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electron gas with filled Landau levels
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We have investigated the stability of a two-dimensional electron gas with two filled Landau levels
(of opposite spin) in the high-field limit. The Zceman energy can be increased by adding a com-
ponent of the magnetic field parallel to the surface. The lowest-lying excitations can be described in
terms of singlet and triplet excitons. Taking interaction effects into account, we have found that at
a critical Zeeman energy (smaller than the cyclotron energy), there is a first-order transition to a ful-
ly spin-polarized state in which two Landau levels of equal spin are filled. Exotic intermediate
states of the spin-density-wave type have been found not to occur in the simple case of nondegen-
erate bands.

INTRODUCTION

In the presence of a sufficiently large magnetic field the
carriers of a two-dimensional electron gas will populate
only the lowest Landau, lowest spin level. The occurrence
of the fractional quantum Hall effect' when this level is
partially occupied has led to a great deal of interest in the
effect of electron-electron interactions ' on the properties
of the system. The fractional quantum Hall regime is
particularly challenging because all of the single-particle
states are degenerate in the absence of electron-electron in-
teractions. If the cyclotron energy fico, is sufficiently
large, then the Coulomb energy e /l, where l =(Ac jeB)'
is the magnetic length, is the only relevant energy scale in
the problem. Because of this, no small parameter exists
with which one can construct a perturbation expansion.

In the situation where Landau levels are either corn-
pletely filled or completely empty, the situation can be
considerably simpler. The low-lying excitations consist of
electron-hole ('e-h) pairs, and there are two types of e-h
pair excitations. The singlet e-h pair occurs when a car-
rier is promoted to a higher Landau level without a
change in spin, the triplet excitation involves the promo-
tion of a carrier to the opposite spin state of either the
same Landau level or a higher one. Because the excited
electron and the hole left behind in the lower energy level
interact with one another, they can form a bound state
(exciton). The binding energy of singlet and triplet exci-
tons in two-dimensional systems in a strong magnetic
field has been studied by a number of authors. The ratio
of the Coulomb energy to the cyclotron energy can act as
the small parameter for a perturbation expansion.

The present work is motivated by the consideration of
systems in which the spin splitting is of the same order of
magnitude as the cyclotron splitting. Then if both spin
states of a given Landau level are fully occupied and the
next Landau level is empty, the lowest energy excitation

results from promoting an electron from the occupied
upper spin state of the filled Landau level to the lower
spin state of the next Landau level. In the absence of
electron-electron interactions the energy of such an excita-
tion would be e =R(co, —co, ), where co, is the spin-
resonance frequency. Because the cyclotron frequency co,
depends on the component of magnetic field normal to
the surface, while the spin-resonance frequency depends
on the magnitude of 8, this excitation can be made arbi-
trarily small (in fact, it can be negative in which case the
lower spin states of both Landau levels are occupied while
the upper spin states are empty). When electron-hole in-
teractions are included, the triplet exciton binding energy
can exceed e and one might expect a spin-density-wave
(SDW) instability. What actually occurs is that before e
becomes smaller than the triplet exciton binding energy,
the electron-electron interactions cause a paramagnetic to
ferromagnetic phase transition.

EXCITONS

Before proceeding to investigate the phase transition, it
is worth reviewing the evaluation of the singlet and triplet
excltons.

The energy of the excitonic excitations of a two-
dimensional electron gas in a strong perpendicular mag-
netic field can be evaluated in closed form making use of
the formalism developed in Ref. 3 in connection with the
fractional quantum Hall-effect problem.

The Hamiltonian for a two-dimensional electron gas in
the presence of a dc magnetic field B can be written as
H =H, +H„where

p = g [Mc(n + i ) +HeZ ]Cn k, cren k, u ~

n, k, a

and
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rn, n, m, m,
k, k', q,

I
CT, CJ

V„„(k',k;q)

Q Cn k+q aCn k' —q u Cm' k' cr Cm k o

In these equations o. takes on the values +1, and ez is the
Zeeman energy (2ez ——fuu, ). The operator c„» creates
an electron of spin o = —,

' in the single-particle state,

P„»(r)=L ' e'"~u„(x + I k) .

Here L is the length of the sample, k =(2m. /L) times an
integer, u„(x) is the nth eigenfunction of the simple har-
monic oscillator, and i = (Pic /e8, )

'/ is the magnetic
length. For any given Landau-level index n there are
NI L /—2—mlsuc. h states labeled by the wave vector k.
These Nl states are degenerate solutions of the nonin-
teracting problem. The matrix element V„~ „~(k', k;q)
is given by

V„„(k',k;q)= fd rd r'lt(*„»+q(r)g*„» &(r')V(
~

r —r'
~ )p~ »(r')lt/~ «(r),

where V(
~

r —r'
~

) is the electron-electron interaction.
The sum appearing in Eq. (2) is over all values of n, n',
m, m', k, k', q, o., and o'. In writing down these equa-
tions we have taken the two-dimensional electron gas to
lie in the plane z =0, and have used the Landau gauge
A=(0,8,x,O) for the vector potential causing the normal
component of the magnetic field.

For the sake of simplicity we concentrate on the situa-
tion in which the filling factor v, defined as the ratio of
the number of electrons N to the Landau-level degeneracy
XL, , is equal to two, so that the two spin states of the
n =0 Landau level are the only occupied states. This sit-
uation is sketched in Fig. 1. The elementary excitations
which we consider are the singlet exciton and the triplet
exciton. The former is generated by promoting an elec-
tron from the filled n =0 Landau level to the same spin
state of the n =1 Landau level and then "turning on" the
many-particle interactions. The latter is generated when
the spin of the electron is flipped in the process of promo-

I

I

tion to the next Landau level.
Because we consider the cyclotron energy Rcu, to be

much larger than the Coulomb energy e I ', a simple
perturbation theory can be constructed in powers of
e i '/Bio, To. first order in this parameter one need
only consider intermediate states containing a single exci-
ton. Then, the exciton energy consists of three parts: (i)
the "kinetic" energy, i.e., the excitation energy in the ab-
sence of electron-electron interactions, (ii) the exchange
energy of the particle and hole, and (iii) the electron-hole
binding energy. For the singlet exciton the kinetic energy
is fico„while for the triplet it is fi(co, +o), ).

The exchange-matrix element E" of an electron in the
nth Landau level interacting with an electron of the same
spin in the mth Landau level is —U„(lq, O) where

U. (iq i(p' q —q))=V.. —(p'p;q) .

Useful expressions are

00

Uoo(x,y)= dz(z +x ) exp[ ——,(z —2izy+x )],

U(o(x,y) = dz(z +x ) 1 — — exp —[—'(z —2izy+x )]

exp[ ——,'(z —2izy+x )] .
2 2

e ~
2 2 ~ 2 x zU()(x,y) = f dz(z'+x') '/' 1—

L —~ 2 2

In particular if both electrons are in the n =0 level we
have

E„(q)= —Uoo(lq, O)

t

energy of an electron in the nth Landau level interacting
with electrons of the same spin in the filled mth Landau
level is

2 —(q//2)2I( ( 2i2/2)
L

~x = —g Unm(p~O) .
P

(1O)

where Ko is a modified Bessel function. If the two elec-
trons are one in the n =0 and one in the n =1 level the
result is

E„"(q)= —vo((iq O)

—2 e —(ql/2)2 Pr ( 2i2/2)
7

where 8']~2 ~~2 is a Whittaker function. The exchange

The exchange energy e„ is equal to (m/2)' e 1 ', and
e' = —,'e„=—3e„". Promoting an electron from the full
n =0 to the otherwise empty n = 1 Landau level gives rise
to a net change e„—e ' = —,

' e in exchange energy.
The electron-hole binding energy results from solving

the following integral equation for the electron-hole vertex
function I „(p' p, q, o)) in —terms of the irreducible
vertex function y„~ (p' —p, q), and the Green's func-
tions 6„'"(p,(o),
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I (p' —p, q, cu) =y(p' —p, q)+i g y(p" —p, q)I (p"—p', q, co)G "(p",co")G'(p" +q, co+co") .

This integral equation is shown schematically in Fig. 2(a).
The corresponding expansion for y„ is graphically
represented in Fig. 2(b). In Eq. (11) appropriate Landau-
level and spin indices are understood. It is clear that
within the Landau gauge the various contributions toy„are given by the matrix elements v„(lp, lq) intro-
duced above.

The fact that we are restricting the calculation to the
single-exciton approximation results in considerable sim-
plification. For an electron and hole of opposite sign Eq.
(11) generates only the ladder graphs because the un-
screened interaction is instantaneous. For an electron and
a hole of the same spin the first diagram of Fig. 2(b) cor-
responds to the RPA for y„~ (p' —p, q). For the case of
the triplet exciton the RPA diagram does not occur and
y(p' —p, q) is in the present case equal to v&o(p' —p, q).
The single-particle Green's functions are given by

Gh'"(p, co ) = (co e'„'" +i 6—) (12)

where e'„'" is the spin-dependent Hartree-Fock single-
particle or single-hole energy in the nth Landau level in-
cluding the exchange contribution and the +i5 refers to
electron or hole states. The solution to Eq. (11) can readi-
ly be obtained by introducing I (k, q, co) the Fourier
transform of I (p' —p q, co) with respect to the variable
p' —p. The poles of I (k, q, co) are the exciton energies.
It is easily found that if the electron and the hole are,
respectively, in the nth and mth Landau level the result-
ing exciton energy can be simply written as

Et". (R ')
,
=~. m y, . m—«',» (13)

where A„~~~ =e'„~—e~~ is the energy of the nonin-
teracting electron-hole pair, and y„~ is the Fourier
transform with respect to the variable p' —p of the ap-
propriate irreducible vertex function. The labels t and s
stand for triplet and singlet. In Eq. (13) we have made ex-

plicit that y„(and therefore E,", ) is solely a function
of R~=l~(k2+q ), a quantity that can be interpreted in
terms of the exciton size. ' It is interesting to notice that
this property is an explicit proof of the independence of
our analysis upon the particular choice of the gauge [Eq.
(3)].

The exciton energies of Eq. (13) can be readily evaluat-
ed in closed form and the results agree with those given
by various authors.

SDW VERSUS FERROMAGNETIC INSTABILITY

The case of particular interest in this work is that of the
triplet exciton whose "kinetic" energy is E:R(co—, —co, ).
We find that the energy of this exciton as a function of
R is given by

E, '(R )=@+[—, p(R )]e—~

with

p(x) = —,e "[(1+2x)IO(x)—2xI, (x)] . (15)

In this equation I„(x) is the modified Bessel function of
order n It is .clear that E, '(R ) becomes negative when
e/e„& p(R ) —~ . The maximum value of p(x) is

p „=0.573, so this corresponds to a positive value of
e= fi(co, —co, ). —If this inequality is satisfied, the binding
energy of the triplet exciton is larger than the sum of the
"kinetic" and exchange energies, and an instability must
occur.

n, p+ q, g n, p+q, g (a)

fTl, p, g rn, p, g
/

/

n, p+ g, g A~p +q ~g

LL

FICx. 1. Schematic of the energy levels: Ace, is the Landau-
level separation, whereas Rcu, is the spin splitting. Here fico, and
fico, are comparable in magnitude.

FIG. 2. (a) Diagrammatic representation of the Bethe-
Salpeter equation for the vertex function of interacting
electron-hole pairs of a two-dimensional electron gas in a rnag-
netic field. Here we use the asymmetric Landau gauge represen-
tation in which the noninteracting electronic states are labeled
by means of an integer Landau index n, one of the components
of the wave vector, and the spin projection. (b) Perturbative
contributions to the electron-hole irreducible vertex function to
be used in the Bethe-Salpeter equation. The second term is ab-
sent in the triplet case.
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At first glance one might expect a spin-density-wave in-
stability with the value of the SDW wave vector QsDw
determined by the location of the maximum of p(x), i.e.,
QsDw —1.21 '. In order to investigate the behavior of the
system for values of e l ' large enough to cause this in-
stability, we introduce new operators which are linear
combinations of c„i, for

~
nko) equal to ~O, k, &) and

~
l, k+Q, t). Because these are the only two Landau lev-

els which are modified in the new ground state, we make

Hp N——l (,~. &z—)

+ y [( fico—, +&z)cpcp+( ~ —&z)akak]
k

(16)

and

the following simplification in notation: ci, stands for
cpi„and ai, stands for cii„. The Hamiltonian can be
written H =H0+ V where

00 10 p I, NLe»——e» g aAai+ —, g t vpp(q P —P q}cp—+qcp qcp cp+Ui i(q P P q)ap+qap qap ap
k PP 0

I+U ip(q&P —P q) [c—p +qap~ qap'cp +ap +qcp'qcp~ap ] ] ~ (17)

c =cos8pap+sin8pPp,

ap+& ———sin8pap+ cos8pPp

We express the Hamiltonian in terms of the operators ap and Pp and their Hermitian conjugates. We then apply the
Hartree-Fock approximation assuming that the linear combination corresponding to the state a& is the lower energy state
and therefore the occupied state. That 'is, we assume that (apap) =Np is finite while (PpPp) =0 where the angular
brackets denote ground-state expectation value. After assuming that v„~(O,p' —p) =0 due to charge neutrality we find
that

(19)

(H) =N ( , Ace, e——,'E„)—+( ,'Rc—o,+E ) —ycosi8„+(—,'fico, E E„'—) y—sln28
k k

The three terms in Hp correspond to the kinetic energies of the Ol Landau level, the Ot, and the 1 l levels. The potential
energy has five terms: The first is the exchange energy of the electrons in the 0& level interacting among themselves.
The second is the exchange energy due to the particles in the I & level interacting with those in the Ol level. The final
three terms are the interactions of the Ot particles among themselves, the 11 particles among themselves, and finally the
interaction of the Og and 'the 1 l particles with one another. In writing down this approximation we assume that the OJ,
level is full (contains NL electron) and always remains full. The 11' level and all higher levels are empty and always
remain empty. Only the Ot and I & levels enter the dynamics.

We make a Bogoliubov-Valatin transformation to new operators ap and Pi, defined by

——, g vip(k' —k, Q)sin28i, sin(28& ) ——,
' g vpp(k' —k, O)cos 8i, cos 8&

k, k' k, k'

——,
' g v»(k' —k, O)sin 8i, sin 8q .

k, k'
(20)

Because all the single-particle states are degenerate in the absence of electron-electron interactions, we expect that with
periodic boundary conditions cos8i, must be independent of k. In that case Eq. (20) simplifies to

&.H &HF = ,r, ez ,'e„+—(,'r—,+~,—)c—os8+(—,'e, ~—~„')sin'8

——,'e„p(l Q )sin (28)——,
' e„cos 8——', e„sin 8 . (21)

sin(28)(a bsin 8)=0, —
where

a =e+e„[—,
' —p(l Q )] (23)

b =2@„[—', —p(l Q )] . (24)

There are three possible solutions to Eq. (22): 8=0,
8=m/2, and 8=8" where sin 8'=a/b The solution.

The extreme of (H )HF as a function of 8 must satisfy the
equation

0=0 corresponds to ak ——ck and gives the paramagnetic
state. This state is a stable Hartree-Fock solution
(8 (H)HF/8 8)0) if e/e )p, ,„——,

' =0.073. This is
exactly the condition we found for the triplet exciton in-
stability, so that our starting paramagnetic state is a stable
Hartree-Fock solution when the triplet exciton energy
E, '(R ) is positive.

The solution 0=m. /2 corresponds to az ——a&+~ giving a
ferromagnetic ground state (i.e., the n =0 and n =1
spin-down states are both occupied while the 0) state 1s
empty). This extremum corresponds to a stable Hartree-
Fock solution if «/e» & —,

' —p,„-0.667. The energy per
particle (remember we have 2NL particles) is
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00Epara= 2 (~e ex ) ~

00
ferro ~c ~Z ]6 ~x

These two energies are equal at

E/Ex~—:'( Pleo~ —2Ez ) /E~

(25)

(26)

What about the solution 8=8* which corresponds to a
spin-density-wave state? This solution occurs when

~

a
~

&
~

b
(

and a and b have the same sign. These con-
ditions are satisfied if p,„——,

'
& e/e & —,

' —p,„, the re-

gion where both the paramagnetic and ferromagnetic
solutions are minima as functions of 0. This means that
8" is always a maximuin energy solution and hence unsta-
ble.

DISCUSSION

As shown in the previous section, in this simple situa-
tion the SDW state we expected never occurs. ' When
the energy of the triplet exciton of the paramagnetic state
vanishes, the paramagnetic state becomes unstable. How-
ever, before that occurs a paramagnetic to ferromagnetic
phase transition will preempt such an excitonic instabili-
ty." It is apparent that if we had started with the stable
ferromagnetic state and calculated the energy of the "trip-
let" exciton resulting from promoting a 1& electron to an
unoccupied 0& state, we would find that the energy of the
exciton vanished when E/e~ & —,

' —p,„. This would sig-
nal the instability of the ferromagnetic state.

The paramagnetic to ferromagnetic transition occurs at
e/e = —,'. This can be seen simply by writing the total
energy. For the paramagnetic state a 04 particle has ener-

gy —,
' ~,—ez —e while 0& particle has energy

—,Acoc+ez —e . The total Hartree-Pock energy is the sum
of the "kinetic" and half the exchange energies of the in-
dividual particles

00 00Ep =Xr +ez — & +NL,
2

—&z —
T. &x

so that EI ——NL(~, —e ). For the ferromagnetic state a
0& particle has energy —,~c —ez —e~ —e„', while a 1&

particle has energy —,'~, —ez —e"—e '. Adding the ki-
netic and half the exchange energies gives

EF NI (—2%co, —2ez ——,e ——,e„—e„)00 ] 11 01

=NI (2fico, —2ez —+,
' e„) .

By equating these we see that EI: ——Ep at 6/E = 8, JUst
as we showed after Eq. (26).

It might be possible to,observe the transition discussed
in this paper by measuring the magnetic susceptibility in a
field whose z component is held fixed (to keep filling fac-
tor v=2) and whose component parallel to the surface is
varied. The de Haas —van Alphen effect has recently been
studied in two-dimensional systems, ' so that the magneti-
zation itself is large enough to be detected. Structure in
cyclotron and spin resonance should reflect the singlet and
triplet exciton spectrum through the memory function'
or its spin equivalent. Because the exciton energies are
different for the paramagnetic and ferromagnetic states,
the phase transition might also be observed by this tech-
nique.
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