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The conductance of a sample scattering elastically and coupled to leads with many channels is de-
rived. We assume that all the incident channels on one side of the sample are fed from the same
chemical potential. The transmitted and reflected streams are determined by the incident streams
through the multichannel scattering properties of the sample. We do not assume that the channels
equilibrate with each other. Our result differs from those given earlier by other authors, except for
that of Azbel [J. Phys. C 14, L225 (1981)], which is confirmed. We point out that a similar result is
obtained for the conductance in a single channel at a temperature above zero. As an application, we
obtain the dependence on channel number N of the contributions to the conductance of a small ring,
periodic in the Aharonov-Bohm flux through it. Terms whose period is % /e as well as those with

period h /2e vary with N as 1/N.

I. INTRODUCTION

The conductance G due to elastic scattering of an obs-
tacle, characterized by transmission and reflection coeffi-
cients T and R, is given by!2

G =(e*/mWT/R . (1.1)
At zero temperature T and R are evaluated at the Fermi
energy. This quantum-mechanical result expresses a
transport coefficient in terms of static scattering proper-
ties, rather than those of the usual temporal correlation
functions. Equation (1.1) applies to samples of arbitrary
shape and structural complexity. The carriers, however,
can enter or leave the sample only through leads with a
single quantum channel, i.e., a wire with two states at the
Fermi energy.

Equation (1.1) has been used to obtain the scaling of the
resistance of a one-dimensional wire as a function of its
length.? This has been used to develop the modern scaling
theory for one-dimensional conduction.>* Small struc-
tures of normal metal, with an opening, are sensitive to an
Aharonov-Bohm flux. Reference 5 analyzed cylinders
and rings through the correlation-function approach,
whereas Eq. (1.1) was used in Refs. 6 and 7 to treat strict-
ly one-dimensional rings.

Generalizations of Eq. (1.1), treating samples connected
to leads with many channels, have been presented in Ref.
3 and Refs. 8—10. References 3 and 9 add the conduc-
tances of channels in parallel, whereas no simple result is
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found in Ref. 8 and the need to solve a large system of
equations is stressed. The result of Azbel'® differs from
these and will be reestablished here.

It is desirable to have a many-channel generalization of
Eq. (1.1) for various reasons. Such a result might enable
one to generalize the scaling theory® from one dimension
to higher dimensions or, at least, to finite-thickness
wires.®~1° A multichannel formula can be applied in nu-
merical studies of the scaling of the conductance of
higher-dimensional systems,'®~'> testing the scaling
theory of localization!® in such systems. An understand-
ing of the conductance of many-channel systems will also
be crucial, for example, to the elucidation of quantum in-
terference effects’’ in real conductors, with height and
width equal to a number of atomic layers.

A brief discussion of the single-channel result, Eq. (1.1),
and its generalization to nonzero temperature, is con-
tained in Sec. II. Many-channel generalizations of Eq.
(1.1) are presented in Secs. III and IV. An application to
Aharonov-Bohm®~7 resistance oscillations in many-
channel rings is given in Sec. V. Further possible general-
izations are mentioned in Sec. V1.

II. THE SINGLE-CHANNEL CASE

In this section we present a brief derivation of the
single-channel conductance formula Eq. (1.1) and its gen-
eralization to nonzero temperature. Extended discussions
can be found in Refs. 1-3, 8, and 17—19. To derive Eq.
(1.1), we consider the situation depicted in Fig. 1. The
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FIG. 1. (a) The geometry of Ref. 1. The obstacle is connect-
ed to two incoherent reservoirs by ideal 1D conductors. A
stream of particles with unit density hits the barrier from the
left, a fraction R is reflected, and a fraction T transmitted. (b)
The chemical potentials in the single-channel case. The LHS
reservoir emits electrons up to a quasi-Fermi-energy u, and the
RHS reservoir emits electrons up to a quasi-Fermi-energy u,.
w4 and pp are the chemical potentials in the perfectly conduct-
ing leads to the left and the right of the barrier.

sample is connected to perfect but identical one-
dimensional conductors which in turn connect to electron
reservoirs. The reservoir to the left injects carriers into
the perfect wire up to a quasi-Fermi-energy p, and the
reservoir to the right emits carriers up to a quasi-Fermi-
energy p, [see Fig. 1(b)]. (The assignment of a chemical
potential to a particular class of electrons can be con-
sidered simply as a mathematical alternative to the use of
carrier densities.) The reservoirs are incoherent; the waves
emerging from separate reservoirs do not have any phase
relationship. The current, for two spin directions, emitted
by the left reservoir in the energy range between u, and p
is

I=ev(0n/0E) (a1 —u;) . (2.1

Here v is the Fermi velocity, and dn /9E is the density of
states for two spin directions and for carriers with positive
velocity. In one dimension 0n/dk=1/7 and
on/0E =1/mfiv. Thus, the total current emitted by the
left reservoir due to the difference in the quasi-Fermi-
levels is. I =(e /m#i)(i; —p;,). These carriers have a proba-
bility T for traversal of the sample and a probability R of
being reflected. Therefore, the net current flow is given
by

I=(e/m)T (u;—ps) -

The difference between the quasi-Fermi-energies p, and
U, is chosen to be small enough so that the energy depen-
dence of T (and R) within this range can be neglected.
Next, we have to determine the voltage across the sample.

(2.2)
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This potential difference is determined by the piled up
charges to the left and right of the sample, and the screen-
ing of these charges. We must invoke either self-
consistent screening”17 or the Einstein relation,? starting
from the differences in carrier density, between the two
ideal conductors. The carrier densities can be character-
ized by the chemical potentials u 4 and up [see Fig. 1(b)].
Their respective levels, between p and u,, are determined
such that the number of occupied states (electrons) above
t4 (up) is equal to the number of empty states (holes)
below @4 (up). Below the energy u, all states are fully
occupied and we need to consider the energy range from
Wy to iy only. The total numbers of states in this range is
2(0n /3E )(u;—pu,). The factor 2 arises because we have a
state with positive velocity and a state with negative velo-
city at each energy, and dn /9E is the density of states for
carriers moving to the right (or the left) only. Consider
now the perfect wire to the right. Since carriers have a
transmission probability T, the number of occupied states
is T(3n/0E)p;—up) and the number of unoccupied
states is (2— T)(dn /3E)(ug —u5). Thus, the chemical po-
tential up to the right of the sample is determined by

T(3n /OE) () —pug) = (2—T)(dn /OE g —puy) -

To the left of the barrier we have both incident carriers
and reflected carriers. The number of occupied statés is
(14+R)On/dE)u,—u 4) and the number of unoccupied
states is [2—(1+ R)])(dn/3E)(u 4 —u,). Therefore, the
chemical potential 4 to the left of the sample is deter-
mined by )

2.3)

(1+R)(On /OE) (1 —p 4)=(1—R)(3n /OE)N 4 —u,) .
2.4

Charge neutrality does not allow different densities to the
left and right of the sample over distances large compared
to a screening length.">!7 This requires that the separa-
tion between the chemical potential p 4 or up, respective-
ly, and the band bottom must be the same as in equilibri-
um. Thus, the conduction-band bottoms of the perfect
wires are displaced against each other by a potential
difference,

eV=,uA —HUB - (2.5)

Therefore, Eqs. (2.3) and (2.4) can be used to determine
the voltage across the sample. The result of this simple
calculation yields eV =R (u;—u,), and with Eq. (2.2), we
find for the conductance G =I/V =(e?/m#)T /R, i.e., Eq.
(1.1).

To arrive at Eq. (1.1) we have assumed that the reser-
voirs feed all states up to their quasi-Fermi-energies
equally. This is strictly correct only at zero temperature.
At higher temperatures we assume that the reservoirs fill
the states according to the Fermi distribution. The left
reservoir fills the states with probability

SfE —py)={exp[B(E —p]+1} !
and the right reservoir fills the states with probability
SFE—ps)={exp[BE —pp)]+1}7".
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The net current flowing from the left reservoir to the
right reservoir is now given by
I=(e/2mh)

JaE=2L 1) (1 —pm) 2.6)

instead of Eq. (2.2). Here

=L [f (B )~ (B —p2)) g —p22)
is the derivative of the equilibrium Fermi distribution
f(E —Ep). Similarly, to determine the chemical poten-
tials we have to multiply Egs. (2.3) and (2.4) by —df /dE
and integrate them over the energy. This yields a voltage

J dE(—df /dE)R (E)(3n /3E)

e (1 —p2) , (2.7)
[de(—df/apyensem) 1 H?
which explicitly depends on the density of states. With
Egs. (2.6) and (2.7) we find a conductance
f dE—7L T(E)
[ dE(—df/dE)v“l(E)
(2.8

X ’
[dE(—df /dE)R (Ew~(E)

where we have used on/0E=1/m#iv(E). If we assume
that the velocity has a negligible energy dependence
within the range where df /3E is appreciable, Eq. (2.8)
reduces to one already obtained by Engquist and Ander-
son.!® At zero temperature we have —df/dE
=08(E —Ey) and Eq. (2.8) reduces to Eq. (1.1).

Each energy range can be considered to provide a
separate channel for transmission; in that sense Eq. (2.8) is
a multichannel result. Indeed, we find in Sec. IV that the
conductance in the presence of channels with the same en-
ergy has the same structure as Eq. (2.8). Naively, one
might think that the generalization of Eq. (1.1) to finite
temperatures might proceed by adding the conductances
for each energy in parallel, i.e.,

G =(e*/n#) [ dE(—df /dE)T(E)/R (E) .

As Eq. (2.8) shows, this is somewhat misleading. We in-
tentionally avoid the work ‘“incorrect” here for reasons
which will become clearer from the discussion in Sec. VI.

III. THE MANY-CHANNEL CASE, GENERALITIES

We now consider a similar physical situation as before,
except that the ideal conductors include N independent
conducting channels characterized, for example, by dif-
ferent quantum numbers for the limited motion transverse
to the wire. For zero temperature all the channels have
the same energy (the continuous energy associated with
the velocity along the wire adds to the discrete transverse
level, to give the Fermi energy Er). These channels can,
however, be scattered into each other by the “barrier”
which is now represented by a 2N X 2N scattering matrix.
All the scattering in the sample is elastic. Evanescent
states with imaginary values of the wave number parallel
to the wire can be neglected.?° They cannot contribute to
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the current, and can only have an effect on the chemical
potential right at the interface between the scatterer and
the ideal conductor. An incoming wave (see Fig. 2) from
the left zth channel has probabilities T;;=|¢; |? and
Rj=|ry |2 for transmission into the nght hand side
(RHS) ]th channel and reflection into the left-hand side
(LHS) jth channel, respectively. The analogous matrices
for incoming waves from the RHS are denoted by primes.
The 2N X 2N matrix S given by

’

S:

(3.1)

’

is unitary due to current conservation because the Tj;, R;;
matrices transform the lead currents. Furthermore, when
time-reversal symmetry holds,

§8*=1, =S, (3.2)

where the asterisk denotes complex conjugation, the tilde
the matrix transpose, and 1 is the unit matrix.

We generalize Fig. 1(b) to the present case by assuming
that all electrons arriving at the sample from all the LHS
channels are characterized by a single chemical potential
1. The electrons arriving in the RHS channels are like-
wise characterized by a single chemical potential p, <.
The chemical potentials of the ideal conductors them-
selves are denoted by u 4 and pp, respectively. In general
we can expect that u 454y, and pp=~u,; u 4 and pp will be
determined in the next section.

We make the following assumptions about the coupling
to the reservoirs, generalizing those of Fig. 1(b) for the
single-channel case. The reservoirs supply electrons so as
to keep all the states in the ideal conductor going away
from the bath below an energy p; (u,) full. On the other
hand, any electron incident on a reservoir, and coming
from the system, is absorbed and thermalizes in the reser-
voir. We also assume that the waves in different chan-
nels, incident on the system, are incoherent with each oth-
er. Thus, interference effects between different input
channels are neglected. These are very plausible physical
assumptions but they are certainly not unique. There are
alternative assumptions, which give the incident carriers a
different distribution among channels, leading to different
results. We discuss these alternatives in Sec. VI. Here we
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FIG. 2. A multichannel system S. A unit current in channel
i is reflected into channel j with probability Rj; and transmitted
into j with probability Tj;. Indices { and j run from 1 to N. In-
put channels are incoherent with each other.
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only emphasize that these distinctions become unimpor-
tant in the limit of small transmission.

{ IV. DERIVATION OF THE MANY-CHANNEL
CONDUCTANCE FORMULA

The generalization to many channels of the derivation
given in Sec. II is now straightforward. Again we only
have to consider the energy range between u, and p;. In
this range, carriers are injected into the perfect wire only
from the LHS reservoir. The current injected into chan-
nel j by this reservoir is ev;(dn; /0E (it —u,). The densi-
ty of states (with positive velocity) is given by
On;/0E=1/7fiv;. Therefore, the current fed into the jth
channel is (e /m#)(u; —u,), i.e., independent of the chan-
nel velocity. Thus, the reservoir feeds all channels with
the same current. The current from the LHS jth channel
transmitted into the RHS ith channel is
(e /m#)T;;(u1—p7). The total current in the ith channel
to the right then becomes

N )
(e /mh) lz Ty |(u—pa) .
ji=1

It is convenient to introduce a total transmission probabil-
ity and reflection probability into the ith channel:

T z ij> R,=2Ru . (41)
j
Thus the current in the ith RHS channel is
(1—pde
At L) (4.2)
Th
and the total current is given by
(11— Hz)e uae

Imt—ZI— ZT—

We can also express the current in terms of the R;;. The
current in each channel to the left of the barrier is

—W—h‘z—TrtlT . (4.3)

(1 — )
Ak B 2o ll—zRU

7rﬁ
(p1—pale ,
= g (1—-R;), (4.4)
and the total current is
(u )e
Iw=S1I;= “2 2(1 — 4.5)
i

Comparing Egs. (4.3) and (4.5), we find that current con-
servation implies

ET,=E(1——R,) .’

We also note, for completeness, that the more detailed
equalities

Ril +Ti=1,

(4.6)

Ri+Ti’ :1 > (47)

are valid only between transmission fo the right (left) and
reflection from the right (left). They state that if all in-
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cident channels on both sides of the barrier are fully occu-
pied, all outgoing channels will also be fully occupied.

To determine the chemical potentials ©, and ug, we
generalize the discussion leading to Egs. (2.3) and (2.4) by
summation over channels. The probability for carriers to
be transmitted into the ith channel on the RHS of the
sample, if the LHS incident channels are occupied equal-
ly, is T;. This gives rise to T;(8n; /3E) (1 —pp) occupied
states. The number of occupied states in all channels to
the right is

S T,(3n; /OE )y —pp) .

The number of unoccupied states is
> (2—T;)(3n; /OE ) (upg —u,) -
i
Again pp is determined such that the number of occupied
states is equal to the number of unoccupied states,
ZTi(an,- /OE) i —up ):Z(Z— T;)(0n; /3E) (up —u,) .
t l (4.8)

Similarly, the chemical potential to the left is determined
by

_2(1_

Therefore, the voltage across the sample is now given by
S(4+R;—T;); "

i
22U,'~1
where we have used dn; /0E =1/m#v;. With the help of
Eqgs. (4.2) or (4.5) we obtain a conductance
) 2211;_1

e i
G=2ST, .
Wﬁ ; 2(1+R, ——T[ )U,'_l

an, /aE)(/-lA —,Uz) (4.9)

eV=p, —up= (H1—p2), (4.10)

(4.11)

This result is identical to that of Azbel.!° Azbel in-
voked the same assumptions about the nature of the in-
cident streams and their role in determining the popula-
tions of the outgoing streams as we do. We note that this
result is different from that of Refs. 3 and 9. For uncou-
pled channels (7;;=T;8,;;, R;j=R;5;;) Azbel’s result [Eq.
(4.11)] does not reduce to the parallel addition approach,
as already indicated in Sec. II in the discussion of energy-
dependent transmission coefficients. Equation (4.11) has
the same form as the finite-temperature result of Engquist
and Anderson,'® respectively [Eq. (2.8)]. Indeed, we could
derive Eq. (2.8) by considering the index i in Eq. (4.11) as
continuous, i.e., replacing it by E, and by replacing the
sum over i with an integral over —(df /dE)dE. Channels
are added the same way, whether they are degenerate
channels as in Eq. (4.11), i.e., channels belonging to the
same energy Epr, or channels belonging to different ener-
gies as in Eq. (2.8). A generalization of Eq. (4.11) to finite

‘temperatures will be presented elsewhere.?!
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To derive Eq. (4.11), we have assumed that the perfect
wires to the right and left of the obstacle are identical. To
be more precise, we have assumed that for each channel to
the left characterized by a velocity v/, there exists one
channel to the right with a velocity v/ which is equal to
vl If we drop this requirement and generalize to the case
where there are N channels to the left and N’ channels to
the right, then a repetition of the steps leading to Eq.
(4.11) yields

v
2T

2e? i=1

= 1 | &
14+— Z(U,'I)_IR,'
I |i=1

'

1 N
_— 2(U{)~1Ti

r li=1

(4.12)

Here we have introduced

2(01)—l

i=1

and

2 (vr)— 1

i=1
which are proportional to the density of states to the left
and right of the barrier. Equation (4.12) is our most gen-
eral result. It reduces to Eq (4.11) in the case where
N=N’and v/=v].

Equations (4.11) and (4.12) raise the following interest-
ing question: What happens when one of the channel ve-
locities vanishes? This occurs when the Fermi level E
. coincides with one of the transverse levels in at least one
of the leads and the longitudinal part of the energy van-
ishes. For a system where the Fermi energy Ep can be
changed, such as in metal-oxide-semiconductor device, Ep
may be made to cross a particular transverse level and to
switch on or off its contribution to the conductance. This
will lead to sharp changes in the conductance near these
crossings. For simplicity, take the case where symmetry
exists between the right and left leads. Denote the energy
at which the (N +1)th channel becomes conducting by
Ey,,. When the Fermi energy Er approaches Ey
from above vy, tends to zero. Once vy is smaller
than

N
Su !

i=1

the term including vy Jlrl in the sum in the denominator
and in the density-of-states factor in Eq. (4.11) dominates
and the conductance of the N + 1 channels becomes

ET

z—l

Gy 1(Eyy1)= (4.13)

Here we have used the fact that as vy, ;—0, Ry, ;—1
and Ty ;—0. The diverging one-dimensional density of
states of the (N + 1)th channel causes it to determine u 4
and pp and we obtain, in fact, from Eq. (4.10),
eV=pu,4—pug=p;—un,;. On the other hand, if Ep ap-
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" proaches Ey_; from below, we have N conducting chan-

nels with nonsingular densities of states and the conduc-
tance is simply given by Eq. (4.11). But Gy [Eq. (4.11)],
for Ep=Ey i, is in general larger than Gy (Ey ).
Thus, the conductance exhibits a discontinuous drop at
Ep=Epy_,. Typically, with increasing Fermi energy the
conductance increases. An estimate for large N shows
that the conductance of N +1 channels, after the initial
drop, exceeds the conductance of N channels, if the Fermi
energy exceeds Ey,+Ey,1/N% This behavior of the
conductance as a function of the Fermi energy is delicate-
ly dependent on the exact details of our model.

In the case where all the transmission probabilities are
small, T;<<1 and R;=1. Equations (4.11) and (4.12)
then yield

—ﬁz—zr — & Tent 4.14)

Th< wh

in agreement with Refs. 3, 8, and 9. The additional fac-
tors in Egs. (4.11) and (4.12) are only of importance in
very small samples. The weak transmission limit [Eq.
(4.14)] is relevant in many situations. Anderson et al.’
considered an ensemble of samples characterized by a
fixed conductance G. As we go from small samples to
larger samples, we have to increase the number of chan-
nels N to build up the sample in the transverse direction.
If we keep the conductance fixed, the length of the sample
has to grow accordingly. To keep the conductance con-
stant with growing channel number, the total transmission
probabilities have to scale like 1/N, i.e., T; ~1/N. Thus,
the conductance of large samples in this ensemble is
governed by Eq. (4.14).

In the next section we use a different scaling procedure.
We ask, how does the conductance of samples of fixed
length grow as we increase the number of channels? In
this case, the transmission probabilities are of order one
and independent of the channel number. This causes G to
grow as N. Clearly, for large samples, the conductance is
proportional to the cross section of the sample. If the
length of the samples is short enough, this suggests that
Egs. (4.11) and (4.12) are relevant even in the limit of
large N. However, with increasing N we might obtain
channels with very small velocities. The same reasoning
that leads to Eq. (4.13) can be applied. If the total density
of states is dominated by the density of states of channels
with very small velocities, Eq. (4.14) is, even for this scal-
ing procedure, the relevant expression for the conductance
in the limit of large N.

V. APPLICATION TO INTERFERENCE PHENOMENA
IN SMALL RINGS

The possibility of Aharanov-Bohm—type oscillations in
the conductance of small rings or cylinders with a mag-
netic flux ¢ through its opening has attracted atten-
tion.>~722=33 Here, small means circumferences less than
the inelastic or phase-breaking diffusion length Ir. The
equilibrium properties of a ring are periodic in ¢, with a
period equal to the single-electron flux quantum,
o= h/e 34-37 The work of Altshuler, Aronov, and
Spivak,’ based on an expansion in the disorder in an effec-
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tively multichannel system, suggested a periodicity of the
resistance in the flux ¢, with a period ¢o/2=h/2e. On
the other hand, an exact calculation®” of the conductance
of a purely one-dimensional ring, with one-dimensional
leads, yields a fundamental periodicity with a period ¢.
The amplitude of the fundamental with period ¢, is, in
general, larger than that of the first harmonic (period
$0/2), except for very special cases.”* It could be argued,
however, that this is an artifact of the single-channel case
and that when the number of channels becomes large, the
term with period ¢¢/2 may become dominant. A more
specific reason for this expectation which, however, is not
borne out by our later considerations, is based on the fol-
lowing argument. The oscillation?*—?® with period ¢¢/2 is
apparently associated with coherent backscattering®®33
due to a constructive interference (at ¢=0) between two
paths going around the ring in opposite directions, as il-
lustrated in Fig. 2.5 of Ref. 33. These two waves return
to their original common starting point with a phase
difference of 4w¢/py, leading to a period ¢o/2, and a
minimum transmission at ¢=0. On the other hand, the
contribution with the longer period ¢, is due to direct in-
terference between waves propagating along the two
branches of the ring. Their phase difference, to the extent
that it depends on ¢, is 2w¢/dy. Since the flux-
independent phases of these terms contain random contri-
butions, the contribution to the conductance with period
¢ resulting from their interference can be at any phase of
its oscillation at ¢ =0, with equal probabilities. It is plau-
sible, therefore, that for many channels this contribution
will almost cancel out and that the contributions with
period ¢y/2 can become dominant. We mention, howev-
er, that in the important case where all the T°s are very
small, the extra path length involved in the extra circuit
around the ring for the ¢y/2 periodic terms will diminish
their relative importance.

We can use our multichannel conductance formulas to
estimate how the contributions periodic in ¢, measured
relative to the ¢-independent contributions, vary with
channel number N. We invoke the results of Ref. 5 for
the small-ring geometry to determine the relative size of
the contributions that are periodic in ¢¢/2. Both turn out
to scale as 1/N so that their ratio remains constant as
N— .

We analyze below the contribution to G with period ¢,.
The contribution is mainly due to interference between
partial waves moving in the upper branch of the ring and
those in the lower branch. Since all the former pick up
the same phase from the flux ¢, and all the latter again
pick up an identical phase (but different from the
aforementioned) it is possible to estimate the size of the
total periodic contribution. Consider Fig. 3 with N chan-
nels in both the upper and lower parts of the loop and in
the leads. The channels in the upper branch pick up a
phase change (74 €)¢ /¢y from the vector potential where
the constant € allows for asymmetry in the loop. The
channels in the lower branch pick up a phase change
(—m+€)p/do. These two sets of channels come together
at the RHS transmission-end splitter (see Fig. 3) and in-
terfere to produce an output there. Note that our picture
emphasizes the two contacts with the ring, a point not
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FIG. 3. Schematics of a many-channel ring. N input chan-
nels, at the left, are split into N channels in the upper branch
and N in the lower branch. These 2N channels are then com-
bined into the N output channels, at the right. A flux ¢ is ap-
plied in the opening between the upper and lower branches.

considered in Ref. 5. We will hereafter assume that the
channels in the loop, as they arrive at the terminating con-
tact, or “splitter,” are populated relatively uniformly. If
this is not the case, our considerations given below un-
derestimate the flux sensitivity of the ring. We will also
assume that the phases and amplitudes of the wave func-
tions arriving at the LHS input splitter are relatively in-
dependent of ¢. This implies that these waves are largely
waves arriving at the splitter without having made a com-
plete circuit and thus have not been affected by the in-
terference effects in the ring.

Consider now the probability 7;; that a wave arriving
in channel j, to the left of the ring, is transmitted into the
final outgoing channel i. Let the wave amplitudes arriv-
ing at the right-end splitter, along the N upper channels,
be of the form aqe'gqe' T/ B, g is a channel index,
1<qg <N. We assume that the magnitudes @, are com-
parable and that the {, are randomly distributed. Let the
wave amplitudes arriving via the lower channels be of the

in, —i(lmr—e 0 : s

form B,e e . For simplicity, we treat the case
where the a, and the B, are comparable. We now consid-
er the effect of these arriving waves in a single outgoing
channel i. We again assume that the loop channels couple
to the outgoing channel in a relatively uniform way and
that the additional phase retardations in the splitter do
not alter the relatively random distribution of the phases
due to the contributions from different channels within
the loop branches. The outgoing wave in channel i is,
therefore, a sum of terms

1/1,‘ :zyqeieqei(ﬂ+s)¢/¢o+zapeixpe —i(r—e)p/$y , (5.1)
q p

with the y’s and &’s comparable in magnitude. The
transmitted amplitude |; |2 then becomes

Ty=|v;|?

2 i(6,—6,)
= 2?’4‘*‘2612’"“ 2 Vq¥ge T T +eec
q P 959’ :
+ > SPSP'eI(XP_xP')+c.c.
p#p’
+E'}/q8pe'(e"—x”)ezmw%—{-c.c. . (5.2)
a.p
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Equation (5.1) contains 2N incoherent contributions.
Thus, we can expect the total magnitude of |; | to be
2N times that of a single contribution. It is only the final
sum in Eq. (5.2) which depends on ¢. There are N? terms
in this final sum, again incoherent with each other. Thus,

the net contribution of these terms, varying periodically -

with period ¢, is proportional to (N2)!/2 or to the total
amplitude of |¥; |°. This final sum in Eq. (5.2), however,
comes with a random phase. Let us rewrite Eq. (5.2) in
the form

3
Tij= a,-(jl)+a,fj2’cos6§~f)+a,~(j3)cos0§~j )
+a,-(j4’cos 27 ° —65-}” (5.3)
0

The four terms in Eq. (5.3) represent the four sums in Eq.
(5.2). The a coefficients are all positive and comparable.
They will simply be denoted by a hereafter. The 0’s are
random phases.

Equation (4.14) tells us that

G=<_>r
_ﬂﬁgj i

if the transmission probabilities are small. Thus, we can
simply sum Eq. (5.3) over all incident and transmitted
channels. The first three terms in Eq. (5.3) give rise to a
flux-insensitive conductance. The sum over the a,~(j1) terms
gives rise to a conductance proportional to N2z. The sum
of the next two terms represents fluctuations, in the flux-
insensitive conductivity, of the order of (N2)!/2a. The

sum over the final term in Eq. (5.3) gives a contribution of

order (N?)'/%a cos[2m(¢/$y)—6]. Here the phase 6 is ei-

ther O or . The scattering matrix for the ring discussed
above must be unitary and time-reversal invariance im-
plies S(¢)=S(—¢), instead of Eq. (3.2). These symmetry
properties have the consequence that the conductance cal-
culated with the help of Eq. (4.14) is symmetric if the flux
is reversed, i.e,, G(—¢)=G(4). The random phases 6;;
obey a sum rule. In contrast, the magnetoconductance,
based on Egs. (4.11) and (4.12) which include velocity fac-
tors, can indeed be asymmetric as shown in Ref. 38.
Equation (4.14), without velocity factors, however, tells us
that the conductance has either a local maximum or a lo-
cal minimum at ¢ =2wn¢,. Furthermore, our calculation
shows that the terms in G which have the period ¢ are of
order 1/N of the total conductance. In Ref. 6, it was ar-
gued correctly that the contribution to each Tj; with
period ¢ is of relative order unity. However, since G is a
sum of N2-such random terms, the relative total effect is
1/N, not 1/V'N as speculated in Ref. 6. Any effects that
emphasize the role of particular channels, such as speckle
patterns?®3 or resonances”?? in the T;;, may as men-
tioned before, diminish the effective N. Thus, our 1/N
estimate may be regarded as an order of magnitude of a
lower bound on the amplitude of the contribution with
period ¢.

We could construct estimates, based on arguments simi-
lar to the one presented above, for the relative size of the
part of the conductance with period ¢,/2. Rather than
doing that, we refer the reader to Ref. 5. For a thin ring

the flux-sensitive quantum correction to the flux-
insensitive conductance (Eq. 5 in Ref. 5) can be cast into
the form

AG =e%/Hif 2¢/dy) . (5.4)

Here f is a periodic function of period one which depends
only on the ratio of the circumference to the inelastic
length, not on the cross section of the ring. If we now as-
sume that the flux-insensitive conductance is proportional
to the cross section, i.e., proportional to the number of
channels N, then Eq. (5.4) implies that the amplitude of"
the oscillations with period ¢y/2 is also of order 1/N.
Thus, in a particular N-channel ring the terms with the
two periods under consideration are, as far as their N
dependence is concerned, of the same order (1/A). Only
when an experiment involves an effective averaging over
an ensemble of many rings,®3%4%4! such as in a long
cylinder®*?” or in a system with many incoherent rings,?®
can we expect a dominance of the ¢,/2 term, due to the
averaging out of the ¢, terms that have a different sign in
different ensemble members. This is also the case in the
calculation of Ref. 5, where ensemble-averaged propaga-
tors are used in the calculation, and the ¢y-periodic term
is suppressed by the choice of procedure.

The ensemble averaging has also been invoked as a for-
mal device, without discussing the physical conditions for
its applicability, in the calculation of the participation ra-
tio of closed, small-channel number rings in Refs. 30 and
31. It is not clear why the participation ratio in a closed
ring, i.e.,, in a Hamiltonian system without resistance,’
should explain resistance oscillations.

VI. ALTERNATIVE RESULTS AND FURTHER
GENERALIZATIONS

The situation discussed in connection with Eq. (1.1) has
a particular simplicity. The single energy level and single
channel result in a well-defined state once the current in
the ideal conductors is specified. If we go beyond this, as
in the case of Eq. (2.8) where we deal with an energy
range, we have to ask how the incident flux is distributed
over energy. It is clear that this distribution will have an
effect on the net transmission of carriers and therefore on
the resistance. One could, in principle, proceed at this
point without extraneous assumptions about the energy
distribution by treating a complete system with its power
source included. This has only been done in the one-
dimensional case at zero temperature; in that case, we
have a system which exhibits energy storage, but not a
resistance.”” A similar, but more ambitious calculation,
which couples the current carrying degrees of freedom to
a reservoir providing dissipation, e.g., as in the treatments
of macroscopic quantum tunneling,*> does not yet exist.
As a result, we are reduced to plausible assumptions about
the distribution of the incident current, which may or
may not be satisfied in specific physical arrangements.
Our assumption, leading to both Egs. (2.8) and (4.11), is as
follows: The chemical potential for .all of the carrier
classes incident from the left (whether the classes corre-
spond to different channels or to different energies) is
given one value, the chemical potential for all of the car-
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rier classes incident from the right is given a different
value. It is, in fact, surprising that this assumption has
been taken for granted in all the papers that treat the
one-dimensional case with energy-dependent transmis-
sion,'®4>* but has not even been mentioned by most of
the multichannel investigators.

In the multichannel case, there are several alternative
possible assumptions. We stress that these are alternative
assumptions and do not characterize them as correct or
incorrect. One alternative pictures an incident-carrier dis-
tribution which is controlled by a scattering mechanism
within the leads bringing the carriers to the sample.
Thus, for example, we might envision the typical solid-
state conductivity relaxation-time case with the carrier
distribution specified by a Fermi sphere shifted in
momentum space. In that case, carrier classes moving
along the direction of the arriving current will be farthest
from equilibrium, whereas carriers moving almost parallel
to the sample interface will be much closer to equilibrium.

Langreth and Abrahams® have invoked another alterna-
tive set of assumptions, which we describe by adapting
and extending a discussion in Ref. 19. Reference 8 as-
sumes (in distinction to our treatment) that the chemical
potential for all channels on the left, as determined by the
average between both left and right moving carriers, is the
same. Similarly the chemical potential for all channels on
the right is the same. The chemical potential on the left
is, of course, different from that on the right. At first
sight, this seems plausible and reasonable. It corresponds
to our common-sense notion that there should be a fixed
driving force across a sample. Furthermore, the fact that
all the channels on the left have the same value of chemi-
cal potential means that they are in equilibrium with each
other. That may seem appropriate: They are in contact
with the same source. On closer inspection, however, the
assumptions of Ref. 8 lead to questions. What is the
mechanism which keeps the population between. different
channels perfectly in equilibrium, but permits the left and
right moving components in the same channel to be out of
equilibrium? Furthermore, in Ref. 8 the way in which the
current is distributed among the channels is a function
only of the scattering behavior of the conductor and is un-
related to the mechanism in the leads which produce the
presumed equilibration between the channels. Satisfacto-
ry answers to these questions about Ref. 8 are likely to ex-
ist but remain to be supplied.

Still another possibility was discussed in Ref. 19 and in
that publication incorrectly identified as identical to the
approach of Langreth and Abrahams.® This additional
possibility considers a long chain of identical obstacles
scattering incoherently with each other. In that case, the

current flow emerging from one obstacle and incident on
the next must mirror the current distribution among

channels incident on the original obstacle.

Let us now turn aside from the discussions of alterna-
tives to Eqgs. (2.8) and (4.12) and stress the broad applica-
bility of the viewpoint represented by Eq. (1.1). The gen-
eralization to many channels discussed in this paper is
only one of many ways in which the approach, originally
introduced in Ref. 1, can be expanded. It is apparent that
the transmission and reflection properties of a sample
determine the current flow if we specify the incident flux
and also determine the extent to which these moving car-
riers accumulate on each side of the sample. Self-
consistent screening, which will eliminate the long wave-
length components of this charge pileup, then determines
the potential difference. The scattering in the sample does
not have to be elastic.*> The scattering matrix need not be
confined to independent electron effects, as we have as-
sumed, but can include many-body interactions.*® As al-
ready pointed out in this paper, the medium attached to
one end of the sample need not be identical to that at-
tached to the other end. The carriers need not be charged;
phonon transport, as for example in a Kapitza resistance,
should be amenable to a similar view. Finally, we men-
tion that other transport properties, such as the thermal
conductivity of the electrons and the associated ther-
moelectric coefficients,'®*” can also be expressed using
similar ideas.

Our emphasis on the generality of the approach must
also be accompanied by a warning about its limitations.
In general, if the current distribution in the leads (distri-
bution in space, by channel or by energy) does not match
the preferences of the sample, there will be an interface
resistance, as discussed in Ref. 19.

Note added in proof. Section V analyzed resistance os-
cillations for a small ring, with a flux period 4 /e. These
oscillations have now been seen in gold rings, in a striking
and clear fashion.*®
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