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Resonance scattering of electrons from N2 adsorbed on a metallic surface
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The energy and width of the II shape resonance in e-N2 collisions are calculated for N2 molecules
physisorbed on a metallic surface. The breaking of the molecular symmetry by the surface is found
to increase the resonance width as compared to that for collisions in the gas phase. The metallic im-

age potential is found to broaden the resonance and lower its energy. The calculated broadening and
energy shift agree in order of magnitude with the observed values.

I. INTRODUCTION

Many molecules are known to sustain electron scatter-
ing resonances in the low-energy ( (10 eV) range. ' For
example, in the scattering of electrons off gaseous N2
there is a shape resonance centered around E =2.3 eV
with a width of about a volt. Recently, several experi-
ments have demonstrated resonances in the scattering of
electrons off molecules adsorbed on a metallic surface.
The cross sections for the adsorbate resonances generally
resemble their gas-phase counterparts, but differ in a
number of ways (see Fig. 1). In this paper, we will investi-
gate some of the factors which give rise to these differ-
ences.

The term "resonance" refers to a scattering state in
which an electron becomes temporarily trapped in a local-
ized orbital of the target. For the resonances we consider
in this paper the trapping mechanism consists of a short-
ranged attractive potential surrounded by a repulsive cen-
trifugal potential which forms a tunneling barrier for the
trapped electron. This quasistable negative ion decays
with a lifetime inversely proportional to the resonance
width. The characteristic feature of a scattering reso-
nance is a probability amplitude that is much larger inside
the target than outside. In this way, resonance scattering
is fundamentally different from direct scattering, where
the projectile does not penetrate into the core of the target
to any large extent. This difference is manifest in the ex-
periments: The angular distribution from a resonance re-
flects the symmetry of the quasibound orbital, unlike that
from direct scattering, which is usually peaked in the for-
ward direction. Also, and more importantly, the resonant
trapping of an electron is an exceedingly efficient way of
exciting vibrations in a molecule. The added (antibond-,
ing) electron modifies the internuclear potential of the
molecule, pushing the nuclei apart. When the electron es-
capes, the molecule finds itself with a modified nuclear
wave function, thus having some probability of being left
in an excited vibrational state. For a molecule such as N2
with no permanent dipole, the vibrational excitation cross
sections for scattering through a resonance are 2 orders of
magnitude greater than those given by the Born approxi-
mation.

The above remarks apply equally to a molecule in the
gas phase or near a surface; however, when the molecule

is adsorbed onto a surface, a number of additional factors
come into play.

(i) The centrifugal barrier crucial to the trapping of an
electron at a shape resonance will be modified due to the
breaking of the molecule's symmetry by the surface; this
should affect the width of the resonance.

(ii) An electron trapped near a metallic surface induces
an image charge in the metal; the attraction between these
two charges can be expected to shift the energy of the res-
onance.

(iii) The surface fixes the orientation of the molecule,
leading to an angular distribution different from that of
randomly oriented molecules in the gas phase.

(iv) Charge transfer between the metal and a (chem-
isorbed) molecule would be expected to modify the vibra-
tional parameters of the molecule; this would be detect-
able in the cross sections for inelastic electron scattering.

From these considerations, it is not hard to see why the
study of electron scattering resonances for molecules ad-
sorbed on a surface may be interesting. One might hope
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FICs. 1. Relative vibrational excitation cross sections oo i for
e-N2 collisions. (0) represents the experimental cross section
for N2 physisorbed on Ag (from Ref. 3}; ( . - ) represents the
cross section for gas-phase N2 (from Ref. 10}. The heights of
the two cross sections have arbitrarily been set equal.

31 6219 1985 The American Physical Society



6220 A. GERBER AND A. HERZENBERG 31

to extract information regarding the orientation, equilibri-
um distance from the surface, binding site geometry, and
vibrational parameters of the adsorbed species.

The object of this paper is to identify the mechanisms
which cause the resonance broadening and energy shift
seen in the experiments of Demuth et a/. ' for submono-
layer N2 physisorbed on silver. Our calculations establish
orders of magnitude for the broadening and energy shift
resulting from two mechanisms: multiple scattering be-
tween the molecule and the surface, and interaction of the
projectile electron with the metallic image potential.

II. EXTRACTION OF THE RESONANCE ENERGY
AND WIDTH FROM THE EXPERIMENTS

The energy of the absorbate resonance can be estimated
by simple inspection of the experimental results shown in
Fig. 1. The center of the cross section for the
v =0—+U =1 excitation lies at about 1.2 eV; this gives a
shift of —1.1 eV from the gas-phase energy of 2.3 eV.

The width of the adsorbate resonance can be estimated
from the rate at which the integrated cross sections
I„=f oo „(E)dE decrease with increasing vibrational
quantum number U. The magnitude of I„ for a given
value of U depends on how strongly the distorted nuclear
wave function of the negative ion projects onto the uth vi-
brational state of the molecule when the resonance decays.
For a very broad resonance, I„ falls off rapidly with U,

sirice the electron escapes before the nuclear wave func-
tion has been appreciably perturbed. However, if the reso-
nance is narrow, the nuclei may be substantially displaced
from the molecular equilibrium when the electron escapes.
Then the probability of exciting higher vibrations is large,
and I, falls off more gradually with increasing u. In the
case of gaseous N2, the nuclei execute about an entire vi-
brational cycle in the negative ion potential; this explains
why high vibrations (up to U = 10) have been observed. '2

Our method for estimating the width of the adsorbate
resonance is to vary I in a calculation of I„versus U until
our calculated dependence agrees with experiment. The
cross sections oz„(E) were de. termined by the method of
Refs. 10 and 11 for vibrational excitation of molecules in
the gas phase. This method contains two adjustable func-
tions: E(R), the real internuclear potential of the neutral
molecule, and W(R)=E (R) , il (R), th—e comple—x in-

ternuclear potential of the negative ion. I depends on the
nuclear separation E. because, as the nuclei move apart,
the energy of the trapped electron is lowered, and so the
barrier through which the electron must tunnel out be-
comes stronger. Thus, when we assign a single value to
the "width" of a resonance, what we really mean is the
function I"(R) evaluated at the molecular equilibrium Ro;
.we will denote this quantity I o. However, in order to ob-
tain reliable cross sections, it is necessary to specify I (R)
accurately throughout the entire region of nuclear motion.
In this way, our calculation differs from that of Ref. 12,
where I was assumed to be a constant.

E and E were fitted to Morse potentials, and I was
approximated by'

k (R)U, (k «)p)
k(Ro)U((k(RO)p)

'

where k(R)=I2[E (R)—E(R)]I', p is the radius of
the molecule, and UI is the penetrability of a centrifugal
barrier for angular momentum / (a.u., with R=e =m, = 1,
are used throughout). ' For the gas-phase resonance, I o
was found to be 0.54 eV."

To calculate the cross sections for the surface-
broadened resonance, we assumed E(R) and E (R) to be
essentially the same as in the gas phase, since the phy-
sisorbed molecule interacts only weakly with the surface.
The main effect of the surface is to change I (R), either
by changing I o or U~, or both. The gas-phase resonance
has IIg symmetry, so its primary component is d wave
(l =2). If we fit I„versus u to the experimental data us-
ing l =2, we obtain a best fit with I 0

——1.75 eV. Howev-
er, using Uz in Eq. (1) is not strictly appropriate when the
molecule is near the surface: as we will show in the next
section, the surface breaks the inversion symmetry of the
scattering potential, thus mixing a strong p-wave com-
ponent into the adsorbate resonance. If we assume, there-
fore, that the tunneling barrier becomes essentially p wave
(a more reasonable assumption when the molecule is close
to the surface), then with I =1 the best fit is obtained for
r,=1.25 eV. The calculated values of I„versus U using
I =1 and I o ——1.25 eV are shown, along with the experi-
mental data in Fig. 2. Finally, if I is assumed to be a
constant, as was done in Ref. 12, then the best fit is ob-
tained for I o——1.00 eV. The experimental data of I„
versus U are not sufficiently detailt. d to allow a precise
determination of I (R) for all values of R, and thus of I o.
However, our calculations indicate a figure in the range of
1.00 eV & j."0& 1.75 eV for the adsorbate resonance, as op-
posed to 0.54 eV in the gas phase.
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0 d —wave theory, Do=0.54 eV

o experimental: Na on Ag

+ p —wave theory, 1'o=1.85 eV
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vs vibrational quantum number U

[I„—:, J oo „{E)dE]. The d-wave theory is for isolated mole-

cules in the gas phase. The experimental data for N2 phy-
sisorbed on Ag are from Ref. 4. (+ ) represents the best fit of
the p-wave theory to experiment, with I o ——1.25 eV. Compar-
able fits were obtained in a d-wave theory with I 0——1.75 eV and
a constant I theory with I =1.00 eV. .
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III. BREAKING OF MOLECULAR SYMMETRY
BY THE SURFACE: MULTIPLE SCATTERING

metal

z esanances

We will now investigate the first mechanism responsible
for the broadening of the resonance: multiple scattering
between the molecule and the surface. A resonance occurs
when an incident electron becomes temporarily trapped in
the lowest unfilled orbital of the molecule, which is II& in
the case of N2. Since N2 has a center of inversion symme-
try, the electronic orbitals have definite inversion parity;
that is, they receive contributions from either even or odd
angular momenta, but not both. The IIg state is made up
of spherical waves with

~ p ~

=1 and I =2, 4, . . . , where

p is the projection of angular momentum onto the molec-
ular axis (not necessarily the z axis). The width of the res-
onance is governed by the leakiest centrifugal barrier
through which the trapped electron can escape; thus, the
Ils resonance decays through a d-wave (l =2} barrier.

When the molecule is moved up to a surface, the total
scattering potential no longer has an inversion center, so
the resonant wave functions can contain both even and
odd angular momenta. As we will show, multiple scatter-
ing between the molecule and the surface introduces a @-
wave component into the resonance, whose magnitude in-
creases as the molecule approaches the surface. The l = 1

centrifugal barrier is lower than that for l =2, so the tun-
neling current is higher and the resonance is broadened.

It should be noted that situations in which the breaking
of an inversion symmetry broadens a resonance are not
unfamiliar in molecular physics. The width of the lowest
shape resonance in e-CO scattering is greater than that for
N2, even though the two molecules are isoelectronic. The
asymmetric nuclear potential of CO breaks the inversion
symmetry of the electronic wave functions, so that even
and odd angular momenta can be mixed together in the
resonance. The lowest unfilled molecular orbital in' CO
( II, as opposed to IIg in Nz) contains a p-wave com-
ponent; thus the CO resonance decays through a p-wave
centrifugal barrier, which is leakier than the d-wave bar-
rier of the Nz resonance.

We wish to calculate the complex resonance energy
W =E ——,

' il for the co—mbined surface —molecule system.
Our model consists of a single N2 molecule located at a
distance zo from a step potential surface of height
V, = —9.8 eV; this height is the sum of the Fermi energy
and the work function in silver. The origin of coordinates
is at the center of the molecule, and the positive z axis
points in toward the surface (see Fig. 3). We consider two
different possible orientations of the molecule: perpendic-
ular to the surface (along z) and parallel to the surface
(along x). To describe the molecular scattering we have
used N2 eigenphase sums calculated by Buckley and
Burke' for the channels II, II„, and X„. These eigen-
phase sums are calculated with the nuclei fixed in their
equilibrium position, so the width obtained is equivalent
to I'0. We have made the approximation of equating the
eigenphase sum for a given molecular scattering channel
to the phase shift for the lowest angular-momentum com-
ponent contributing to that channel. Thus, for instance,
we used the II eigenphase sum to represent scattering in
a channel with

~ p ~

=1 and I =2. This is allowable, since

d, p mixed

+, p mixed

d z, p mixed

d unmixed

l

0

FIG. 3. Resonances occurring in e-N~ scattering for the
parallel and perpendicular orientations of N2 relative to a sur-
face. The symbols d, p„, etc., are defined in Table I.

it is the lowest angular momenta which determine the
width of the resonance.

Consider first the case of scattering off the isolated
molecule. The total wave function is a solution to the
wave equation:

(K+ V,i
—E)%'=0,

where X = ——,
' V' and V,i is the interaction between the

electron and the molecule. For scattering off a, molecule,
4 can be broken up into an incident wave and an outgoing
scattered wave; the two are related through an operator
which we will denote M:

+=+inc++moi ~

+mol ™inc

=M ga&pI(kr)Y~„(r)
],p

=g a('phd+(kr)Yip(r) (r moo } . —
],p

The last equality is valid for radii sufficiently large to
make the molecular potential vanish.

If 4;„,=e'"' then ai& 4@i Yi&——(k) The co. efficients
a/& are determined uniquely from the ai„by the relation

Because N2 has an axis of rotational symmetry, M is diag-
onal in p. As mentioned earlier, we have made the as-
sumption that only the lowest angular momentum con-
tributes to each scattering channel; this is equivalent to
saying that M is also diagonal in l. We may therefore
write

IJ
Af] p~]' p' —5] ]'5p p'M]

where Mi" takes the form Mi"= ,'(e "" 1)—. Our . a—p-
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proximation says that 62 +~ is given by the IIg eigenphase
sum, 6& +~ by the II„sum, and 6~ o by the X„sum.
(Note that M~ depends only on the absolute value of p.)

Near a resonance in the l,pth partial wave, the matrix ele-
ment Ml" has a pole in the complex energy plane at an en-

ergy 8 =E ——,iI .
Equations similar to (4) and (5) can be written down for

scattering off an isolated surface. When a wave ql;„, im-
pinges on a surface, there is a reflected wave which we
may write SV;„„where S is an operator. If 4;„,is a plane
wave then the form of the reflected wave is reasonably
simple. However, for the purpose of multiple scattering
we also need to know the way in which a vector of waves
outgoing from the center of the molecule reflects off the
surface; such a vector might be, for instance, a wave just
scattered off the molecule. We call such a vector ++. It
is scattered by the surface as follows:

=Sy~/', ~&/+(«)&], ~(r)
l, m

=+Q~ ~J~(«) Y~ ~(r) (r & 2zo)
l, m

so that we may write
lt I

l, m ~ Sl,m~l', m' l', m'
l, m

(6)

In a limited region near the molecule (r &2zo), S re-
flects a vector of waves propagating outward from the
molecule into a vector of waves regular at the center of
the molecule, as indicated in Eq. (6). The matrix elements
of S (derived in the Appendix for a step-potential surface)
have the general form Slm~l m

——6mmSll . The sur-jm
/

face potential is rotationally symmetry about the z axis, so
scattering off the surface conserves m; however, states
with different l values are mixed. In particular, the pres-
ence of surface destroys the inversion symmetry of the
molecular scattering potential, so that a resonance that
was d wave in the gas phase can now be mixed with a p-
wave component. (Note that the matrix elements of S de-
pend only on the absolute value of m. )

Now, we consider the scattering of an electron off the

combined molecule —surface potential. We define %"",I as
the sum of all waves scattered by the Inolecule and +,"„~
as the sum of all waves scattered by the surface. It can be
seen that O'",I and 4",'„~ satisfy the relations

O'";I——M (0';„,+ql,"„~), (8a)

(8b)

= (1+M)(1—SM) '(1+S)%;„,. (9)

If the inverse operator in (9) is expanded out in a
geometric series, one sees that 4 represents the sum of all
possible multiple-scattering events between the molecule
and the surface.

It can be shown that any pole in M is cancelled between
the numerator and denominator of (9). Therefore, the
molecular resonances disappear when the molecule is cou-
pled to the surface. In their place arise new resonances at
the complex energies which make an eigenvalue of 1 —SM
equal to zero. These poles can be found by solving the
equation

det(I —SM) =0 . (10)

We expect that, as the distance of the molecule from the
surface becomes large, the shifted poles will converge to
the molecular poles, since then multiple scattering be-
tween the surface and the molecule becomes negligible.

In solving (10), we retain only terms which couple to
the poles in M, since we are interested in how these poles
shift as the molecule approaches the surface. Two degen-
erate poles occur in M for the terms 1 =2 and p = + l.
We make the distinction between p and m to allow for the
case where the molecule lies along x; obviously, when the
molecule lies along z the two are the same. It is con-
venient to switch from spherical harmonics to an angular
basis with definite x, y, and z parity. Table I shows how

The molecuule scatters the incident wave plus all waves
coming off the surface. Likewise, the surface scatters the
incident wave plus all waves coming off the molecule.
Equations (8) can be solved for Il'",

&
and 4,"„~in terms of

4;„,. The total wave is then given by

+=+inc+ +mol+ +surf

TABLE I. Composition of x-, y-, z-parity states from Y~ 's and YI 's.

State

1/2
3p„=r X

4~
1/2

In terms of Y~ 's

1
(Yi,-i+ Yi, i)

2

In terms of YI 's

Y1,o

fm,
f f

m„
f

—1p~—:r
4m

' 1/2

2

1 i+ Yi, i)
2

15
diaz =7

4m

1/2
15

xz 1
(Y2 )

—Y2 ))
2

l i+ Y2, i)
2

(Yz, i+Ye, i)
2

l
(Yg p

—Y22)
2

' 1/2

d~y =7 15
xg

4m.

I
( Y2, —2 Y2, 2 )

2

1
(Y2, —i —Y2, i)

2
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the states p„, py, dip dyzp and d~y are formed, both from
the usual set of spherical harmonics with z as the polar
axis ( F~ ), and also from the set where x is the polar axis
( Y~&); the latter is obtained from the former by a cyclic
permutation of the indices (x ~y, y~z, z~x). In terms
of these states, the poles in M occur in the (d~, d„,) and
(d~„d~, ) matrix elements when the molecular axis is along
z, and in the (d~, d„,) and (d„~,d„Y) matrix elements
when the molecule lies along x. Therefore, we retain
these terms, plus any terms with I &2 which are coupled
to them by scattering off the surface.

We can now solve (10) in terms of the matrix elements
M)" ~ and SII~

~ for the two different orientations of the
molecule. For the molecule perpendicular to the surface
we obtain two degenerate poles given by the equation

2.5

2.0

0
1.5

1.0

0.5

I
I

I I I I

~p,d mixed

energies

d unmixed

dthS

d unmixed

(1—M (S ) ( )(1—MzSz2 ) —M (M2 (S2) ) =0 . (1 la) 0.0 i ~ I ~ ~ I ~ I ~ I ~ l I

For the molecule parallel to the surface the degeneracy is
lifted, and we obtain two new equations

(1—M )S I ) )(1—M2Sp2) —M )M2(Sg( ) =0, (1 lb)

1 —M2S22 ——0 .1 2 (11c)

The effect of the surface on the resonance is to mix to-
gether waves with the same

~

m
~

value and the same re-
flection parity across the x =0 and y =0 planes. The sur-
face reduces the symmetry of the problem in the z direc-
tion only, so the reflection parity of states across the x =0
and y =0 planes cannot be affected. Thus, for the mole-
cule along the z axis, the d, resonance is mixed with a p„
wave (both odd in x, even in y) and the d», resonance is
mixed with a p~ wave (both odd in y, even in x). These
mixed resonances are given by (1 la). For the molecule ly-

ing along the x axis, the d, resonance is again mixed
with a p wave (1 lb). However, in this configuration, the
second resonance, d~~ has no wave of the same x,y parity
and

~

m
~

value (
~

m
~

=2) with which to mix, so it can
only be modified by scattering back off the surface into it-
self (1 lc). These results are summarized in Fig. 3.

Equations (11) were solved by fitting the functions

S~I~
~ and (M~~" ~ )

' to polynomials along the real energy
axis, and then continuing them analytically into the corn-
plex energy plane. The SI I

's are analytic everywhere
except at the point 8'=0; the MI ~ 's are singular at the
molecular resonances, but their inverses are analytic
everywhere.

The complex energy roots of Eqs. (11) for the mixed
and unmixed resonances are shown in Fig. 4 as a function
of zo. The roots of (1 la) and (lib) are nearly identical, so
only that of (1 la) is shown (this suggests that the reso-
nance pole is not very sensitive to the exact form of the
p-wave phase shift). The important feature to notice is
that the width of the mixed p/d resonance becomes large
as the molecule approaches the surface, whereas that of
the unmixed d resonance does not. This is because the
mixing in of a p-wave component allows the resonance to
decay through an l =1 centrifugal barrier, which is sub-
stantially lower than the l =2 barrier of the pure d-wave
resonance. Unlike the widths, the resonance energies are
not strongly affected by multiple scattering off the sur-
face. This suggests that another mechanism is responsible

5 10

DISTANCE (a.u. )

15

FIG. 4. Complex energy roots ( 8'=E —
2 iI 0) of Eq. (11)

for the mixed and unmixed resonances as a function of distance
between the molecule and the surface. E is the resonance energy
and I o is the resonance width. The mixed resonance is substan-
tially broadened near the surface, whereas the unmixed reso-
nance is not. The roots to (11a) and (11b) are nearly identical, so
only that of (11a) is shown.

for the real energy shifts observed in the experiments, as
will be discussed in the next section. As expected, the
width and energy of both mixed and unmixed resonances
converge to the molecular values as zo —+ ao.

To make an estimate of the magnitude of the broaden-
ing of the p/d mixed resonance, it is necessary to know
the equilibrium distance that physisorbed N2 lies from a
silver surface. For Ar on a r, =3 jellium metal, Lang has
calculated this distance to be 4.25 a.u. ' We might expect
the distance for N2 in the parallel orientation to be some-
what smaller than this, since N2 is isoelectronic to A'r, but
the electron cloud is stretched out between two nuclei.
Assuming zo to be in the range 3—4 a.u, we obtain a
width for the adsorbate resonance in the range
0.9 & I 0 & 1.4 eV, as opposed to 0.54 eV in the gas phase;
this is about the degree of broadening seen experimentally.

IV. IMAGE POTENTIAL

A second mechanism for the broadening of the phy-
sisorbed Nz resonance involves the lowering of the cen-
trifugal barrier by the metallic image potential. The im-
age potential is also responsible for the lowering of the
real part of the resonance energy. The image potential is
the self-energy of the scattering electron due to its interac-
tion with the conduction electrons in the metal. ' Asymp-
totically, it takes the classical form —1/[4(zo —z)] (where
zo is the effective location of the surface' ), but near the
surface it reaches a finite value rather than diverging.
The response of the metallic electrons to the projectile is
essentially adiabatic in our case, since the resonance ener-

gy is well below the surface plasmon energy of Ag [=3.6
eV (Ref. 18)]; therefore it is not unreasonable to treat the
image potential as being independent of velocity.
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The form of a static image potential near a metallic
surface has been investigated by a number of authors. '
Ideally, one would like to place the molecule in the vicini-
ty o such a potential and calculate its effect on the reso-
nance pole. However, the lack of symmetry makes the
calculation difficult. In order to eliminate this obstacle,
we have adopted a simple, spherically-symmetric model
(see Fig. 5) which demonstrates, at least qualitatively, the
effects of an imagelike potential on a resonance. The
spherical problem is simple because a simple outgoing-
wave boundary condition can be imposed to define the res-
onance. However, the magnitude of the broadening and
energy shift obtained will be larger than those seen in the
experiments; this is because the image potential from a
two-dimensional surface affects the centrifugal barrier
strongly only on the side of the molecule nearest the sur-
face, whereas in a spherically-symmetric model the image
potential is equally strong on all sides. Nonetheless, the
model should provide an order-of-magnitude estimate for
t e effect of the image potential on the resonance energyrc
and width.

The model is depicted in Fig. 5. For the purpose of this
calculation, we replace the N2 molecule by a spherical
square well of depth V~ and radius a. The complex reso-
nance energy 8' for the isolated well is then obtained by
solving for the root of the equation jz(Ka)=h2+(ka),
where K ='[2(8'+ V~)]'~ and k =(2IV)' The values
V =33.4 eV and a =2.7 a.u. reproduce the "molecular"
resonance at an energy of 2.3 eV with a width of 0.54 eV.
Our spherical well model yields a d-wave phase shift near-
ly identical to that of the molecule for energies about the
resonance; this explains why such a seemingly naive repre-
sentation of the molecule is adequate for the present pur-
pose.

On top of the spherical well we superimpose a
spherically-symmetric model "image potential" given b'ven y

Vs 2 d —p'

V;m (r) = —arctan —1
2

where d is the radius of a spherical "surface, " s is the sur-
face thickness, and V, =9.8 eV is the total potential
difference between the vacuum and .the interior of the
metal. As can be seen in Fig. 5, V;~ resembles a
smoothed out, spherically-symmetric version of the step
potential used in Sec. III. We used s =n/4V to repro-S

duce the form of the classical image potential in the
asymptotic limit d —+ca. Unlike the classical potential
(also shown in Fig. 5), V~ has a finite value of —V, /2 at
the surface.

The resonance pole is identified as a complex eigenvalue
W of the equation

(12)

1 d l(1+1)
2 + —V 6(a r)+ V~ ——W %(r)=0

2T

(13)

with an outgoing-wave boundary condition on 4 at some
radius b. A WKB approximation was used to deter-
mine the form of the outgoing wave at r =b The. radius
b was chosen to be outside the centrifugal barrier
I b & [I(I +1)/2E]'~ I, but smaller than an electron wave-
length (to maximize the spacing between eigenvalues). In
practice we used b =8 a.u.

The width and energy of the resonance corresponding
to 8'=E ——,

' il are shown in Fig. 6 as a function of d.
As the distance between the surface and the molecule be-
comes small, the resonance becomes dramatically
broadened and down shifted in energy. The energy shift
is a manifestation of the negative potential added
throughout the region where the electron is trapped. The
broadening occurs bemuse the image potential acts to tear
down the centrifugal barrier outside the molecular core,

3.0 I I I I
i

I I I I
(

I ~ I I
i

I I I I

2.5

0 2.0

-Vs
1.0

0,5

-"w-
surface

1

0 a d

- DISTANCE

, FIG. 5. Spherically-symmetric image potential model. The
e ective molecular potential is the sum of the spherical squareff
well and centrifugal potentials. The model image potential is
given by Eq. (12); also shown is a spherically-symmetric version
of the classical image potential, given by —1/[4(d —r)]. The
center of the molecule is at r =0 and the surface is at r =d.

0.0
0 10 15

DISTANCE (a.u. )

20

FICx. 6. Resonance pole of the spherically-symmetric image
potential model, as a function of distance d between the mole-
cule and the surface. The pole corresponds to the lowest eigen-
value of E . &13&q. ( ), kV—:E —

2 it, where E is the resonance ener-

gy and I is the width.
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thus increasing the outward tunneling current of the
trapped electron. The image potential also lowers the en-

ergy of the electron inside the core, an effect which alone
would strengthen the effective tunneling barrier; however,
the net effect is to broaden the resonance because the im-
age potential- is substantially stronger outside the core
than inside.

Our calculation yields an energy shift of about —2.3 eV
and a broadening of about 1.5 eV for d =4 a.u. As ex-
pected, these values are somewhat larger than those seen
in the experiments, since we have wrapped our "image po-
tential" around the molecule. However, the fact that the
signs and orders of magnitude agree with experiment indi-
cates that the image potential probably plays an important
role in determining the energy and width of an electron
scattering resonance for a molecule adsorbed on a metallic
surface.

V. CONCLUSION

APPENDIX: SURFACE SCATTERING

The wave equation for the scattering of a single elec-
tron off a surface potential V,„,f(r) is

(x+ v,„~ E}e=o— (Al)

where E = ——,
'

V . For a scattering problem, 4 can be
broken up into incident and scattered waves

+=+inc+ +su~ ) (A2)

where 'P;„, obeys the free-particle wave equation. We are
interested in the case where 4;„, is a vector of outgoing

We have investigated two basic effects of a metallic sur-
face on the energy and width of an electron-molecule
scattering resonance. Our results can be summarized as
follows.

(i) Multiple scattering between the molecule and the
surface broadens the resonance by about the observed
amount, but does not appreciably shift its energy. The
broadening is attributed to the breaking of the molecule's
inversion symmetry by the surface; this mixes waves of
lo~er angular momentum into the resonance, thus lower-
ing the effective centrifugal barrier through which a
trapped electron must tunnel to escape.

(ii) The metallic image potential also broadens the reso-
nance for the adsorbed molecule by directly pulling down
the centrifugal barrier. In addition, the image potential
lowers the real part of the resonance energy by adding a
negative potential throughout the region where the elec-
tron is trapped.

X &/, (r) (« 2zo) . (A3)

We wish to derive the matrix elements of S in a spheri-
cal wave basis, with the surface represented by the poten-
tial

—IV, [, z)zo
V,„~(r)= '0

) Z(zo (A4)

Recall that the origin of coordinates is at the center of the
molecule, and the positive z axis points orthogonally in
towards the surface, which is located along the plane
z =zo. The method is as follows. In the region z &zo the
scattering electron propagates freely, and is thus described
by a free-electron Green's function, which can be expand-
ed either in spherical or plane waves as

G(r r' ko)= —2iko g I'r* (r)I; (r')
l, m

Xj~(kor )&~+(kor ) (A5a)

d 3k ik (r—r')
= —2

(2n. ) (k —ko —i 0)

~

~
(A5b)

where r& is the greater and r& the lesser of the two radii
I
r

I
and

I

r'
I
. The electron coordinate is r, whereas the

length
I
r'I will be made very small, so that

I

r
I

&
I

r' I.
While we ultimately want S in terms of spherical waves, it
is the plane-wave version of the Green s function which is
convenient for reflecting off a surface. Breaking the wave
vector into components parallel and perpendicular to the
surface k —k)~ +k J z, Eq. (A5) becomes

d2k '
ll 'll

)2

ikj (z —z')

XJ" dk,
k, —(ko —k„)—iO

(A6)

The integral over kz can be closed in the upper half plane
for z ~z', and in the lower half plane for z (z'. 'The re-
sult is

waves from the center of the molecule; this vector is
denoted 4+ in See. III. '0",„~ is related to 4+ by the
operator S, as shown in (6). In a limited region about the
molecule (r &2zo), 'P,"„~ is a vector of regular waves;
therefore, we write

reflection
h(+(kr') I ( (r ') ~ g S( ~ ) j l (kr)

1',m'

G(r, r', ko) =— i(ko —kll) I
z —z

ie(k' —k') '
4 2 II o II

(g
2 k2)1/2

II

+e(k'„k', )
-'

o) Iz —z'
I

II

(A7)

where the unit step function e(x) has the value 1 if x ~0 and the value 0 if x &0. The first term in (A7) represents a
traveling wave along the z axis, outgoing from the source at z'. The second term is an evanescent wave along the z axis,
decaying from the point z'.

The Green's function for the reflected electron is found by reflecting the plane waves in (A7) off the surface. This re-
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verses the z component of their wave vectors, and changes their amplitude by a factor R(kll). The reflected Green's
function thus has the form

G«f(r r& k ) dzk e' ll II 'll R (k )
4m.

( o klI) ( )

&«.e(k,' —kl'I)
'

(k() —k)l
)'/2

k
I I

ko) ( s )

2 2+e{kl,—k, )
(k

II
—k() )

(A8)

The function R (kll) is found by matching logarithmic derivatives of plane waves on either side of the step at z =zp.
R(kll) is given by

R(kll)=

(k() —kll ) —(k()+2V —
kll ) zizo(k —

kl) )'/2 2 1 /2 2 2 1/2

e
(k2 k2 )1/2+(k2+2V k2 )1/2

(kll —kp) +& (k()+2Vz —kll ) —2z()(k —k )

(kll —k02) 1/2 —) (ko+2V, —k II)
1/2

(k
II
—kp) —[k)l —(k() + 2Vz )] zz()(k k ) /2

(k2 k2)1/2+[k2 (k2+2V )]I/2

k() )k
II

(k) )0)

2V +k())kll )k() (2V+k) )0)k) )

kll &2V, +k() (0&2V, +k) ) .

(A9)

In the first case, the z component of the wave function is a traveling wave both outside and inside the metal. 1«he
second case, the wave is evanescent outside the metal but travels inside. In the third case, the wave is evanescent on both
sides of the surface.

Once the Green's function is reflected, it is reexpanded in terms of spherical waves so that we can compare it with the
unreflected Green's function (A5a) and pick off the matrix elements of S. The reflected Green's function (A8) can be
rewritten as

G" (r, r', kp) =-
4m

2 2e{ko—kl) )

(k() —k
II

)'/
2 2e(kll —kp) i[kII —i(k —k ) z] r i[kII+i(k k ) 2z] r' +

(k
II
—k() )'/ (A 10)

If we now expand the plane waves in (A10) in terms of spherical waves, we obtain

G" (r, r', kp)= —2+j((kpr')Y)* (r') g 2( —1) +'+ (i) +'j&(kor)Y& (r)
l, rn l', m'

X ( f d'kll. . . , R(kl, )Y,
* {k„+(k,' —k'„)' ~z)Y(~(k„+(ko' —kz„)"~z)

II

+ f d kll z
' 2»zR(kll)Y('~ (kll+i(kll —ko)' z) Y~(( k+lli( kl—! ko)»

(k
II
—k() )'/ (A 1 1)

where use has been made of the fact that Y( (m —8,(p)=( —1) + Y) (0,(i)). After the (p integration in kll, Eq. (All)
becomes

(r r ko)= 2iko Q—J((kor )~l, m(r )

I, m

]./2

{2l+1){2l,+1) {l
(l +

(

m
(

)!(l'+
(
m

(
)! j( (k()r) Yr (r)

k() kll R (kll)
dkll z z 1/z P( ~{[1—(kll/ko) ]' }P)m([1 —(kll/ko) ]() k (k2 k2 )1/2

i f dkll —
z 2 1/z (. m(([(kll/ko) —1] )P(m() [{kll/ko) —1] } . (A12)

ko ko (kzll —k02)1/2

The matrix elements of S may now be obtained by comparison of (A12) with the unreflected Green's function (A5a),
with the aid of (A3):
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g )
m ) ( 1)i+i'+m( )i+i' (2i + 1)(2i

(1 +
(
m

[
)!(l'+

[
m

(
)!

1/2

ko

2, /2 P!m(t: I —«)) /ko)'3'")Pl, m(L I —(k)) /ko)'3 ")
0 kp (kp k)) )

i—fk dk)) 2 2 i~2Pi m(i t. (k))/ko) —I] )Pim(i [(k))/ko)
kp (k)) —kp)'~

(A13)

If we denote the factor in the curly brackets Cii, use (A9) for R(k))), and define a variable x—:
~

1 —(k))/kp)
~

' and
a constant a:—(2V, /kp)'~, Eq. (A13) becomes

x +(x'+a')'"
~ 2 2 1/2—if dxe

—2kpzpx x +i (a —x )
2 2»2 Pim (ix)Pi (ix)

0 x —i (a' —x')'"
—2kpzpx X —(X —a )

2 2 1/2—i dxe
a x+(x a )' Pim(ix)Pi m(ix) (A14)

These coefficients can be obtained numerically for arbitrary values of potential step height, V, and wave number k0. In
the special case of a perfectly reflecting surface ( V, ~ pp ), the integrals have been performed analytically.
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