on the surface of a sphere of radius k~!'~1.59a, five
tetrahedra of edge length a will join together perfectly at
an edge. This process can be continued to form a Euclide-
an solid in four dimensions. 600 tetrahedra will smoothly
cover S° with five tetrahedra meeting at each edge. This
solid has 120 vertices, so 120 atoms of diameter a can be
fit onto a sphere of radius «~!; the neighbors of each
atom form an icosahedron. This ideal template was
described long ago by Coxeter'® (it is polytope {3,3,5}).
It was proposed as a model for metallic glasses by Sadoc!4
and Kléman,'® and has been studied in detail by Nelson.®

Cholesteric fluid can have double twist everywhere on
the surface of a sphere of radius ¢~ L. If
x =(xg,x1,X3,x3) is a point on the sphere, then the ideal
template is given by the vector field

n(x)zq(—xl,xo,x3,——x2) . (3.1)

This is a unit-vector field (n?=1) everywhere tangent to
the sphere (n-x =0). Most important, it has double twist
everywhere,'>! n; = —qEijk n.>* We now check explicit-
ly that it has double twist in the neighborhood of the top
of the sphere. At xo=(q7,€,,¢€,,¢,),

n(xo)=(—gqex,1,9¢;,, —qe,) . (3.2)

The first component represents the change in n necessary
for it to remain tangent to the sphere [n(x,) points in the
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X direction; since x is at the top of the sphere, moving a
distance €, in the X direction must shift n downward].
The last two represent a right-handed double twist of
pitch 27 /g; if I advance in the Z direction n twists in the
+ direction, if I advance in the P direction n twists in
the —Z direction. The blue-phase template was proposed
first in a conversation between Doug Eardley and Nelson;
Nelson then communicated it to us.!”>33°> Notice that the
circumference of the sphere equals the pitch of the
cholesteric, so for example along the circle x;=x,=0,
n(x) rotates by 27w. Along the circles x,=x3;=0 and
xo=x,=0, n(x) always is tangent to the circle; one can
think of the template 3.1 as two 45° double-twist tubes
centered at these circles and glued along the surface
x3+x3=x34xi= +.3¢  [This decomposition is not
unique; any left-handed rotation will give another separa-
tion of (3.1) into tubes.] :

The defect lines now have a geometrical interpretation:
They are the disclination lines which form the edges of
the cuts needed to flatten the sphere. Consider the prob-
lem in one lower dimension—making a carpet out of
orange peel. To flatten a piece of peel, one can ease the
strains by cutting into the center of the piece. One must
naturally fill in the empty wedge with more peel (Fig. 15).
This can be done so as to leave no seam; however, the ver-
tex of the wedge remains a point of high strain energy,
and the resulting carpet will be a lattice of interacting
point disclinations. In the same way, the line disclinations
in our frustrated theories are the edges of cuts in the ideal
templates on S°3. In our problems of course the size of the
wedge of material we may add is restricted. For
cholesteric fluids we must add a full half-plane of fluid in

FIG. 15. Orange-peel carpet.
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order to keep the molecular orientations smooth at the
boundaries (the “seams”); the defect formed is the
s = —5 line (Fig. 13). For metallic glasses we must add
whole tetrahedra (if we cut at an edge).

Cholesteric fluids are continuous on the length scales of
the pitch 27 /q since the molecular size is much smaller
than the radius of the unfrustrated spherical template.
Notice that this is not true of the metallic glasses—there
the atomic spacing a is not small compared to the radius
k~!=1.59a. Thus there is no natural separation between
the physics of the individual atoms and the physics of
flattening the spherical template. This is represented, for
example, by the fact that 40—60 % of the atoms occupy
defect sites.® One may question the utility of an ideal
template which describes the local ordering to at most one
or two atomic lengths. We hope that the complexities in-
troduced by the large lattice cutoff are uninteresting, and
the important physics is retained as one takes a continu-
um limit. Keep in mind that the continuum theory. for
metallic glasses we develop in the next sections is an un-
controlled approximation. In principle, details about the
interparticle forces can be important. (This problem is
shared by the Landau theories of metallic glasses.!>3!) In
Sec. VI we shall show that any properties which are
preserved in the continuum limit are universal. One can
only hope that the universal, model-independent proper-
ties explain interesting physical effects.

IV. TOPOLOGICAL ORDER PARAMETERS?’

Choosing an order parameter appears to be something
of an art. Two systematic methods have been used in the
blue-phase and metallic glass problems. Which method is
more accurate depends wupon the importance of
fluctuations—how strongly first order the transition is.

For second-order and weakly-first-order transitions, one
can make a Landau expansion of the free energy. In the
blue phase, the Landau expansion was introduced by Bra-
zovskii and Dmitriev,'! and has been pursued in detail by
Hornreich and Shtrikman!?> and Wright and Mermin."!
Consider the distribution of molecular orientations found
in a small volume of cholesteric fluid surrounding a point
r. (The volume must be small compared to the pitch.)
The orientations can be thought of as points on the sur-
face of a sphere. In the isotropic phase, this distribution
is spherically symmetric: The orientational correlations
have only short-range order. If the isotropic phase under-
goes a weakly-first-order phase transition, the deviation
from spherical symmetry will be small. Usually it is as-
sumed that the first nonzero multipole moment of the dis-
tribution will be large compared to the succeeding mo-
ments. The effects of the higher-order moments are ab-
sorbed into effective elastic constants. In the broken-
symmetry phases of the cholesteric fluids, the dipole mo-
ment vanishes. (This is why the ends of the molecules are
assumed to be indistinguishable.) Thus the quadrupole
moment—a symmetric traceless tensor Q,g(r)—forms the
order parameter. The free energy is then written as a
power series in Q and gradients of Q. Landau theory pro-
vides a “soft-spin” order parameter, and a free energy
which is asymptotically valid as the transition approaches



6286

second order. Defect lines, however, lose their meaning in
this description. When we associate a director & to the

major axis of the quadrupole moment (i.e., the direction .

of largest probability: the eigenvector of Q with largest
eigenvalue), the core of the topological defect line in 7 can
relax by going biaxial. At the center of the core, the order
parameter Q develops two degenerate axes of maximum
probability.

[The blue phases are probably not stable for strongly-
first-order phase transitions. Within Landau theory they
are stable in the “high chirality” limit'?> when the correla-
tion length is large compared to the pitch. Within a
director description the core size of the disclination lines
must be comparable to the pitch;? the correlation length
must be comparable to the core size to keep the surface
tension energy small®® (see Sec. VI). However, Sec. VI
will provide a renormalization-group justification for tak-
ing the correlation length to zero, allowing us to study de-
fect lines with a director order parameter.]

The Landau theory for metallic glasses is much more
complicated. Steinhardt et al.* introduced a 13-com-
ponent order parameter intended to describe the local
icosahedral orientational order; it transformed under the
spin-six representation of SO(3) (the blue-phase quadrupo-
lar order parameter is spin two). This proved unsatisfac-
tory, as it is not possible to write a frustrated free energy
of the required form using only orientational order'® (e.g.,
without including translational order). Based partially on
the ideas presented in the next section, Nelson and Wi-
dom!? have constructed a 169-component order parameter
describing both the local orientational order and the local
translational order; it transforms under the smallest repre-
sentation of SO(4) broken by the symmetry of the ideal
template. If the analogies with the blue phase continue to
hold, many interesting results can be expected. In partic-
ular, one should be able to study systematically the stabili-
ty of the Frank-Kasper phases within Landau theory. I
will not pursue Landau theory in this paper.

For strongly-first-order phase transitions, fluctuations
in the magnitude of the order parameter are not as impor-
tant, and cannot be treated systematically. In the broken-
symmetry phase there are many degenerate ground states.
It is appropriate to characterize the state of the material
at a point r by the ground state most closely approximat-
ing the local environment of r. The order parameter la-
bels the different ground states (‘“‘degenerate vacuum
states” in field theory). I call this a topological order pa-
rameter (as opposed to a Landau order parameter) because
it was used in the topological classification of defects.*
Naturally, when the local environment of r is strained it is
not perfectly described by any ground state. However, if
the gradients are small, the additional strain degrees of
freedom should be slaves to the order-parameter field, and
can be absorbed into effective elastic constants. Before
defining the metallic glass and blue-phase order parame-
ters, I will give two examples to establish my conventions.

We start with translational order in a one-dimensional
crystal with four atoms per unit cell (Figs. 16). The order
parameter at a point » must represent the broken transla-
tional symmetry; it should determine the position of r
within its local unit cell. For example, in Fig. 16(a), the
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FIG. 16. One-dimensional crystal with four atoms per unit
cell. (a) Real configuration of strained crystal. (b) Circular or-
der parameter space describing translational order within the
unit cell. X, is an arbitrarily distinguished reference point. (c)
Ideal periodic crystalline template: undistorted crystal.

order parameter at » must indicate that r lies close to
atom D, between it and A.

There are two natural templates in this problem [Figs.
16(b) and 16(c)]; both give equivalent order parameters
and both have natural analogs in the more complicated
problem. In both the circular template and the periodic
crystalline template, one can locate a point p () giving the
location of » within its unit cell. Thus p(7) maps the dis-
torted structure into the ideal template. We could use p
as an order parameter. However, it is the operation X
(roughly translation by — p) which will generalize proper-
ly to an order parameter in the more complicated systems.
To define = for the circular template [Fig. 16(b)], we
choose a distinguished point £,=(«x~1,0) on the circle.
(Think of the circle as lying tangent at X, to physical
space at ».) Then if p =(pg,p,) is the point on the tem-
plate corresponding to 7,

Kpo KP1

2= | —kp; xpo

is that rotation of the circle [element of SO(2)] which
takes p to Xy. For the periodic crystalline template [Fig.
(©)], we first define = to be the translation taking p to
xo However, since the ideal ground state is invariant
under translation by a lattice constant a =27k, transla-
tlons 21 and 3, are equivalent if they differ by 2mnx~!
[E7!3,(x)=x —na]. The order parameter 2 is thus an
equivalence class of translations {3g: g(x)=x —na}.
These two constructions give equivalent order parameters:
‘rotations by 6 correspond to translations by « 6.
Now we find the topological order parameter for a
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*p(7)

FIG. 17. Two-dimensional crystal. To align the distorted
physical crystal at r with the ideal template, one rotates by R
and the translates by p. To align the ideal template to physical
space, one applies the Euclidean transformation S=(—p,R7).

crystal lattice with dimension greater than one (Fig. 17).
We again want to describe the configuration in the neigh-
borhood of a point r by matching it as closely as possible
to a region on the ideal template. Here there is a larger
class of degenerate ground states since rotations as well as
translations of the ideal template will have zero energy.
Thus the order parameter at a point r must determine
both a point p (#) on the ideal template giving the position
within the unit cell and a rotation R (r) needed to align
the unit cell containing  to the axes of the ideal structure.
B and p define a unique Euclidean transformation

S =(—p,R ") which shifts p to the origin X, and aligns
the 1dea1 template to the unit cell containing r, so that
3(x)=R ~!(x —p) (Fig. 17). The template has a symme-
try group G,, which in Fig. 17 consists of lattice transla-
tions and rotations by 180°. Two Euclidean transforma-
tions 21, 3, are equivalent if STS, e6,. If
3 '3,EG, then cither R;=R, and p;—p, is a lattice
vector (so p; and p, are in the same place within the unit
cell) or R;=—R, and p;+p, is a lattice vector (p, and
— p, are in equivalent places because of the 180° rotation
symmetry). The order-parameter space is the right coset
space E(2)/G, formed by these equivalence classes.

Notice that this order parameter is not completely satis-
factory since R and p are not independent in the physical
system. The configuration of the distorted crystal in Fig.
17 is fully specified by the translation field p (r); p ~!(x)
maps the ideal template onto the distorted structure and
thus determines precisely the distortion. The rotation
field R (r) is determined by the gradients of p(r) in any
order parameter field which is physically realizable, since
if I know the location of the points near r in the unit cell,
I can determine the orientation. We shall see in the next
section that there is a unique decomposition
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9;pi =8y —ei )Ry » 4.1)

where e;; is the (symmetric) strain matrix. The rotation
R;; represents extra degrees of freedom in the order-
parameter field which are not present in the original ma-
terial. Such extra degrees of freedom occur whenever
translation invariance is broken. They cause serious prob-
lems, for example, in the topological classification of de-
fects.** We shall see in the next section that the free ener-
gy constrains the R;; to satisfy (4.1) in static equilibrium.
The new degrees of freedom are high-frequency modes
(have a “mass”) and should not change the long-
wavelength properties of the theory. However, an ideal
theory would not include these extra modes.

Using these analogies, the metallic glass (MG) order pa-
rameter is easy to construct. The ideal template lies on
the surface of a sphere S° in four dimensions. The sym-
metries of the sphere form the rotation group SO(4). The
template breaks this symmetry; the symmetry group Gyg
of the template is a discrete set of 7200 rotations
(described in detail by Nelson and Widom'®). The order
parameter at a point r in physical space will represent the
broken rotational symmetry of the curved template.

This broken rotational symmetry will combine transla-
tional and orientational information about the neighbor-
hood of r. The point r lies in a certain position within its
local tetrahedron (or pentagon, in Fig. 18). The order pa-
rameter must determine a point p(r) at a corresponding
position within a unit cell on the ideal template. It must
also determine a rotation R (r), which will align the two
unit cells. Let Latin indices run from 1 to 3 and Greek
indices run from O to 3. The p, is a point on the sphere
(PuPp=K" 2), and contains translational information. R,;
is a 4 X3 matrix which orients the physical tetrahedron at
r tangent to the ideal tetrahedron at p.

To make things precise, we must specify an initial
orientation of the template. (The arbitrary choice of this
initial orientation will lead to a local gauge invariance in
Appendix B.) Choose the point £,=(x"',0,0,0) to be the
point on S3 “tangent” to R* at r. [That is, the point X,
is identified with r, and the point (0,€,,€,,€,) in the
tangent space at X, is identified with the point (&,€,,€;)

FIG. 18. Covariant derivative is given by rolling the sphere.
The ‘ideal structure on the spherical template projects onto the
local low-energy structure in physical space.
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in the tangent space at r.] The rotation X will take p
to X, and align the local tetrahedron around p with the
distorted tetrahedron in flat space t tangent to Xo-
We > can write the components 3,, in terms of p, and
. = takes p, to Ro=«" 80“, so that

p,,=(2 —l)mx#=(2 ),,qu-E

L=k"'3,. (4.2
The rotation R maps the real tetrahedron onto the ideal

tetrahedron; X then maps the ideal one onto the real one,
0 24 R ;=8

sz(i _l)vu‘sm =§JV ’ (4.3)
k" 'po k7'p1 k7'py k7 'py

- Ro; Ry; Ry Ry

S= (4.4)

Ry, Ry Ry Ry
Ros Rz Ry Ryy

Thus p and R explicitly determine 3.

If ris in a corner of a tetrahedron, then p(T) can be in
any corner of any of the 600 tetrahedra in the template.
The order parameter is only defined up to a symmetry
operation of the ideal template. If I rotate by any of the
symmetries g§ € Gy before I rotate by 2(r), it defines a
new rotation 3’ which corresponds to the same physical
environment of r. The order parameter =(r) is an
equivalence class,

3(r={2"3"

=3(r)g,g €EGpma ) > (4.5)

and the order-parameter space is the right coset space
SO4)/ G-

We will continue to treat the metallic glass order pa-
rameter as an SO(4) rotation. The quotient structure of
the order parameter is important in classifying the al-
lowed defect lines.3”'%® However, since the symmetry
group of the metallic glass template Gy is discrete, the
equivalence classes do not change the local differential
structure of the order parameter. In this paper we study
the energetics of the mildly strained regions between de-
fect lines, where these discrete equivalences are unimpor-
tant complications.

Unlike the metallic glasses, the symmetry group Ggp of
the blue-phase (BP) template,

n(X)=q(—x1,X0,X3,—X3) , (4.6)

is a continuous group, and the equivalence classes do
change the form of the order parameter. Just as in the
metallic glass, the order-parameter space is SO4)/Ggp.
In the metallic glasses, the symmetry group is discrete
(zero dimensional) and the order parameter has six in-
dependent components, since SO(4) is a six-dimensional
space. We will see here that Ggp is a four-dimensional
group, and the topological order parameter for the
cholesteric fluid will have two independent components.
Indeed, the blue-phase order parameter will be a director
(a headless vector). _

An infinitesimal rotation 2,=8,5+¢€J,g in SO4) is a
symmetry of the template n (x) if
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na(x)=Zpgnp((Z ~1),0x,)

= (Bup+€J opInp((8y0—€J 50 )x )
=nq(X)+€[Jopnpg—(0,n4)poxs] 4.7

Since n(x) is linear in X, (d,ng)x,=ng. Therefore J
preserves n if (J,83,n8—0,14Jpe )%, =0. Since this must
be true for all x, and J,g=—Jg,, J preserves n if

[J,0n]=J 5,04 —0;npJ ge =0 .. (4.8)
There is a four-dimensional set of solutions to (4.8):
0 A C D
—4 0 D —-C
Ji=|_¢c _p o B |’ 4.9)
—-D C —B O

these form a Lie subalgebra ggp in the Lie algebra so(4) of
infinitesimal rotations.

Consider the action of the infinitesimal rotations (4.9)
near 52(,:(:("1,0,0,0). B generates rotations which leave
X0 and n(X,) fixed—rotating about »n(%,)=(0,1,0,0); 4,
C, and D move X to other points on S3. The Lie algebra
quotient so(4)/ggp is spanned by the rotations leaving X,
fixed but changing n (%,):

0 0 QO
0 0 PO

Ji=|_g0 —Po o (4.10)
0 0 00

This implies that two rotations are equivalent if they leave
n(Xy) pointing in the same direction. More premsely, 21
and 3, are equivalent if ;1 (3 '%y)= Son(E571%).
Thus the equivalence classes of rotations can be labeled by
the unit vector n(r)=3n(Z~'%,). Finally, we must in-
clude the discrete symmetry of the template (4.6); since
the ends of the molecules are not distinguished, # (x) and
—n(x) describe the same template. Gpgp contains this
discrete symmetry, and the rotations in SO(4)/Gpgp la-
beled by n(Xy) and — n (X,) are equivalent.

Thus the order parameter = for the metallic glasses is
an SO(4) rotation (modulo equivalences), which describes
the translational order within the unit cell together with
the orientational order of the unit cell. The blue-phase or-
der parameter 7 is a director.*!

V. COVARIANT DERIVATIES AND FREE ENERGIES

In this section we shall use the ideal templates and the
order parameters of the previous two sections to construct
covariant derivatives and continuum elastic energies. We
will develop first the elastic theory of (flat space) crystals
and second the theory of the blue phase. Both are already
well understood (although our treatment is unorthodox).
However, each will illuminate important features of the
theory of metallic glasses, with which we conclude this
section.

Usually, the order parameter field in the ideal ground
state is constant (e.g., in ferromagnets) and the elastic en-
ergy is quadratic in the gradients of the order parameter.
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In our materials, the order parameter varies with position.
In the blue phases, the order parameter has a “double
twist” [Eq. (2.2)]. In crystals and the metallic glasses, the
translational components of the order parameter [p(7) in
Eq. (4.2)] vary as one moves across the local unit cell. We
will construct covariant derivatives which are zero for the
order parameter variation characteristic of the ideal state.
We will then make free energies quadratic in these covari-
ant derivatives. This provides a natural method for calcu-
lating elastic energies of small deformations from the
ideal state.*?

The elastic theory of (flat-space) crystals is unfrustrat-
ed. However, it does treat both orientational and transla-
tional order—which are necessary features of the theory
of metallic glasses. Traditional continuum elastic theory*
describes the deformation of the crystal of a displacement
field u (x). In the notation of the preceding section (Fig.
17) u(x)=p~Yx)—x. [p~!x) is the position in the dis-
torted crystal corresponding to x.] Although u (x) can be
large (e.g., in a uniform compression), the gradients d;u;
in the naive theory are assumed small. The elastic energy
can then only depend on the symmetric strain
e;;=(0;u;+0;u;)/2; the antisymmetric part corresponds
to an infinitesimal local rotation, which cannot change the
energy. The most general free-energy density for a homo-
geneous, isotropic medium is then

F=2p(e;;)*+Ae;)* . (5.1

The naive form of the theory involves an unnecessary
assumption, and is not sufficient for our purposes. We
need to study disclination lines (Fig. 19). Far from a dis-
clination, the crystal is not strained much; however, it is
in general rotated by a finite rotation p(r)~Rr, and
d;uj=R;; —8;; is not small. In particular, a simple rota-
tion by an angle 6 in this theory costs an energy
4(u+A)(cos®—1)2. Traditional, naive elastic theory fails
for large rotations.

FIG. 19. Disclination lines have large rotations. The strains
far from a disclination line are small, but even in the far field
the crystal is rotated a finite angle.

This problem can be cured by a more careful definition
of the strain matrix. Landau and Lifshitz** add an extra
term to e;;:

1 auk auk
e,-j=3 aiuj +aju,-+———axi —ax]
=3 @pi "9k —8y) . (5.2)

This new strain matrix is rotation invariant; if a deforma-
tion p~! is followed by a rotation R, then since
RT=R",

3:(Rp ™" )k3;(Rp ™ i — 8 =Ry 0;pm N(Ryndjpy ) =8y

=3pi 'pi | —8y=e; . (5.3)

Although this is undoubtably the simplest cure for the
problem, it is not the only one. Any matrix can be
uniquely decomposed into a symmetric matrix times a ro-
tation (the polar decomposition). Let us decompose dp
into (4.1):

9;pi=(8ix —e )Ry - (5.4)

A point r+§ near r is a strained image of a point p+
near p, where 7;=§;0;p;. Equation (5.4) insures that to
first order in e the ideal template is strained by e and then
rotated by R ~!:

§i=7Tj8jp,-_1=Rk,~(8kj+ekj)7rj+0(e2) . (5.5)
We can define the strain matrix using (5.4) to be
eij =5,~_,~—-R,-kakpj ’ (5.6)

where R is chosen to make e symmetric and is in some
sense the rotation closest to d;p;. Using Eq. (5.5), it is
easy to see that (5.2) and (5.6) are equal to lowest order in
e, and are equivalent within linear elastic theory.

The strain matrix is a covariant derivative, since it is
zero in the undeformed (but rotated) crystal and it
expresses the deviation from the undeformed state. In the
preceding section, we defined the order-parameter space
for a crystalline lattice to be the Euclidean transforma-
tions (—p,R ~1). Equation (5.5) provides us with a co-
variant derivative on this space, and (5.1) gives us the free
energy (if we ignore crystalline anisotropy):

F =2u(8;j — Ry 0xp; )* + M3 —Rydip;)” . (5.7

The strain matrix determined by this decomposition is
symmetric. As noted in the preceding section, we have in-
troduced new degrees of freedom by allowing R to vary
independently of the gradients of p; in principle these al-
low e to become asymmetric. We can show, however,
that in regions of small strain, small deviations of R from
its decomposition value will always increase the energy.
Let p and R define the order-parameter field, with covari-
ant derivative € [Eq. (5.6)]. Let R be defined by the
singular value decomposition of dp, and e be the (sym-
metric) strain field. Assume R and R are nearly the
same: Rik =R1k(81i+61i)' Then
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€;;="0;;—(8;; + €, )Ry Oxp;

=e;;+€;—€ye;j=e;+€;+0(ee),

and the change in the energy (5.1) is 2u( ,J) >0. (Howev-
er, if A >>pu, large rotations can lower the energy.*’) Thus
the free energy provides a uniform restoring force which
resists deviations of these extra modes from their proper
values.

It would be natural now to construct the covariant
derivative for the blue phase from the ideal double-twist
template [Eq. (3.1)]:

nlx)=q(—x1,x0,X3, —X;) . (5.8)

This is a formal exercise, since the covariant derivative
will of course be the deviation from the ideal double-twist
state of Eq. (2.2):

(D,-n)j=8,-nj —}—qeijknk . (5.9)

This construction is precisely analogous to the metallic
glass covariant derivative construction that follows.
However, things are complicated by the quotient structure
of the order-parameter space. We will confine this il-
luminating but distracting calculation to Appendix-A.

The elastic theory for the blue phase has been pursued
in some detail.!~>19~1217 If we sum the squares of the
components of our covariant derivative (5.9), we get the
Frank free-energy density in the “one-constant approxi-
mation,” plus a total divergence:

F{n}=5K(D;n)j(D;n);
=LK { (diva)*+(n X curln)?+(n-curln +¢)*

+div[n-Vn —nV-n]+q?} . (5.10)
In the most general Frank free energy, each of the four
terms in (5.10) can have an independent elastic constant.
By using other scalars formed from n and Dn, Wright has
expressed the general free energy in terms of covariant
derivatives.*®

The total divergence term in (5.10) cannot be dropped,
even though it is a surface énergy.”? In the blue phase
there is a finite density of disclination lines. To integrate
by parts, one must exclude the core of each defect line.
The boundaries of these cores give the blue phase a finite
“internal surface area” per unit volume. We will see in
the next section that the flux of n-Vn —nV-n through
these surfaces acts as a measure of the length of the dis-
clination lines.

We now come to the central result of this paper, the
continuum theory for the metallic glasses. The local state
at a point r in a metallic glass is given by a rotation 2(r)
of the ideal template. =(r) rotates the template to change
the orientation and position of one of its tetrahedra, align-
ing it with the tetrahedron of metal atoms in physical
space surrounding r. The covariant derivative, recall, is a
rule telling how the system varies from point to point to
minimize the energy. We will define the covariant deriva-
tive by rolling the sphere along physical space without
slipping!® (Fig. 18). To roll the sphere a small distance
E=£/€,+£,€,+£4€;, one uses the rotation
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Egzexp(Ké',-Ji)z]l +K§iJi 5 (511)

where \

(Ji )uy="80.8:v—8;,80y - (5.12)

To form the ideal low energy state near r we first align
the template to r using 3(r) and then roll it to r+£. This
defines a parallel transported (PT) rotation field =*':

SPU(r4+-£)=323(r) . (5.13)

The covariant derivative thus measures the deviation of
3(r+§) from Z3(r).
We define the covariant derivative D3 to be

S(r4+£8)[2, 3] 7' —1
=lim -
£—0 é‘

(D;Z)

=(0;2))3p —KJ1p=(9;2

Jiny=(8;2 ) 2 — K,

iy - (5.14)

This definition ensures that DX is antisymmetric in u and
v [since

(8;2p) 2y +(0,2,,)2,=0;(2,,2,,)=0,(8,,)=0
and J;

==l It also makes a convenient separation
between gradients of p and gradients of R [Eq. (4.4)]:

(D 2)OJ (9; 2Ov)z]v KJ:OJ_K(axpvRv 8ij) s
(D1 3)e = (3;%) ey — Kk = (3R ;)R »
(DIE)]OZ —(D,E)oj .

(5.15)

This covariant derivative cannot be made everywhere zero
in a region of (physical flat) space, since its curvature is
nonzero. [See Eq. (2.3) for the curvature of the blue-phase
covariant derivative.] If one rolls the sphere around a
small closed square (moving successively a distance &
along ¢;, ¢;, —€; and —¢€;) the original orientation = of
the sphere changes to

[R_ &R _gR &R geAiz],w=K2[J,<,Jj Tup=pv
=R ijupZpv > (5.16)
where the curvature Z is not zero:
R ijuv =11 1,0 Lu =188, — 8:,8;,) - (5.17)

Thus DX cannot be made zero along infinitesimal square
loops, and thus can only vanish at points and along lines.

The simplest form for the metallic glass free-energy
density (a “‘one-constant approximation”) is given by sum-
ming the squares of the components of D3:

F(2)=Tr(D;2)(D;2)=(D;2),(D;Z),,

=k*(3;p,R,;—8;;)>+(3;R,;R 1 )* . (5.18)

This is the continuum elastic energy with which we pro-
pose to model the metallic glasses. It is frustrated; since
DX cannot be made zero in a volume, neither can F. This
nonzero value represents the deformation energy needed
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to pack the local tetrahedral clusters of atoms to fill phys-
ical space.
Further properties and more general forms of the me-

tallic glass free energy (5.21) (which will not be useful to

us here) are discussed in' Appendix B. We turn now to
study defect lines.

VI. DEFECT LINES AND THE CONTINUUM LIMIT

One problem with discussing defect lines within contin-
uum field theories is the eventual necessity of studying the
core of the defect. Since the strains diverge at the defect,
linear elasticity breaks down and a more complete theory
is necessary. Since the energy depends only logarithmical-
ly on the core radius (cutoff length), this study is not very
rewarding. In this section we will develop an elegant
method for avoiding the detailed study of defect cores. In
the continuum limit, only the core energy per unit length
will matter—all other properties of the core will be ir-
relevant.

The cores are clearly important in the blue phases and
metallic glasses. First, the ground states have a finite den-
sity of defect lines. The magnitude of our order parame-
ters is fixed. Near the defect lines we must either allow
the magnitude to vary (as in Landau theory!!!21:13:31) or
put the theory on a lattice.> Secondly, the cutoff length is
comparable to the distance between defects; there are two
length scales in the problem. In the metallic glasses, the
radius of curvature k! is ~ 1.6 times the atomic diame-
ter. In cholesterics, the core size must be on the order of
the pitch?!2 for the blue phases to be stable.

Are we being perverse in insisting on a fixed-magnitude
order parameter to describe lattices of defects with large
cores? It is possible that two length scales are necessary
for describing these phases properly. However, it is cer-
tainly preferable to work in the continuum limit (neglect-
ing the cores) if the essential physics can be left un-
changed. (What things are essential—which properties if
any are universal, and independent of the model used to
describe the system—is not clear at this time.) For exam-
ple, metallic glasses have been described using dense pack-
ings of spheres,”?* using a soft-spin Landau theory,!>3!
and using an SO(4) order parameter'® with an explicit cut-
off. Each theory treats the short-distance scales (the de-
fect cores) differently. I assert that if these models share
any common quantitative predictions about the real me-
tallic glass state, it is because they share the same continu—l

Fp{n}

1
2

1
2

= 3K {(diva)*+(n X curln)*+(n-curln +¢)*} + +[K +K(A)]div(n-Vn —nV-n)+ +Kq? .

The first term in curly brackets in Eq. (6.2) is a sum of
squares, and is zero only for the helical phase (2.5). The
second term is a total divergence, which can stabilize the
blue phase only if the effective energy per unit length of
the defect line is sufficiently negative.”? We wish to define
K(A) so as to keep the energy of an s = — + defect line
fixed as A—0. )

We can make many simplifications by ignoring terms
which change the energy per unit length by a finite
amount. The bulk energy of the core ~A2, and vanishes

K(3;nj+qeni)?+5K(A);(n;d;n; —n;d;n;)
j j j9j jnj
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um limit.*’

To take the continuum limit, we must somehow keep
the energy per unit length of the defect lines fixed as the
cutoff radius A is taken to zero. Briefly, we do this by
adding a counterterm to the free energy—a total diver-
gence whose net contribution is proportional to the length
of the defect lines. As we let the cutoff A get small, we
increase the magnitude of this counterterm so as to keep
the defect energy fixed. (This is of course a
renormalization-group transformation.) In the limit, we
can study defect lines in a continuum theory without a
cutoff. A term like this is well known in the study of
singularity-free defects. (These codimension-zero defects
are called variously instantons, textures, and ‘skyr-
mions.”) There the term is purely topological. Its in-
tegral over all space is an integer (the wrapping number of
the order parameter field) which counts the number of de-
fects. The term we use works for a more subtle reason,
since it needs both topology and energetics to measure the
length of the defect lines.

First we give a complete analysis of the continuum lim-
it for s = — = lines in the blue phase (or more generally in
any phase with a vector or director order parameter). In
the continuum limit the counterterm will energetically
constrain n to be perpendicular to the defect. With these
boundary conditions the counterterm is a topological mea-
sure of the winding number of T around the defect. The
integral of the counterterm is proportional to the sum of
the lengths of the defect lines multiplied by their
strengths. Secondly, we will analyze a total divergence
counterterm for SO(3) order parameters. Disclinations in
these theories are important in themselves,*® and they
form a simpler analog of the metallic glass defects. In the
continuum limit, the order parameter will be energetically
constrained to rotate about an axis parallel to the defect.
(This makes the counterterm energy stationary, but mini-
mizes only the full free energy.) Again, with these
boundary conditions the counterterm topologically mea-
sures the product of the strengths and lengths of the dis-
clination lines. Finally, we give the form of the counter-
term for the metallic glass order parameter, and sketch
the continuum limit of 6-lines (—72° disclinations).

Consider a defect line of length L in the blue phase.
Let C be a cylinder of radius A about the defect (Fig. 20).
The energy density we will use outside C is given by Eq.
(5.10) plus a total divergence term:

(6.1)
(6.2)

with A. The isotropic blue-phase surface tension
o=aK /&, where £ is the width of the interface’® and « is
somewhat less than one.** As A goes to 0, £~ A so the in-
terfacial energy 2mAo goes to a constant. Terms involv-
ing the wave number of the pitch g are only linear in the
gradients dn ~1/r so their contributions will be finite as
A—0. The effects of the radius of curvature r and the
torsion ¢ of the defect line are also higher order in A/r
and At, respectively; thus we may assume the defect line
is straight. Finally, the effects of the boundary condi-
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FIG. 20. Core of defect line. The cylinder C is of radius A
about the defect line. The differential surface area d A points
perpendicular to the cylinder, into it. Consider a plane perpen-
dicular to the defect. The differential arclength dl measures
length along the circular intersection of C with the plane;
d/-dA=0. The blue-phase order parameter i, when projected
onto the plane, makes an angle ¢ with respect to some fixed
axis.

tions are down by A/R, where R is the distance to the
boundary (e.g., to nearby defects), so apart from the total
divergence K(A) (which we will treat explicitly as a sur-
face term) the boundary too can be ignored. ‘We are thus
left with the problem of minimizing

+3R(A) [ (n'Vn—nV-n)-dA (6.3)

in the vicinity of a straight defect of length L.
Assume the defect lies along the z axis. The first term
contributes energy,

2

an, on;

=3k [ d d do - —

[a far [ aor 3
1o (6.4)

PERFY) ’ )

where (because of the defect) n(r,0,z)= —n(r,2m,z).
Clgarly on/9z=0n/dr=0 for minimum energy;
(an /90)%d6 is stationary for d%n; /36%*=s2n;, with
s=i-2-, i‘%, Since n(27)= —n(0), at some point

n,(0)=0, and without loss of generality we may assume
n,(0)=0 and n(0)=(1,0,0). Then the stationary solu-

tions for F$ are ’
n(0)=(cos(s0),4 sin(s0),(1— 4> ?sin(s0)) , (6.5)

so n moves along great circles on the sphere n?=1. Since
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(3n /30)*=s2, the energy from FY is

L/2 R
Fo= [ dz [, ar T s?=nKLs In(A™") |

L2 (6.6)

The second term S, is the surface integral equaling (by
Gauss’s law) the total divergence term in Eq. (6.1). Pro-
ject n onto the plane perpendicular to the defect and let ¢
be the angle between the projection and some fixed axis in
the plane (Fig. 20). Here our defect lies along %, so we
can let ¢ =arctan(n,/n;). S, can be reexpressed in terms
of V¢:

1 —ndiny+n10;my
Vop=— , (6.7)
ni+n;

— N0 +n10s0,

and the line element dI measuring arclength along the
cylinder C'is given by (dl,,dl,)=(dA4,,—dA,), so

(n14+n3)Vé-dl =(n-Vn —nV-n)-dA . (6.8)
Thus,
Sx=5K) [dz [ (1—n?)vg-al . 6.9)

Notice two important features of S,. First, if ny=0, it
measures the winding number of the defect:

=(1/2m) [ V¢-dl . (6.10)

Secondly, if ¢ is monotone decreasing (K>0,s <0) it is
minimized by n3;=0, so minimizing S, for negative
winding numbers gives

Sx=+K(A)2ms)L =msK(A)L (6.11)

[Similarly, positive disclination (s >0) can be stabilized
by negative K.]

Thus for a given winding number s, F} and S, can be
simultaneously minimized by

n :(cos(s@),—sin(s@),O) N (6.12)
with energy per unit length

FQ +Sp=7nL[Ks*In(A~)+K(A)s] .
To keep the energy per unit length of s = — 1 defect lines
fixed, we set

K(A)=Ky++5KInA~". (6.13)

The energy per unit length (—m/2)K, of the s = — 5 de-
fect will depend upon the shape of the defect line, the core
and surface tension energies, and the position of neighbor-
ing defects. Energies of defects of all other winding num-
bers d1verge as A—O0; in the continuum limit only
s = — 5 defects are allowed.

We now consider defect lines in a theory with an SG(3)
rotation matrix order parameter. Such a theory would
describe, for example, a material with completely broken
orientational order (three distinguished axes in space) but
without translational order. Our primary motivation for
this calculation is its similarity to the (conjectured) calcu-
lation for the SO(4) theory of metallic glasses. Even here,
the detailed estimates use Euler angles and are confined to
Appendix C.



Superfluid *He and biaxial nematics are described by
SO(3) order parameters. The bulk free energies in these
materials are more complicated than the one we will use,
but one might be able to modify this calculation to treat
defects in these materials. On long length scales, Heisen-
berg spin glasses are thought to be described by an SO(3)
order parameter*® (representing the local rotation needed
to align two metastable states). However, wall defects as
well as line defects appear to be important in the numeri-
cal simulations.

The free-energy density F is a sum of a bulk free energy
which resists gradients in the order parameter R;;, and a
surface term:

F{R}= —;'K(aiRjk )+ ‘;‘I—((A)aj(RikakRij —R;;j0xRy) .
(6.14)

Just as in the blue phase, we can confine our attention to a
straight defect line in the Z direction and assume all gra-
dients are zero in the 7 and Z directions. As one moves
around the defect line R (27) must equal R (0) followed
by a symmetry g of the undistorted phase:*°
R (27)=gR (0)=e>"'R (0).

The first term in F is locally minimized by a steady ro-
tation,

R(6)=e’°R(0) . (6.15)
This gives ‘
(9; R jx )2=1/r2(ij 2=2s2/r%,
J

F{3}=3K(D;2)+57K(A);[(30; 27 1) — (23, 27N ]
= %K[Kz(aipvRvj_aij )2+(aiRijvk)2]+ %K(A)aj(RvkakRvj_RvjakRvk) .

Again we need only consider straight defects, symmetric
in Z and 7. Also, as in the blue phase, we can ignore the
terms linear in the gradients (which embody the frustra-
tion), so in (6.19) we may replace D; by d; when studying
defect cores. We want to minimize F{2}] subject to the
constraint that Z(27)=3(0)g =3(0)e*™, where g is a
symmetry of the ideal template.

The bulk energy (ignoring the frustration) is locally
minimized by

3(0)=3(0)e’®=e703(0) . (6.21)

J=3(0)J=~1(0) represents the infinitesimal rotation of
the ideal template as 6 revolves around the disclination
line. Just as in (6.15),

where s is the strength of the disclination.

We will assume that the minimum energy defect is of
the form (6.21). [The demonstration of this should be
similar to the SO(3) calculation given in Appendix C.] If
we define

W;=(20, 371 — (30,2~ 1) e =273 0k ,
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where s is the strength of the disclination g (the net angle
rotated, divided by 27). The bulk energy per unit length
is thus 27Ks2In(A~1).

The second term is again a total divergence, which we
will express as a surface integral. Let W;=R;diR;;
—R;;0xR;; then just as in the blue phase

[yavaivw= [ wda=L [dle;w;. (616
For the moment, we assume that R (8) satisfies (6.15)
(minimizes the bulk free energy). We will show in Appen-
dix C that this solution is a local minimum of the free en-
ergy (6.14). Define m by

(R _IakR )ij =R (0);J;mR (O)mj8k9=mle,~j,ak9 >

i is the axis in physical space about which the order pa-
rameter rotates and m2=s2 The energy per unit length
contributed by the surface term is ‘
K—;"l [ dl; ey — € )my 3, 0=27K (A)m .
Thus the surface term is made most negative (for
K > 0,5 <0) with m=s%; one can always choose R (0) to
align the axis of rotation with the defect line. Setting

K(A)=Ky—KsInA~! (6.18)

(6.17)

gives the disclination of strength s a smooth continuum
limit, with core energy 27K s per unit length.

Finally, we consider disclination lines in our SO(4)
theory of metallic glasses. We add a total divergence to
the metallic glass free energy (5.21):

(6.19)
(6.20)
[
then
J,avdvw=L [ al,e;w,
=2L€123.712 f V9d1=47TLj12 . (6.22)

Since (.7,-j )i= 2s2, the surface term (for negative s) is mini-

mized by J;, =—J,;=s and .7,~j otherwise zero. Thus,
1 0 0 0
0 cos(s@) sin(s8) O
2(0)2 0 ~—Sin(50) COS(SG) 0 2(0) . (6-23)
0 0 0 1

This minimum energy defect is an orientational defect
only; the position p, on the ideal template is independent
of 0 near the core:

PAO)=20,(0)=[e"°1,2,,(0)=p,(0) .

It also rotates about an axis parallel to the defect (£). Set-
ting
K(A)=Ky—KsInA~!

(6.24)

(6.25)

with s = —+ for the metallic glasses gives the sixfold
coordinated edge defects a smooth continuum limit with
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core energy — 27K /5 per unit length.

In summary, the strain energy near defect lines diverges
logarithmically as the cutoff length (core size) goes to
zero. To compensate, we can add a total divergence to the
free energy, which cannot change the bulk energies of
defect-free phases, since it can be written as a surface in-
tegral. However, in the phases of interest there is a lattice
of defect lines, and therefore a finite density of internal
surface area per unit volume. We allow the magnitude of
this total divergence term to diverge as the cutoff gets
small, in order to keep the net energy per unit length of
the defects finite. In this limit, the divergence term en-
forces boundary conditions at the singularity. With these
boundary conditions, the total divergence is a topological
measure of the winding number of the defects. In the
continuum limit, the minimum strength disclination lines
have finite energy per unit length; all other defect lines are
energetically forbidden.
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APPENDIX A: BLUE-PHASE COVARIANT
DERIVATIVE

We have defined the order parameter to be the orienta-
tion of the spherical template needed to match the envi-
ronments at the point of tangency to physical space. We
define the covariant derivative by rolling the sphere along
physical space without slipping (Fig. 18). To roll the
sphere a small distance £=£€, + £,€,+£3€3, one uses the
rotation

0 10 0 0 0 10
~100 0 0 0 01

R __ R R __

Ji=!0 00 —1|"72=|_-1 0 00|’ /3=
0 01 0 0 —100
01 0 0 0 01 0
~10 0 0 0 00 —1

L __ . L __ L

Ji=lo0 00 1|°77=|-100 0 |5 /3=
0 0 —10 0 10 0

Thus from Eq. (5.12) J;=(JR+JF)/2. Each set has the
commutation relations of the three dimensional rotations:
LRI =2€3 & and [J],J}F]1=2€,JE; also [JR,JF]=0.
Thus locally, SO(4) looks like a direct product
SOz (3)®80, (3). .

Now, 29-n'S ~1=¢3J%3 ! is a right-handed infini-
tesimal rotation, so it can be written as a linear combina-
tion of the JX. Since

n;(r)=5n"(3 ~(20))=3,8,n}Z0,= (3303 ~1)y;
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2§:Cxp(q§i~]i J~14-q&;J; ,

where (J;),, is defined in Eq. (5.12). The local state at a

point r is given by the set of rotations = satisfying
n(n)=3nl(X 1%, (A1)

and which thereby align n’ at the top of the sphere %,
with n(r). The ideal low-energy state for r +¢ is given by
first aligning the template to r using = and then rolling it
Lopr% +&. This defines a parallel-transported rotation field
20,

[EP(r+8)]=23(r) , (A2)
which gives a parallel-transported order parameter field,

nPT(r+£)=33n3 7127 '%)

~n, (1) + il @TynZan (2 7'%)
- i[.Lvazrn {'ETO“]H‘O] . (A3)

Using the identities n.(p)=3,nlp, and d,nl=—3,nl,
we can write the covariant derivative:

n] T (r+E8;)—n;(r)
3

=3;n;j+[J;, T(@nHZE 10 .

(A4)

Since dn’ [cf. Eq. (5.8)] generates an infinitesimal right-
handed rotation, we have expressed the blue-phase covari-
ant derivative in terms of commutators of generators of
SO4), i.e., in terms of the structure constants of the
group.

To evaluate this commutator, we introduce a basis for
the infinitesimal generators.!” The six generators of SO(4)
split naturally into right- and left-handed groups of three,
JR and JE:

0 0 0 1
0 0-10
01 0 0}
—10 0 O
0 0 01
0O 0 10
0 —100
—1 0 00

and (J;)o; =8, dn’2 ~'=n,JX. Rolling the sphere in a
direction ¢; is generated by J;=(JR+JF)/2 [Eq. (5.10)],
SO

[Ji, 23nTS ~'j0=(q /2)IF, eI jo=q€imniTm jo

=+q€;ni » (AS5)

and the definition (5.9) of the covariant derivative is ob-
tained. Thus, the local low-energy blue-phase state is con-
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structed by rolling the ideal template infinitesimal dis-
tances on physical space.!”

APPENDIX B: METALLIC GLASS FREE ENERGY

In this appendix we discuss the gauge invariances and
flat-space limit of the metallic glass free energy (5.21).

The gauge invariance of the metallic glass free energy
corresponds to the arbitrary choice of the point of tangen-
cy X and the arbitrary orientation of physical space at
Xo- Let Q(r)ESO(4) describe the local gauge transforma-
tion

s*=Q3,
J}':QJ,-Q“‘—{—%(B,-Q)Q"‘ . (B1)
Then

D (Z*)=(3;3*)z* ' —xJ}
=(3;0)Q7'+0(3;2)z" 0!
—k[QJ; Q7 4 (1/K)(3;2)Q 1]
=Q[(3,2)="—xJ;]Q!
=D;3)0 !, (B2)

and F in Eq. (5.21) is unchanged.

Now we investigate the flat-space limit k—0. First, we
must generalize the free energy by giving the two terms of
F{X]} separate elastic constants:

F{3}=5K,(3;p,R,;—8;)*+TKr(3;R;R,;)* . (B3)

[We can use X, and S,W=5,w—(fo)p(5€\0)v to form more
general free energies; gradients of p and of r are physical-
ly distinct.] If we set p(r=0)=%,, then as k—0 we can
write p =(x~1,p); also

Roj=kR,p,=Z2;,3,=8p;=0,
so Rj is a 3X3 rotation matrix. Thus,

nn%ﬁ(z)= 5K, (3;pk Rij—8;)*+ +Kr(3;Rjx. ) . (B4)
K—>! '
Changing the sign inside the first term and conjugating it
by R leads us finally to the form

lir%F*(2)=%K,,(5,-j—R,-kakpj )+ 5Kg(3;Ry)* . (BS)
K>

The first term is precisely the square of the strain matrix
e;; of Eq. (5.6); we simply identify %Kp in (BS) with 2y in
(5.7). The second term does not occur in flat-space con-
tinuum elastic theory. It is allowed by symmetry, but
since R is implicitly defined from gradients 9;p; of p, gra-
dients of R are second derivatives of p. Second deriva-
tives contribute energies of higher order in the lattice con-
stant over the wavelength. Continuum elastic theory is
normally concerned with wavelengths that are long com-
pared to the lattice constant @, and higher-order terms can
be dropped. We are interested in strains on length scales
k~!~1.6a, and must be careful to keep whatever higher-
order gradient terms appear important.
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APPENDIX C: STABILITY OF SO(3)
DISCLINATION CORES

In Sec. VI, we analyzed the energy of a disclination in
an SO(3) order parameter field R (6), assuming that the
core structure was of the form (6.15) which minimizes the
bulk free energy. Since the surface term is by hand kept
comparable to the bulk contributions (to keep the net en-
ergy finite), we must check that this form remains a local
minimum of the full free energy.

In the blue phase, this was obvious; the simple form
(6.9) for the surface energy makes it obvious that the bulk
and surface energies are simultaneously globally mini-
mized by (6.12). We will do a local stability analysis for
SO(3).

Let (L;)jx =€ be the generators of rotations in SO(3).
Express R in Euler angles (¢,&,¢):

R =e?3ef1es (C1)
Then one can show®!

R 71V R = [(siny)(sin&)By ¢ + (cosy)B,E]L
+[(cosy)(sin&)dx ¢ — (siny)dx 1L,
+[(cos§)dxd + 3 Y]IL; , (C2)

and

€;j3W;=2[(cos£)9;¢+0;¢] . (C3)

The surface term energy per unit length
1K) [ di;€;3W;=K(A) [ [(cosé)Vé+Vy]-dl  (CH)

is stationary only for R (6) with 9 arbitrary but £ and ¢
constant; thus

R(O)=Rye"™ . (C5)

Thus the condition that the surface term be stationary
fixes the axis of rotation parallel to the defect [cf. (6.17)],
and with this boundary condition, the surface term is
K (A) times f V¢-dl =2ms independent of (6); it topo-
logically measures the strength of the disclination.

However, the surface term is not minimized by the
form (CS) (unlike the blue phase). We must perform a
second variation of the full free energy to determine local
stability.

The bulk free energy per unit length is given by the
square of (C2):

2w
an’r [, d0r;K(R7'V,R)?
=(KInA~") [ [ (3p$)*+(365)*+(3gth)> +2(coSE)

X (3¢ )(361)1d O . (C6)

Using the scaling form (6.18) for K(A) (and dropping K,)
the total energy per unit length is

F=(KIA™Y) [ d6f (3p$)*+(8e&)*+ (dg1h)?
+2cos&(gp )(Ogh)

—s[(cos€)dgp+dg8]} . (CT)
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We perturb F about the solution which minimizes the
bulk term (6.15) and extremizes the surface term (C5):

(¢’§a¢)=(¢0+€h§0+62a¢0+39+€3) (C8)

where €(0)=€(27)=0. Expanding (C7) to second order
in €, and noticing that f dged 6=0, we find
|

(1+cos&y)

Fsz_—-KInA‘lfdG{ >

lVe, +Ve;—

(1 —cosé&p)

Ve, — —
b € VE3

s2sin%&, 1

SETHNA
F,=KInA~" [ dO[ (34€)*+2 cos&o(ee1)(dge3)

—singo(dge; )€os] . (C9)

We can rewrite F in a less compact but more useful way.
Let &s=e,—1/27 f €,d6. Then

ssiny g
2(1+cosé&p) €

s sinéy . g
2(1—coséy) €

1

+V€%—

8 1+4coséy

1—coséy

(C8)

(eZ)ZJ .

The first two terms in (C10) are positive definite and can be made zero by suitable choices of Ve, and Ve;. Thus given €,

and minimizing with respect to €; and €3, gives

s2sing}
8

2
1—cos2&,

Fo=(KInA~") [ d6|(Ve,)—

which is positive definite for | s | <2.

*
€ )2

’

_ 1 27
=(KInA~") [ d6

2
(Vez)z—a—(é )2

*Permanent address.
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