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Heterocontact effects in point-contact electron-phonon spectroscopy of the alkali metals
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For a small contact between two different materials (a heterocontact), we derive the free-electron
expression for the electron-phonon spectral function determined from the measured I- Vcharacteris-
tic. The heterocontact spectral function differs strikingly from the homocontact spectral function in
that it excludes scattering through angles less than a minimum angle in the larger-bandwidth ma-
terial. We calculate realistic heterocontact spectra for pairs of alkali metals. If in a given pair of al-
kalis the smaller-bandwidth material is replaced by one with a still smaller bandwidth, the size of
the signal from the larger-bandwidth material decreases (sometimes dramatically), and the part of
the spectrum due to scattering by 2k+ phonons is relatively enhanced.

I. INTRODUCTION

Point-contact spectroscopy has been successfully used
to study the electron-phonon interaction in a wide variety
of metals, ' including the alkali metals. ' In this tech-
nique, one measures the derivatives of the I Vcurve o-f a
small contact between two bulk materials. If the size of
the contact is smaller than the inelastic mean free path,
the non-Qhmic part of the resistance is proportional to a
weighted average over the Fermi surface of the scattering
rate at the applied voltage. ' Most work to date has used
contacts between the same material (homocontacts), and
for this case the weight factor is well known [see Eq. (7)
below]. '

Contacts between two different materials (heterocon-
tacts) differ from homocontacts in two important ways:
The difference in Fermi velocity leads to reflection and re-
fraction of electrons at the interface (kinematic effects),
and the charge density at the interface scatters the elec-
trons. Experiments done on heterocontacts' * show pho-
non structure from both materials and are roughly con-
sistent with adding the individual spectra of the two ma-
terials, but have not been subjected to a detailed shape
analysis. Heterocontacts have been investigated theoreti-
cally using the methods developed for homocontacts. The
distribution of electrons in a heterocontact in the approxi-
mation of no scattering has been calculated, and interface
scattering effects (modeled by a 5-function barrier) and
kinematic effects for two materials with very different
Fermi energies have been investigated. However, the
weight factor for electron-phonon scattering in the hetero-
contact case has not previously been calculated.

In this paper we find the weight factor for a heterocon-
tact, taking into account the kinematic effects of the in-
terface but not the interface scattering, and calculate real-
istic point-contact spectra for pairs of alkali. metals. In
deriving our expression for the weight factor we assume
that both materials are free-electron metals at zero tem-
perature. (The experiments are usually done at low teru-

perature. ) We use the method of Kulik, Omel'yanchuk,
and Shekter in which one solves the Boltzmann equation
to first order in the electron-phonon interaction. We find,
first, that the weight factor for a heterocontact differs
from that for a homocontact only in the larger-bandwidth
material. Second, in the larger-bandwidth material,
scattering through angles less than a minimum angle is
excluded and the phase space for allowed scattering is re-
duced. Third, the overall magnitude of the spectrum
from the larger-bandwidth material decreases, sometimes
dramatically, because of the smaller-bandwidth material.
Fourth, the portions of the spectrum with a high contri-
bution from scattering by 2kF phonons are enhanced rela-
tive to other portions of the spectrum.

In Sec. II, we discuss the geometry of the contact and
the current through the contact in the absence of scatter-
ing. Then we add the electron-phonon scattering and
derive the weight factor in Secs. III and IV. Sections V
and VI present the method of calculating the spectra of
the alkali metals and the results, respectively. Finally, we
summarize and comment on the possibility of more gen-
eral applicability of our results (Sec. VII).

II. GEOMETRY AND NO SCATTERING CURRENT

Throughout this paper, the geometry that we consider
is an idealized form of the point-contact geometry. As
shown in Fig. 1(a), we consider two free-electron metals of
differing densities, and hence bandwidth, joined at an in-
terface in the z=O plane. The difference in bandwidth,
6 = p &

—p2, is the intrinsic potential step seen by electrons
crossing between materials 1 and 2. The interface is insu-
lating except for a small round hole of radius a which
represents the point contact.

Before discussing the distribution of electrons under an
applied bias, we point out some important features of the
equilibrium case. In equilibrium the distribution, f (r, k),
depends on k only through the kinetic energy, ek, and is
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FIG. 1. Ideal interface between two metals. (a) The conduc-
tion bands in equilibrium are shown. h=p& —p2 is the intrinsic
barrier to the electrons coming from the left. (b) The equilibri-
um distribution just to the left and just to the right of the inter-
face are shown. k, =[2m(p~ p2)]'/ /fi—is the critical wave

vector: Electrons must have k, & k, to pass from material 1 to
material 2, the electrons in material 1 which carne from material
2 must have k, & —k, . Electrons in the shaded regions wi11

cross the interface; those in the crosshatched regions have
crossed the interface; those in the blank region stay in metal 1.

the constriction resistance, is not large enough to bend
electrons near the Fermi level, the only electrons that con-
tribute to the net current. An electron crossing the hole in
the z=0 plane is, of course, bent: its parallel wave vector
is conserved, but k, changes in order to accommodate the
change in energy, +A.

Because electrons crossing the hole from left to right
gain kinetic energy from the applied field while ones
crossing from right to left lose kinetic energy, at any point
in space electrons originally from the Fermi level of ma-
terial 1 will have eV more energy than electrons originally
from the Fermi level of material 2. Thus the distribution
of electrons at a point r is broken into two distinct regions
in k with different filling levels: The maximum energy of
electrons from material 1 is e Vgreater than the maximum
energy of electrons from material 2.

The geometry of the contact determines the size of each
of these regions in k. Given a point r in material 1, the
number of electrons from material 2 and their k are re-
stricted by the solid angle subtended by the hole from r;
we let Q(r) be the set of k that point at the hole from r.
However, because of the internal potential step, all elec-
trons with

~
k,

~
& k, in material 1 originated in material

1 [see Eq. (2)]. Thus in material 1, the solid angle restricts
the electrons from material 2 only if this restriction is

f(r, k)= .

0 Ifl(~)= p, ~k —» +1

f2(&):
p(

for z &0

for z )0. Metal

Insula ting
Barrier—

Metal 2

The crucial difference between a heterocontact and a
homocontact is the intrinsic potential step between ma-
terials 1 and 2. This step affects electrons crossing be-
tween materials 1 and 2 in two important ways: An
electron's momentum perpendicular to the step must be
greater than a critical value in order to pass from material
1 to 2, and any electron crossing from material 2 to 1

gains perpendicular momentum at the step. We define a
critical wave vector,

(2)

rneV

1'h kF(

2a

in terms of which all the kinematic effects of the hetero-
contact can be written: An electron in material 1 must
have k, & k, in order to enter material 2, and an electron
which has crossed from material 2 to I must have
k, & —k, . Figure 1(b) shows the equilibrium distribution
and indicates which electrons will cross or have crossed
the potential step.

Turning now to the situation when a voltage is applied,
we first consider the limit when there is no scattering and
obtain the distribution, f"'(r,k), both by a qualitative ar-
gument and from the Boltzmann equation. We restrict
ourselves to the case of a small applied voltage,

~

eV
~

&&p2, applied so that the net electron flow is from
material 1 to 2 (i.e., V&0). Our final results are equally
valid if the net electron flow is from material 2 to 1. In
this case the trajectories of the electrons are essentially
straight within either material because the applied poten-
tial drop, which is concentrated near the hole because of

E lectron F law

FIG. 2. Point contact of radius a under a forward bias
without scattering. The distribution function f"'(r,k) for elec-
trons is shown at six points in space. The x indicates the point
in space at which the distribution in k is drawn. Shaded and
crosshatched regions are as in Fig. l. The shape of f"' severely
restricts the possible electron-phonon 'scattering events: the ini-
tial state in material 1 must have k, & k, in order for the scatter-
ing everest to affect the current, and any empty final state must
have k,' & —k, . The indicated angle 0;„, defined by
sin(0;„/2) =k, /kF&, is the smallest angle of scattering in metal
1 that contributes to decreasing the current.
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more severe than simply k, & —k, . On the other hand,
given a point in material 2, the only restriction on the
electrons from material 1 is the solid angle subtended by
the hole, as in the case of a homocontact. Figure 2 shows
the distribution without scattering, f"'(r,k), obtained by
applying the solid-angle restriction while keeping in mind
that k, & —k, for any electron in material 1 which came
from material 2.

To obtain this same result formally, we follow the
method of Kulik et al. and solve the collisionless
Boltzmann equation where the force acting on an electron
F(r) has a contribution-both from the applied potential
energy, U-{r) (defined so U=O at the hole), and from the
internal step 4:

F(r) df"'
haik df "'

Bk m Br

F(r)= — [U(r)+66(z)] .a
Br

Integration along a trajectory I defined by r=Rk/m and

k=F(r)/fi transforms the Boltzmann equation to the set
of equations df"'(r(t), k(t))/dt=O, there being one equa-
tion for each trajectory I . The solution of these equations
is clearly that f"' is constant along each trajectory.

The value of f"' along any given trajectory depends on
which side of the contact the particle originated and on
the boundary condition, which we take to be f"'~f

&
as

z~ —oo and f"' +fz as z~+ oo—. States which originate
in material 1 are filled to a higher energy than those
which originate in material 2 because the Fermi level as

z~~ is eV above the Fermi level as z —+ —Dc. We
denote by E&,(r) the maximum kinetic energy of elec-
trons in material i at point r which came from material 1

and call this energy the higher filling level. Likewise, we
denote by E&,(r) the maximum kinetic energy of elec-
trons in material i at point r which came from material 2
and call this energy the lower filling level. The filling lev-
els vary in space because of the applied potential and the
expressions

and

E;(r)=p, ; —U(r) —e V/2

E;(r) =p; —U(r) +e V/2

relate the lower and higher filling levels, respectively, to
the applied potential and the Fermi energies. In terms of
these filling levels the following two statements complete-
ly specify f"'. (1) If the state k at point r came from ma-
terial 1, it is filled [that is, f"'(r,k) = 1] if eI, &E;(r) and
empty otherwise [f"'(r,k) =0]. (2) If the state k at point
r came from material 2, it is filled if et, &E& .(1) and
empty otherwise.

An explicit expression for f"'(r,k) requires a self-
consistent solution for U{r), the paths I and the density
n (r)= f f(r, k)d k/4m, which is coupled back to U(r)
through Poisson's equation. We sidestep the question of
self-consistency by assuming, as above, that the paths of
the particles are straight lines within each material and
bend at the interface. This assumption leads to an explicit
form for f"'(r,k):

f I(et, + U(r) —eV/2), z &0, —k not in Q(r) or k, & —k,

f I (eI, + U(r)+e V/2),f"'(r,k) = ~

fz(et, + U(r) —eV/2),

z &0, —k in Q(r) and k, & —k,

z &0, —k in Q(r)

fz(et, +U(r)+eV/2), z &0, —k not in Q(r),

where Q(r) is the set of k that point at the hole from r.
The feature of f"'(r,k) for a heterocontact [Eq. (4)]

which distinguishes it from the homocontact case is the
additional restriction in material 1: Only states with
k, & —k, are filled to the lower filling level E& I because
all electrons from material 2 must have k, ~ —k, . The
distribution in material 2 is independent of material 1 and
so is identical to the distribution in a homocontact made
from material 2 at the same applied voltage. Conse-
quently, all the effects of the bimaterial nature of the con-
tact are felt in material 1 and are determined by the criti-
cal wave vector k, .

The current implied by the distribution in Eq. (4) can be
calculated from

J= —e I vf(r, k)d k/4'
and is the same as in a homocontact made from material
2.8

eak
4M

III. ELECTRON-PHONON SCATTERING:
DISCUSSION OF THE MAIN EFFECTS

The general effect of electron-phonon scattering is to
Inodulate the current through the contact because the
electron scattering is inelastic. In order. for scattering in a
given channel, k—+k', to affect the current, two condi-
tions must be satisfied: There must be available initial
states (k) and final states (k'), and the electron must ei-
ther scatter out of or into a state that contributes to the
current through the hole. These two conditions lead to re-
strictions both on the energies of the final and initial
states, and on k and k' because of the geometry of the
point contact (which in our case is a simple circular hole).
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The restrictions on k and k' mean that each scattering
channel contributes to the change in current, LD, with a
different weight. In the rest of this section, we deduce the
restrictions on energies and on k and k ' first for material
2 and then for material 1, and we present the weight fac-
tor, W(k, k'), and the change in current that these restric-
tions imply. Section IV contains a more detailed deriva-
tion of the weight factor. Because we assume that the
mean free path is much larger than the size of the hole,
electron-phonon scattering does not greatly perturb the
distribution of electrons. Thus, the restrictions on k and
k' can be deduced by looking at f"'(r,k) in each material
(see Fig. 2). At zero temperature, only phonon emission
occurs and hence the energy of the initial state must be
greater than that of the final state.

In material 2, the energy of an initial state must be less
than the higher filling level, E& 2(r), and the energy of a
final state must be greater than the lower filling level

E& z(r). Thus the maximum energy difference between
initial and final states, and hence the maximum phonon
energy, is the applied voltage eV=E& 2(r) E& 2(r—). In
order to have the initial energy greater than the final ener-

gy (phonon emission), the initial electron k must have
come through the hole from material 1 [—k in Q(r)].
And in order to affect the current, the electron must go
back through the hole, which restricts the final states to
k' in Q(r). Thus in material 2 at a point r, the current is
affected by scattering from states near the Fermi level

with —k in A(r) to states with k ' in Q(r) where
eI, —e~ &eV. The situation described here for material 2
is identical to the case of a homocontact of material 2, '

and hence the current modulation caused by the scattering
in material 2 is identical to that in a homocontact.

In material 1, the energy of any initial state must be less
than the higher filling level, E»(r), and the energy of a
final state must be greater than the lower filling level

E& ~(r). Thus as in material 2, the maximum phonon en-

ergy is the applied voltage eV=E»(r) —E& &(r). In or-
der to have the initial energy greater than the final energy,
the final state k' must come from material 2, which im-
plies that k,' (.—k, because of the internal potential step
as well as that —k' in Q(r). And in order to affect the
current, the initial electron must be one which would go
through the hole if it did not scatter, which implies

k, &k, and k in Q(r). Thus in material 1 the scattering
that affects the current is that from states near the Fermi
level with k in Q(r) and k, &k, to states with —k' in
A(r) and k,' & —k, where eI, eI, &eV. —

The difference between the restrictions in material 1

and those in the case of a homocontact is the two addi-
tional restrictions k, ~k, and k,' & —k, . Note the crucial
role played by the critical wave vector k, [defined in Eq.
(2)]. These additional restrictions imply two important ef-
fects. First, scattering channels in which the perpendicu-
lar momentum changes by less than 2k, do not change
the current through the hole. Thus, the only detectable
scattering events are those whose scattering angle
8~q =cos (k.k') is greater than a minimum scattering
angle 0;„defined by sin(8;„/2)=k, /kz& (see Fig. 2).
0;„eliminates small-angle scattering from the measured

signal and enhances the relative importance of large-angle
scattering. Second, for scattering angles larger than 0;„,
the restrictions on k, and k,' reduce the total amount of
scattering contributing to the change in current compared
to the homocontact case. Thus the magnitude of AI in
the heterocontact will be smaller than in the correspond-
ing homocontact.

We summarize these arguments by giving an expression
for the change in current which is derived in more detail
below. The change in current because of scattering in ma-
terial i is usually written in terms of a spectral function
6"(co), which in turn is written in terms of the phonon
frequencies co~", the matrix element gq'l,

' (which we assume
depends only on q=k —k'), and the density of states at
the Fermi level N]" =mk~;/A n:

3
1(i) 2K 2~(i) Q' 3

E,.(0)+eV
X J, ,

de J, ,
de'6"'(e e'), —

(,l (,l

3

6(i)(~) 1 1

0

(6a)

x W"(k k') (6b)

For comparison, the Eliashberg spectral function of su-
perconductivity theory uses W(k, k ') = l.

The energy integrals in Eq. (6a) mean that as the ap-
plied voltage V increases, more phonon channels contri-
bute so that the resistance of the contact increases. In the
weight factors [Eqs. (7) and (8)], the B functions take care
of the restrictions on k, and k,' which is where the homo-
contact and heterocontact weight factors differ, and the
solid-. angle restriction results in the expression in
parentheses in both equations (derived in the next section).
We note that the spectral function 6"'(co) does not de-
pend on the sign of the voltage; forward and reverse bias
measure the same spectral function.

n
Here 6"(k,k') is the weight factor due to geometrical
effects and the integrals over dSI, . and dS~ are over the
Fermi surface For t.he contribution to AI from scattering
in material 2,

I

W( &(kk ) B( k )B(k ),
/

k,'k —k, k'
[

which is one-half of the hornocontact weight factor be-
cause the right-hand side of a hornocontact contributes
one-half of the signal. In material 1, the weight factor is

I

W'"(k, k')=B(k, —k, )B(—k, —k,') 8
f
k,'k —k,k'

/
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IV. ELECTRON-PHONON SCATTERING:
DERIVATION OF THE WEIGHT FACTOR

In this section we give a detailed derivation of Eqs.
(6)—(8). We follow the method of Kulik et al. which
consists of solving the Boltzmann equation using f"'(r,k)
in the collision integral:

F(r) Bf Ak df I( ')[f ( k)]
Bk m Br

The scattering integral I" is that appropriate to the rna-
terial at the point r. This equation can be solved by writ-
ing f=f"'+6f and integrating the resulting equation
along the path I defined above which yields '

5f(r(t), k(t))= J dt'I"[f"'(r(t'), k(t'))] . (10)

The change in current, obtained by multiplying by Uk,
and integrating over both k and the hole, is

EI= —e J d r gut' J dt'I(' [f"'(r(t'), k(t'))], i =1,2
k

where t is the time at which the particle reaches the hole. Note that Uk,
' is material dependent and that AI can be

evaluated either on the left-hand side of the hole (in material 1) or on the right-hand side (in material 2). For conveni-
ence, we choose to evaluate b,I so that for any k, 1 is entirely in material 1 or material 2. Thus, for electrons from the
right (ut &0), we evaluate b,I in material 2. For electrons from the left {ut & 0), we evaluate b.I in material 1 with the
condition that only electrons which would be able to get into material 2 are considered, u~ & A'k, /m. Our expression for
the current, therefore, is

BI=M("+XI( '= —e J d r +6(k, —k, )ut"' J dt'I"'[f"'(r(t'), k(t'))]
k

—e J d r +6(—k, )ut'„' f dt'I' '[f"'{r(t'),k{t'))] . (12)
k 7

To simplify Eq. (12) we combine the integral over the hole and over time into a single volume integral over the half-
tube, T(k), parallel to k which intersects the hole and which lies upstream from the hole (see Fig. 3). The electrons
which can scatter are close to the Fermi level and have straight paths, so that dt'=dsl

l vt, (s) l =dsluF, where s is the
distance along the path. The Jacobian for converting from d r ds to d r is

l
u~luF l, so that the current is"

bI = —e g J d3r [6(k,—k, )I"'[f"'(r,k)]—6( —k, )I' '[f"'(r,k)]J . (13)
k

The electron-phonon scat tering integral,

I"If"'(r k)]= g l
gA'."t I'[f"'«k')[1 —f"'{rk)]5(ea —ea+~t -a ) —f"'{rk)[1—f"'{rk')]@et —ek' ~k —k')]

k'

(14)

in which we assume that gk k depends only on q =k —k',
places constraints on the possible energies through the
Fermi factors. In the first term (into the beam), et, & et,
because only phonon emission is included ( T.=0),
e~ &eV+E(,(r) in order to have an initial state, and
et, &E(,(r) in order to have an empty final state. Simi-
larly for the second term of the scattering integral,

E(,(r) &et, &eg &eV+E;(r) .

The Fermi factors of the scattering integral also contain
geometrical restrictions on k and k'. In material 1, be-
cause of the restriction k, & k, in Eq. {13),k is necessarily
a filled state, so that only the second term in the scatter-
ing integral contributes (out of the beam). Looking at the
distribution f"'(r,k') (Fig. 2), all possible empty final
states have k,' & —k„and have —k' in Q(r). Similarly in

I

material 2, the restriction in Eq. (13) implies that k is an
empty final state, and hence only the first term of the
scattering integral contributes (into the beam). All initial
states have k,' &0 and have —k' in Q(r). The restrictions
on k, can be included by using 6 functions. The restric-
tion —k in Q(r) can be included in the region of spatial
integration because at any point r, the state k' is available
as a final (initial) state in material 1 (2) only if r is in the
half-tube, T(k'), parallel to k' which intersects the hole
and is downstream from the hole [the complement of
T(k), see Fig. 3]. Thus, restricting the region of spatial
integration to the intersection of T(k) and T(k') satisfies
—k' in Q(r).

With the energy and geometric restrictions included,
the expressions for the change in current caused by
scattering in materials 1 and 2 are

E,[o]+ev d~ dg' dSk dSk

(15a)
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TABLE I. Minimum scattering angle in material 1, 0;„,for pairs of alkali metals. 0;„is defined by
sin(O;„/2)=k, /k~~ ——[2m(p~ —p2)]' '/RkF~. The Fermi wave vector, kF2, is listed below each materi-
al.

Material 2
kF2 (A )

Li
1.121

Na
0.923

K
0.745

Rb
0.698

Cs
0.645

Li
Na
K
Rb

0'

p] (p2'
p& &p2
p& (p2

67.8
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) to our calculation. The pseudopotential
is a result of fitting the linear response of the charge den-
sity induced about an isolated ion embedded in an electron
gas to Dagen's full nonlinear calculation of the same
quantity. This pseudopotential has proven successful in
calculations of various properties of Na, K, and Rb, ' giv-
ing us confidence in our results for these metals. While
the lOPW result is not strictly valid for Li or Cs, we be-
lieve that our qualitative results should apply to these
metals as well.

In previous calculations of the homocontact spectral
functions of the alkalis, ' it has been shown that despite
the large anisotropy of the phonons in these materials, the
spectral function does not vary greatly as the crystal face
on which the contact is made changes. Hence we neglect
the anisotropy of the phonons by calculating the average
of the spectral function over all crystal directions of the
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contact. This is equivalent to using a weight factor
which depends only on the angle between k and k',
Oq q ——cos (k k '), or equivalently only on q
=2kzsin(8qq/2). Such a weight factor is simply the
average of W(k, k') given in Eqs. (7) and (8) over all k

A A
and k' keeping k k' fixed. In material 2 this average
weight factor is the same as that for the right-hand side of
a homocontact which is simply one-half of the full homo-
contact result:

0 02—

0.0
0.0 0.5 1.0

q/kFi

1.5 2.0

FIG. 4. Ratio of the weight factor for scattering in material
1, 8""(q), to that for scattering in material 2, 8" '(q), as a
function of the magnitude of the phonon wave vector'

q =2kF sin(0], ], /2). 8" '(q) is equal to one-half of the homo-
contact weight factor [ ~ (1—Oq q /tanOq q ), where Oq k

=cos 'ik k')]. Curves are shown for four values of the critical
value of the wave vector, k, =[2mip~ —p2)]' /A': k, /k~~=0. 1,
0.5, 0.7, and 0.9. 8""(q) is zero for q less than 2k„so that
scattering through angles less than 0;„does not contribute to
the spectral function. 8""(q) is smaller than W' '(q) for all q
because the restrictions k, & k, and k,' (—k, reduce the
amount of scattering at every q. As in the homocontact case,
W'"(q) diverges at q =2k+&, enhancing the effect of 2kF] pho-
nons.

000 '

0 Cs IO Na 20 50
fAOX lYIOX

ENERGY (meV)

40 50

FIG. 5. Spectral function, G(co), for a Li/Na contact (dot-
ted line) and a Li/Cs contact (solid line) compared to one-half of
the Li homocontact spectral function (dashed line). The rnagni-
tude of the Li portion of the spectrum decreases as the band-
width of the second material, p~, decreases because the phase
space for scattering becomes more restricted. The shape of the
Li portion changes as p~ decreases reflecting the increasing irn-

portance of 2kF phonons and the lack of small angle scattering.
In particular, the relative height of the high-energy peak de-
creases. The shape of the Na and Cs portions of the spectrum is
the same as in the homocontact case; however, the normaliza-
tion differs by the ratio u~2/vF I.
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8 ' '( ) = —,( l —eg k /taneg i, (20)

VI. ALKALI SPECTRA
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FIG. 9. Spectral function, G|,'co), for a Rb/Cs contact (solid
line) compared to one-half of the spectrum from a Rb homocon-
tact (dashed line). The Rb and Cs portions of the spectrum
overlap considerably leading to a complicated structure. How-
ever, as in the other combinations of alkalis, the change in
weight factor causes a decrease in the highest-energy Rb peak.
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FICi. 10. Effective 2kF density of states, f,ti(co), for Li (solid
line) compared to one-half of the Li homocontact spectrum
(dashed line) and to the Li/Cs spectrum (dotted line), aH nor-
malized so that their maximum value is 1. f,tt(co) is the fraction
of 2kF phonons with frequencies between cu and co+des weight-
ed by (2k~ e21, g) /m2k q. The shape of the Li/Cs spectrum, in

which 2kF phonons are emphasized because small-angle scatter-
ing is eliminated, is much more like that off,tt(co) than is the Li
homocontact spectrum.

material 1.) In many of the spectra (Rb/Cs being a no-
table exception), the phonon structure of the two materials
is well separated in energy, a great advantage in analyzing
the spectra. All five figures illustrate the two main effects
caused by increasing k, : the decrease in magnitude of the
material 1 portion of the spectra, and the decrease in rela-
tive magnitude of the highest-energy peak. We comment
on the reasons for each of these effects in turn.

The cause of the decrease in overall magnitude of the
spectra for contacts to a material with smaller bandwidth,
particularly dramatic in the case of Na and K (Figs. . 6 and
7), is simply the reduced scattering implied by the restric-
tions k, &k, and k,' & —k, . First, of course, scattering
with 8i, i, & 8;„is eliminated from G(co) which decreases
the magnitude of G(co). Second, the number of channels
with 0~ k & 0;„is reduced as k, grows, further decreasing
the magnitude of G (co).

The different behavior of the different metals is due to
the different strengths of 2kF scattering relative to small-
angle scattering. Qualitatively, the ratio

~

V(2k~)/V(0)
~

measures the relative strength of 2k~ scattering; the value
of this ratio is 0.273 for Li, 0.025 for Na, 0.057 for K,
0.172 for Rb, and 0.272 for Cs. Thus in Na and K, 2k~
scattering is weak and does not contribute a large part of
the spectrum.

'

As a result, the effect of eliminating
scattering with Okk QO~j~ is a sharp decrease in the
overall magnitude of the Na and K spectra.

The decrease in relative magnitude of the highest-
energy peak compared to other peaks in the spectra is par-
ticularly visible in the Li spectra (Fig. 5). This effect is
related to the amount that 2k+ scattering contributes to
each peak in the spectra: If the contribution of 2kF
scattering to the highest-energy peak is smaller than to the
other peaks, the exclusion of scattering with Ok k (O~j~
will affect the highest-energy peak more than the others.
To show the relative importance of 2kF phonons to the
different spectral peaks, we have plotted in Fig. 10 the ef-
fective density of states of 2kF phonons, f,rr(co), in Li.
By the effective density of states, we mean the density of
states obtained by weighting each 2k~ state by the factor
(2kF.e2(, ~) /co2(, ~ which appears in the electron-phonon

matrix element [Eq. (19)]. Note that the contribution of
2kF scattering to the highest-energy peak is smaller than
to any other peak. As 2k+ scattering becomes more dom-
inant for increasing 8;„, the point-contact spectral func-
tion should approach the shape of f,rr(co). Figure 10
shows the Li/Li and Li/Cs spectral functions normalized
like f,rr(co) so each ha's a maximum value of 1.0; the
Li/Cs spectrum (8;„=109.2') is, indeed, more like
f ff(co ) in shape than the Li/Li spectrum (8;„=0).

VII. CONCLUDING REMARKS

We conclude that point-contact spectroscopy in the
heterocontact case measures a substantially different spec-
tral function than in the homocontact case, corresponding.
to a different weighted average of the scattering rate over
the Fermi surface. The weight factor we have calculated
for free-electron metals in the absence of interfacial
scattering [Eqs. (7) and (8)] restricts the observed scatter-
ing in material 1 to that between initial states with
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k, & k, and final states with k,' & —k„where
k, =[2m (pt p—z)]' /fi is the transverse wave vector
necessary to cross the internal potential barrier. The
weight factor for scattering in material 2 is the same as in
the homocontact. Application of the heterocontact
weight factor to the calculation of realistic alkali-metal
spectra shows that the heterocontact weight factor has a
dramatic effect on the spectra, an effect that should be ex-
perimentally observable. First, the relative strength of the
material-1 portion of the spectra decreases relative to the
material-2 portion as k, increases. Second, the shape of
the material-1 portion changes so that 2k~ phonon
scattering is more prominent as k, increases.

While we have derived results only for free-electron
metals, it is possible to extend the results in a speculative
way to more realistic systems. The feature of the hetero-
contact problem that leads to a substantially different
weight factor is the restrictions on which electrons can
enter material 2 from 1 and on which states electrons
enter when crossing from material 2 to 1. In free-electron
metals, these restrictions are neatly given in terms of k, as
in the last paragraph, or equivalently by the requirement
that momentum parallel to the interface is conserved.
Clear1y at a real, possibly disordered interface the crystal
momentum parallel to the interface is not necessarily con-
served. A simple model of interfacial scattering (6-

function barrier) indicates that scattering at the interface
changes the shape of the signal and the relative contribu-
tions of scattering in material 1 and 2. At a realistic in-
terface, to the extent that parallel crystal momentum is
conserved, there will be severe restrictions on electrons
passing between two materials with very different Fermi
surface sizes (i.e., different kz s). These restrictions will
lead to a heterocontact weight factor that is substantially
different from the homocontact one [though perhaps not
given by Eqs. (6)—(8)] and may lead to observable differ-
ences in the point-contact spectrum. We suggest that the
Al/In heterocontact is a fruitful system for future experi-
mental and theoretical work because the Fermi surfaces
are relatively simple, the values of kF are sufficiently dif-
ferent (10—15%%uo), and the phonon spectra are reasonably
well separated in energy (OD ——394 K for Al, 129 K for
In).
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