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A unified analysis of molecular and metallic bonding is presented, with chemical pseudopotential
theory providing a fundamental context. Unperturbed atomic orbitals are used as the local orbital
basis in the determination of the secular equation matrix elements. The two-center approximation
gives an expression for the binding energy in terms of bond densities and pair interactions, the latter
of which, for a given atomic species, depend only on the pair separation and not on the overall
chemical environment. The repulsive and attractive pair interactions are parametrized as simple ex-
ponentials and all but nearest-neighbor interactions are ignored. More distant interactions are
shown to play a relatively insignificant role insofar as binding energy is concerned. Under a certain
scaling, an expression for binding energy is obtained and shown to be nearly universal, in agreement
with recent observations. The scaled binding energy depends on a single parameter S, which is
essentially the ratio of the steepness of the repulsive pair interaction to that of the attractive pair in-

teraction. Whereas the scaled binding energy shows a very weak dependence on the parameter S in
the relevant domain, the preference for molecular versus metallic bonding is shown to be exponen-
tially dependent upon it. The criterion for bonding preference is just the optimization of binding en-

ergy with respect to nearest-neighbor coordination Z, which is the dominant topological variable in
the determination of binding energy. The molecular regime is characterized by S=2, and the bind-

ing energy is shown to be nearly independent of the nearest-neighbor coordination Z in this case.
The energetics of bonding in the molecular regime is thus dominated by nonlocal features of the to-

pology, such as the nature and size of interaction loops. A correspondence is established between
the contribution of nonlocal topological features to the binding energy, and chemical stability and
reaction paths of molecular systems. As a quantitative test of the empirical-chemical-pseudopo-
tential-binding energy expression, known potential-energy curves for H2 and symmetric linear H3
were used as inputs to determine the repulsive and attractive pair interactions for hydrogen pairs.
These were then used to successfully predict binding energies for various other hydrogen species, in-

cluding H3, H4, and Hl4, for which accurate first-principles calculations exist. A similar procedure
was used for Lithium species.

I. INTRODUCTION

This paper presents a unified analysis of the disparate
problems of molecular and metallic binding. The basic
approach is a linear combination of atomic orbitals
(LCAO) parametrization whose fundamental context is
chemical pseudopotential (CP) theory. ' The primary goal
is to develop a very general description of bonding which
isolates key features that determine whether a given
species prefers molecular versus metallic bonding and
which explains outstanding differences, as well as similar-
ities, between molecular and metallic bonding. That there
is a similarity of bonding in molecules and simple metals,
and in intermediate bonding situations as well, has been
persuasively demonstrated by recent observations of an
apparently universal relation between binding energy and
interatomic spacing. The existence of such a relation is
surprising considering that the bonding energetics of sim-
ple metals are well described by plane-wave pseudopoten-
tial theory, which is essentially a perturbed free-electron
theory, while bonding in molecules is usually described by
LCAQ theory. In the former case the atoms represent a
small perturbation, while in the latter case they represent
the zeroth-order description. This unexpected bonding
similarity contrasts sharply with the otherwise profound

differences between the energetics of metals and mole-
cules. Thus, the existence of close-packed metals is
strongly at odds with the nearly complete avoidance of
small loop topologies in molecular structures and reac-
tions. Molecular bonding is characterized by strong in-
teractions between a few atoms, with binary coupling (i.e.,
the simple covalent bond) as the predominant bonding
mode. As a result, the molecular unit usually consists of
a relatively small number of atoms, whereas metallic
bonding is almost always macroscopic. Universality not-
withstanding, any theory that attempts to describe mole-
cules and metals on a common footing must explain these
fundamental differences.

Certain key aspects of CP theory that have been incor-
porated into the overall scheme are (i) implicit use of
free-atom valence orbitals as the zeroth-order representa-
tion, (ii) solution of a secular equation appropriate to an
orthogonal basis, and (iii) the two-center approximation.
As a parametrized scheme, our approach is akin to the
complete neglect of differential overlap (CNDO) method
and less so to the extended Huckel method; these are un-
doubtedly the most successful of the semiempirical molec-
ular theories. An important difference is that we
parametrize the two-center matrix elements by a common
functional form rather than in terms of interatomic ma-
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trix elements of a specified effective environment poten-
tial. The advantage of this approach is that it allows a
general analysis of binding in very simple terms. A disad-
vantage is that without specifying the perturbing potential
due to the environment of a given atom, one cannot ex-
pect to obtain truly quantitative results for particular sys-
tems. Thus a secondary goal of the paper is to develop a
method for quantitative determination of the potential hy-
persurface of a given species. To that end we present a
somewhat indirect method for obtaining the effective
one-electron potential and demonstrate its predictive
power for some hydrogen (H„) and lithium (Li„) species.

The organization of the paper is as follows: In Sec. II
we use CP theory to develop a general expression for bind-
ing energy. In Sec. III we introduce an exponential
parametrization of the two-center matrix elements appear-
ing in the binding-energy expression and show that the re-
sulting functional form is consistent both with the obser-
vation of binding-energy universality and with bonding
diversity. In Sec. IV we present a brief discussion of the
role of orbital topology in molecular behavior. In Sec. V
we describe a method for obtaining a quantitative repre-
sentation of the two-center matrix elements and demon-
strate the predictive power of the scheme for some H„and
Li„species. In Sec. VI we present our concluding re-
marks.

II. BINDING ENERGY

In this section we use a localized-orbital (LO) approach,
based on CP theory, to develop a model Hamiltonian for
monovalent atoms which, when suitably parametrized,
provides the foundation for a very general analysis of
binding energy. The total self-consistent-field (SCF)
Hamiltonian is written as'

functional theory. s For widely separated atoms, Vs ~&, ~

can probably be identified with the "Wigner-
approximation" potential, but, in general, this will not be
the case. Thus the one-electron-like Schrodinger equation
(3) is that appropriate to density-functional theory rather
than to, say, Hartree-Fock theory. Using Eq. (1) we may
rewrite Eq. (2) as

~14.&=~. IW. &+ g IWb&&~b I
+b ld" &

b (+a)

or

H
I A. &= g I 4&Db.

b

where " '

D- =&o+ X (& 4" I VI
I W. & ~.b —

&9 b I ~b I 4. & ) (4 )
b (+a}

and

(4b)

In these expressions, S,s ——&P, I Pb & is the overlap and
e'o ——&P, I

(T+ V, )
I P, & is the energy of the atomic sub-

system. It can be shown that, in the LO basis, D =S 'H
and is generally nonhermitian. " ' However, for a regular
structure (a structure in which every atom "sees" the same
environment) S and H commute so that D is Hermitian;

A, 'A, ~(2 wA.
moreover, it follows that D =5 ' HS ', i.e., that

&A. ID
I
Ps&=&0"

I

H III &

where P =PS '~ is an orthogonal (Wannier) basis.
This allows us to write, for regular structures,

m, n

H=T+ g V. , (1) or, using Eqs. (4a) and (4b),

where T is the kinetic-energy operator and V, is the effec-
tive potential from atom a and is summed over all atoms.
The crucial assumption for our purposes is that the V, 's

are short ranged and strongly localized about the corre-
sponding atoms. This is really a generalization of the
Wigner-Seitz effective potential"' and simplifies the gen-
eral LQ equation " ' to Anderson's LO pseudopotential
equation:

T+va+ g (~b
I 4~&&db I

v—» lk. &=&a lda&. (»
b (~a)

The P, are atomiclike LO's that span the band
molecular-orbital subspace determined by

H=g ~o+
m k (~m)

+X X
m k (~m)

In this last equation we have introduced the additional ap-
proximation of replacing the LO basis with the unper-
turbed atomic orbital basis P, , so that eo here is the ener-

gy of the isolated atom, while

~~(rk )=&0'
I

Vk lb' & ~k &Wk I Vk lb'—&

alp, &=~, Iq, &. (3) V~(rk )=&4
I

Vk lb' &

In Eq. (2), V, is the SCF one-electron atomic potential,
including exchange and correlation, appropriate to the iso-
lated atom, while Vs ~+, ~

is the difference from the atom-
ic potential Va due to the presence of atom b."' We do
not identify Vs ~&, ~

with the "Wigner-approximation" po-
tential used by Anderson' and Bullett —instead, we define
it formally as some as yet unspecified local approximation
to the unique ground-state potential implicit in density-

are, respectively, repulsive and attractive two-center in-
teractions which, for a given species, depend only on the
pair separation rk =

I
rk —r

I
. This atomic-orbital ap-

- proximation, which is crucial to the ensuing analysis, re-
quires further comment. First, within this approximation,
D is Hermitian for any structure so that Eq. (5) is not lim-
ited to regular structures. Second, it is implicit in Eq. (2)
that, because of the pseudopotential perturbation,
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Vps= g (Vb
I Pb)&kb I

Vb) III. EXPONENTIAL PARAMETRIZATION
AND UNIVERSALITY

the P, are necessarily different from the unperturbed
atomic orbitals in a way that depends on the overall envi-
ronment. ' Thus, depending on the importance of V~„ the
two-center form of Eq. (5) may actually be a relatively
crude approximation and hardly seems justified as a foun-
dation for a general discussion of binding energy. Before
attempting to resolve this problem, we now compound the
difficulty by introducing an apparently unrelated approxi-
mation for the binding energy, namely that

EB =Er Neo —gn;——(e; —eo)+ Ues ~ (6)

where EB is the binding energy, N is the total number of
atoms, n; =0 or 1 is the occupancy of P;, and the e; are
the one-electron eigenvalues given by Eq. (3). The quanti-
ty U„ is a short-range repulsive term due to the ion-ion
interaction minus the interatomic part of the electron-
electron interaction given by the superposition of free-
atom electron densities. The intra-atomic part of this
latter interaction has been absorbed into eo. Thus, U„
may be represented as a sum of pair interactions (e.g.,
Born-Mayer repulsions) which themselves depend on the
pair separation, but not on the molecular environment.
This interatomic repulsion may therefore be effectively
combined with the diagonal renormalization term Vz in
Eq. (5). The use of Eq. (6) relies on certain cancellations
that are fairly well understood in the context of local-
density-functional theory using either' the virial equation
or" the Hellman-Feynman theorem. This requires, how-
ever, that, in the calculation of the change in g,.n;e; cor-
responding to some displacement of atoms, one must ig-
nore changes in the one-electron potential that arise due to
relaxation in the self-consistent field induced by the dis-
placement. "' The Hamiltonian (5) is based on unper-
turbed atomic orbitals; strictly speaking, its matrix ele-
ments should be iterated to self-consistency according to
Eq. (2); but given that we are interested in EB, we assume
that the effect on g,.n;e; of "renormalization" of P, due
to the molecular environment is offset by changes in the
double-counting terms. ' Thus, expression (6) for the
binding energy ignores renormalization of the atomic
basis and uses the unperturbed atomic orbitals as the LO
basis. In this view, the two-center approximation in Eq.
(5) and the use of Eq. (6) for EB are complementary as-
sumptions whose justification is to be found within
density-functional theory. Clearly, the above arguments
for the validity of Eqs. (5) and (6) need to be sharpened
and formalized. In the absence of a compelling formal
demonstration, we will be content to show in a later sec-
tion that these equations provide a simple means for accu-.
rately predicting H„and Li„potential hypersurfaces. In
any event, Eqs. (5) and (6) constitute a useful zeroth-order
framework for a general discussion of chemical binding,
and in the following section we develop a general analysis
of Ez based on an exponential parametrization of Vz and

The expansion of g; in terms of the P is

(7)

from which it follows that by substituting Eq. (7) for g;
and Eq. (5) for H and then using the definition of EB
given by Eq. (6), we obtain

&B=g q g VR(rk )+ X pk V~(rk )
m k (&m) k (&m)

In this expression, Vz has been redefined to include U„,
while

q
—= gn;/ C;/' (9a)

is the net electron density on P (q~ is thus mostly on site
m) and

pkm = y ni Cki Cmi (9b)

is the bond order' associated primarily with sites k and
m. Expressions (9a) and (9b) assume that the spectrum of
H is discrete; generalization to the case of a continuous
spectrum is straightforward using the appropriate
Green's-function formalism' and will not be described
here. The distinction between the mth site and mth Wan-
nier orbital, made immediately below Eqs. (9a) and (9b), is
important because of possible confusion concerning the
question of charge self-consistency. Since we do not
specify the P~ in detail, an accurate description of charge
distribution is not possible in the present scheme; howev-
er, the consequences of self-consistency for EB are impli-
citly included, as is discussed below Eq. (6).

We particularize Eq. (8) to the case of a regular struc-
ture and obtain

+B=+B ~N g Zk(qVRk+Pk VAk ) ~ (10a)

where 8'B is the binding energy per atom, Zk is the num-
ber of atoms in the kth-neighbor (coordination) shell, pk
is the bond order between the reference atom and an atom
in the kth shell relative to the reference atom, and q is the
number of valence electrons per atom. Although the
present scheme is limited to species with overall charge
neutrality (i.e., there are no long-range electrostatic
forces), we retain q as a variable in order to approximate
multivalent atoms by a degenerate s orbital. For a given
structure the p~ will, in general, depend on the relative
sizes of the V&z and on q; i.e.,

Pk=Pk(v2 . ~ vj&.

where vj—:V~J /Vz i. If one is interested in the variation
of O'B with interatomic separation r (i.e., uniform expan-

where the C; are determined by the secular equation ap-
propriate to the Wannier basis. Equation (3) gives

Xn e = gn &q IH I y &
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sian), it must be recognized that the uJ (and a fortiori the
pk) will, in general, depend on r. Thus, strictly speaking,
Eq. (10a) does not allow straightforward analysis of the
potential hypersurface with respect to even the simplest
coordinate (uniform expansion). However, if Vz(r) is
sufficiently short ranged, then one may reasonably ignore
a11 but Vz] in the secular equation. This case requires
only the nearest-neighbor bond order, p &, which is now in-
dependent of r, thus greatly simplifying Eq. (10a):

(a}

V2

1 F~ +F

@'R =—Zi(qVR i+pi V~ i) (10b)

The repulsive pair interaction has been cut off at the first
shell because V~, which is the Pauli force overlap repul-
sion plus interatomic electrostatic repulsion, always falls
off much faster than Vz. Because this latter approxima-
tion affects only the diagonal matrix elements of the secu-
lar equation, which are all alike in a regular homopolar
structure, it cannot change the molecular-orbital coeffi-
cients of Eq. (7) and thus has no effect on q and p. One
might well object that the nearest-neighbor approximation
is, for the most part, limited to transition metals in a
close-packed structure (for a bcc lattice, r2 /r, =2/
M3 = 1.15), and that Eq. (10b) cannot have general signi-
ficance. Thus, it is known that the band structure of bcc
transition metals is very poorly represented by this ap-
proximation. ' For the simple metals, where the intera-
tomic matrix elements extend well beyond the first shell,
the nearest-neighbor approximation fails utterly in a
band-structure determination. But the binding energy is
given by an integration over the band structure, so that its
detailed shape may well be unimportant. ' We have some
numerical evidence that, to a very good approximation,

~ 4
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8'b(G, q;r ):—Z(G )[qVR (r)+p(G, q ) Vz (r )], (12)

where the shell subscript has been suppressed with the
understanding that all quantities (apart from q) refer to
the first shell, and where the symbol G represents the pri-
mary interaction topology —it is the map of nearest-
neighbor interactions or "bonds. " We use this terminolo-
gy because, in general, there is not a one-to-one correspon-

g Zkukpk =Zp
k

where Z=Z& is the number of nearest-neighbor atoms
and we use p to represent the first-shell bond order in a
nearest-neighbor approximation [thus, we distinguish
p=p~(0, 0, . . . ;q) from p~ ——p~(u2, . . . , ui, . . . ,'q)]. The
evidence is shown in Fig. 1, which is a plot of p and
P=Z '(gkZkukpk) versus q for a four-atom square
structure with U2 ——0.5 and for a bcc lattice with v2 ——0.5
and U3 ——0.06. In the latter case the pk were determined
by the recursion method. ' The approximation given by
Eq. (11) is seen to be nearly exact at q=1 (half-filled
band) and to become progressively worse as q departs
from this value. Thus, Eq. (11) is our primary justifica-
tion for using the nearest-neighbor approximation in the
determination of 8'z for arbitrary regular structures. We
assume that the effect of more distant interactions on 8'R
is minor and can be treated as a small perturbation, even
when the V~k decay slowly. Thus, we write

dence between interaction topology and structure —it is
only in the nearest-neighbor approximation that such a
correspondence exists. Equation (12) provides the basis
for a very general study of the dependence of 8'R on
structure and atomistic properties. To this end, we choose
the following functional representation for the pair in-
teractions;

VR ——A exp( Br), —
V~ —— Bexp( —Xr ), —

(13a)

(13b)

where A, B, B, and A, are positive definite quantities
characteristic of a given atomic species. This choice is
based in part on analytical convenience, but also on the
physical .grounds that atomic orbitals decay exponentially
with r. Moreover, diatomic potentials have frequently
been represented in this manner' [thus, the Morse poten-
tial is a special case of Eqs. (13) having B=2A,); so too
have pair interactions in transition metals and semicon-
ductors. ' Finally, the pair potentials derived in Sec. V
from ab initio configuration-interaction calculations of
hydrogen and lithium species show a nearly exponential
decay. One can generalize Eqs. (13) somewhat by allow-

FICx. 1. Plot of p=p~(0, 0, . . . ;q) and p=Z '( gk Zkukpk)
vs the number of valence electrons per atom q. (a) Four-atom
square with U2 ——0.5. (b) bcc lattice with Uz ——0.5, U3 ——0.06, and

0 for k)3.
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ing 3 and B to vary with r. So long as this variation sat-
isfies the criteria

~

d InA/dr
~

&&8 and
~

d lnB/dr
~

&&k
in the relatively small range of interest [r(diatomic)
& r & r(metallic)], the ensuing analysis based on the use
of Eqs. (13) goes through essentially unchanged. The
binding energy for a given structure is simply

Following the same procedure for Eq. (18) gives, via Eq.
(19c), l =(8 —A, S)/(S —1), or since S=8/A, ,

(21)

Combining Eqs. (19b) and (21) gives r r—,= x/( OA, )'~,
which, when substituted into Eq. (20), gives

8'~ ( r ) =Z [Aq exp( —Or ) Bp—exp( A—r ) ] . (14) 8'z(x;S)=[exp( —S' x)—Sexp( —S ' x)]/(S —1) .

r, =(8—A, )
' ln(ASq/Bp) (16)

D, =ZAq(S —1) exp( Or, ), —

or, equivalently [using Eq. (15)],

D, =ZBpS '(S 1)exp( A—,r, ), —

where

(17a)

(17b)

This expression has the appearance of a central pair po-
tential, but it is important to recognize that while p is
unaffected by a uniform expansion, it is quite sensitive to
structural variations at constant volume. Hence, except
for diatomic species, Eq. (14) is a noncentral potential.
This aspect will not be of concern in the present article;
our interest is primarily in the variation of 8'z with
respect to r at constant G (i.e., fixed topology). The
equilibrium interatomic separation r, is determined from
(d 8'~ /dr )=0, which gives

8Aq exp( Or, ) =—A,Bp exp( A,r, ), —
from which

While the scaling has eliminated most of the variables,
Eq. (22) is not a universal function unless the ratio S is it-
self universal, which is almost certainly not true.
Nonetheless, we will show that Eq. (22) is consistent with
the observation of an apparent universality in that on the
one hand, it is sensibly independent of S for ~x

~

&1,
while, on the other hand, the structural preference of a
given atomic species depends exponentially on S. The cri-
terion used for structural preference is simply the optimi-
zation of D, (the role of entropy is ignored here). The
universality aspect of Eq. (22) is illustrated by Fig. 2,
which may be compared with Fig. 1 of FSR (Ref. 2) by
noting that the H2+ results shown there are very well fit-
ted by a Morse potential, which has S=2.

But is the range of S values shown in Fig. 2 consistent
with the structural diversity emphasized by FSR? To ad-
dress this question we will analyze the structure depen-
dence of D, . For this purpose we introduce a new scaling
procedure that retains the structural variables:

(17c)

and D, = —8'z(r, ) is the cohesive energy. Note that Eq.
(16) is identical in form to Pauling's empirical expression
relating bond length to bond order; this latter expression
has been widely used in discussions of bond lengths in
both metallic and covalent solids. In order to scale 8'z
according to the prescription of Ferrante et al. (Ref. 2,
hereafter referred to as FSR), we also need the second
derivative of 8'~, which is

(d 8'z /dr )„

0 - 3.33

=Z[8 Aq exp( —Or, ) ABp ex—p( , Ar, )] . —(,18)

The scaling procedure is

8'g (x ) = 8'g (r ) /D, ,

with

(19a)

and

x:(r r, )/l— —

l:D, /(d 8'~ /dr )„—

(19b)

(19c)

Dividing the first term on the right-hand side of Eq. (14)
by Eq. (17a) and the second term by Eq. (17b) gives the re-
sult

&g =
I exp[ —8(r r, ) ]—S exp[ A—(r r, ) ) I /(S —1) . — —

(20)

0

X

FICx. 2. Plot of the scaled binding energy [Eq. (22)] vs

x =(r —r, )/I for different values of S=O/A, . The S=2 curve
is the Morse potential. Note that the curves are nearly indistin-
guishable for x & 1.
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(23a)

(23b)

r, q
——(6}—A, )

' In(AS/8) (25)

is the diatomic equilibrium separation, and l is given by
Eq. (21). This scaling gives

8's(x ) =Z [exp( —S'i x )

with

—(p/q)S exp( —S '~'x )]/(S —1),

x, =S'~ (1—S) 'ln(p/q)

(26)

(27)

given by (d 8'~ /dx ) =0, and

D,*=Z(p/q)",

where

(28)

v—:S/(S —1) . (29)

The exponential role of S in the determination of cohesive
energy is apparent from Eqs. (28) and (29). A critical
value of S may be defined as that value at which, with

q =1, the cohesive energies of the fcc lattice and the dia-
tomic species as given by Eq. (28) are the same. For an
fcc lattice (coordination number Z = 12), the recursion
method' gives p(fcc) =0.206 when q = 1. Using Eq.
(28), the definition of the critical value can be expressed as

12(0.206) '=1,
which gives, by Eq. (29), S, -=2.7. This value must not be
taken too seriously, as it excludes the role of intermolecu-
lar repulsions for the diatomic species, which will depend
on the density; however, it indicates a region where metal-
lic and molecular bonding should be of comparable im-
portance. This result demonstrates that the range of S
values shown in Fig. 2 is consistent with structural diver-
sity.

A more detailed analysis of cohesive energy requires a
determination of the bond order p. Because p depends
only on G (primary interaction topology) and q, it may be
obtained from the secular equation by assigning a value of
zero to all diagonal matrix elements and a value of nega-
tive unity to all matrix elements between nearest
neighbors —this is simply Huckel molecular-orbital
(HMO) theory. ' From Eq. (12), with Vz ——0 and
V~ ———1, one obtains p(G, q)= —Z '8'z o, or using
Eqs. (6) and (10a), ignoring the term U„,

p(G, q) = (NZ) ' g n; P;— (30a)

where e; =e; —eo in the HMO limit of the secularHMG

equation, described above. The q dependence of p enters

where

D„=A(S—1)exp( Or—,2) =BS '(S 1)—exp( —A,r„)
(24)

is the cohesive energy of the diatomic species (Z =q
=p =1),

through the Fermi level, below which n; =1 and above
which n;=0. Going beyond Eq. (30a) requires a general
analysis of bond order as a function of G. A good start-
ing point is to isolate the important components of a regu-
lar structure or topology, which include the following: (i)
number of nearest neighbors, Z; (ii) size of primitive
loops; (iii) total number of atoms, ¹ Anticipating the
coordination number Z as the dominant topological vari-
able, we propose to find a reference system such that

p(G, q) =p„f(Z,q)+bp, (30b}

(31)pp(Z, q ) = —Z ' en p(Z, e)de,

which is the generalization of Eq. (30a) to a continuum.
The Fermi level eF is determined by

EF

q = f n~(Z, e)de, (32)

where

n. np(Z, e) =e(4(Z —1)—e )Z[4(Z —1)—e ]'/ /(Z —e )

(33)

is the density of states per site (both spins included) for a
Bethe lattice (e is the unit step function). Equations
(32) and (33) do not lead to an analytical solution of Eq.
(31) for arbitrary Z and q, but a large-Z expansion of Eq.
(33) gives

lim np(Z, e)=B(4Z e)(4Z— e)'~ —/mZ .
Z~ OO

(34)

Equations (31) and (32) are analytic in this limit and, to
leading order in the coordination number Z, we obtain the
result

p~(Z, q) =—a(q)Z

where

3ma(q)=8[1 —u —u /3+O(u )] ~

(35)

with u =m(q —1)/4. Figure 3 compares exact solutions
of Eq. (31}with Eq. (35) at corresponding values of Z and
q. It is seen that the large-Z approximation is within a
few percent of the exact Bethe-lattice result over the entire
range of coordination number Z at q= 1 [Fig. 3(a)] and
over much of the range of q at Z=2 [Fig. 3(b)]. Thus,
we take Eq. (35) for the Z dependence of the bond order
of an arbitrary regular topology G and write

p(G, q) =a(q)Z ' +hp . (36)

In almost every case where p is known exactly (or nearly
so), '"' we find that

~
bp

~
/p &0.15, so that the Z

dependent reference term is indeed dominant. This is true
even when Z= 1 (diatomic species), for which the Bethe

where the bond order of the reference depends only on Z
and q, and where Ap «p. To eliminate the role of loops
and of N, which has to do with finiteness, we seek an in-
finite reference system having no loops. Bethe lattices
are regular infinite structures completely characterized by
Z, so we take them as reference structures. The bond or-
der of a Bethe lattice is
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FIG. 3. Comparison of the Bethe-lattice bond order given by
Eq. (31) with the approximate result, Eq. (35), represented by
the dashed curve. (a) V Zp& vs coordination number Z with

q =1. (b) p~ vs q with Z=2.

lattice is undefined. Certain pathological regular topolo-
gies, with X&3 atoms and N 1 bonds p—er atom (e.g.,
triangle, tetrahedron), have large negative values of bp,
but such topologies are rarely of interest. Substituting Eq.
(36) into Eq. (28) gives

q'D,*=a"Z' '~ +ua' 'Z' '~ Ap+0((bp/pp) ),
(37)

where u is defined in Eq. (29). The role of coordination
number Z in the optimization of the cohesive energy for a
given species is now clear: (i) when S »2 (u =1), which
is the hard-core hmit, Eq. (37) gives, in leading order,

all these studies, the d-orbital anisotropy is averaged out
and the d band is effectively represented by a degenerate s
band. As a further approximation, the continued-fraction
expansion of the site-diagonal Greens function is ter-
minated at the second moment. The local density of
states obtained from this 1atter approximation is, with
energy in units of the nearest-neighbor hopping energy,
the same as Eq. (34). Thus, the second-moment approxi-
mation, which has been reasonably successful in the study
of transition-metal energetics, is seen to be identical with
the large-Z approximation for the Bethe lattice. From
this, together with Eq. (37), we may conclude that the
second-moment approximation is most useful when S »2
and that the importance of higher moments increases rap-
idly as S approaches the value 2. (Thus, when S=3,
D,' o:Z'~, and when S=2.5, D,* ccZ'~ to leading order. )

Empirically determined values of S for transition metals
fall in the range 3 & S & 5, which is consistent with the use
of the second-moment. approximation and with the ob-
served preference for close packing [see Eq. (38)]. Lan-
noo ' has applied the exponential parametrization in a
study of force constants in covalent systems, assuming de-
generate sp hybrid orbitals, and has obtained the empiri-
cal values S(C)= 1.4, S(Si)= 1.9, and S(Ge) =2.0.
These values are consistent both with the observed prefer-
ence for covalent bonding in the diamond lattice (note
that the hybrid orbitals are paired off so that Z = 1 as far
as orbital interactions are concerned) and with the increas-
ing tendency toward metallization in going (down column
IV) from C to Sn. We would argue that in these systems
the preference for directed bonds, as opposed to a nearly
isotropic close-packed arrangement of atoms, follows
from the optimization of D,* in Eq. (37). The covalent-
bond topology corresponds to the minimum value of Z
(and to a very favorable value of bp), consistent with Eq.
(39).

In addition to these previous determinations of the pa-
rameter S for transition metals and covalent systems, we
have obtained values for neutral (q = 1) simple and noble
metals using Eqs. (16), (21), and (25). These equations
may be combined to give

z ]./2 (38) S' —S '~ = —[l/(r, —r, 2)] lnp, (40)

and close packing is strongly preferred; (ii) when S & 2
(u & 2), Eq. (37) gives

D,*~Z, 5)0 (39)

which favors the diatomic species (Z = 1) when q = 1, and
otherwise is highly unfavorable for close packing. As we
showed earlier, an approximate value separating these two
regimes is S, =-2.7.

The exponential parametrization described in this sec-
tion has for some time now been used to study transition
metals. The first such application appears to have been
that of Ducastelle in a study of elastic constants. More
recently, this approach has been used in studies of transi-
tion adatoms on transition metals, - small transition-metal
clusters, atomic relaxation near transition-metal sur-
faces, ' elastic properties of metallic glasses, and effects
of chemisorbed oxygen on nickel surface vibrations. In

where l, r„and p refer to a known metallic structure.
Thus, if r, 2 is known, S may be readily determined. An
independent determination is provided by the following re-
lation:35

=1—(rws /3l)8' (0)/8' (0) (41)

where the left-hand side is the zero-temperature derivative
of the bulk modulus with respect to pressure, res, is the
equilibrium Wigner-Seitz radius, and 8'* and 8'* are
the second and third derivatives of the "universal"
binding-energy function with respect to x. In the present
theorythe , latter function is given by Eq. (22), from
which 8'* (0)=1 and 8" (0)= —(S+1)/~S, so that
Eq. (41) gives
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S'"+S-'"=3& M
BI' rwse (42)

A difficulty with using Eq. (40) is that the exponential
parametrization is applied over a very wide range of in-
teratomic separations, so that the corresponding value of
S is an average over that range. Moreover, S depends on
bond order, which is a calculated quantity. By contrast,
Eq. (42) refers to a much smaller range and S is given ex-
clusively in terms of measurable quantities; a problem
here, however, is the very strong dependence of S on
(r)B!rJP)T, a quantity that is difficult to measure accu-
rately. (A 5% uncertainty in this quantity gives a 30%
uncertainty in S.) Table I shows values of S obtained
from Eqs. (40) and (42) for some alkali and noble metals
and for Al. The present theory implicitly treats the
noble-metal d shell as part of the atomic core, which is
probably inadequate; thus, the significance of the corre-
sponding values of S shown in Table I is somewhat uncer-
tain. Apart from Cs and Li, the agreement between the
two determinations of S is reasonable; moreover, taking
S, =-2.7, the values shown are generally consistent with
the metallic state. In Sec. V we obtain V~(r) and Vz(r)
directly from first-principles binding-energy calculations
for hydrogen and lithium species. These have been fitted,
over the range r(diatomic) & r & r(metallic), with simple
exponentials as in Eq. (13) with the result that S(H) =1.6
and S(Li)=8.0. The value for H is consistent with its
strong preference for covalent bonding, while the value
for Li agrees well with that obtained from Eq. (40) and
shown in Table I.

The preceding discussion has shown that for simple
metals, transition metals, and some covalent species,
empirically determined values of the parameter S—which
measures the steepness of the repulsive pair interaction to
that of the attractive pair interaction —fall approximately
in the range 2&S &5. This range is sufficiently small to

give an apparent binding-energy universality, as shown in
Fig. 2. Moreover, the value of S for a given species is
generally consistent with the observed bonding preference
(metallic or covalent); this becomes apparent when the
cohesive energy given by Eq. (37) is optimized with
respect to the coordination number Z.

IV. MOLECULAR REGIME

It is interesting that when S=2 (U =2) the leading term
in Eq. (37) is nearly a constant, independent of Z.
Structural preference is thus determined in this intermedi-
ate regime by the quantity hp, which depends on nonlocal
features of the topology such as total number of atoms X
and size of elementary loops. We have previously found
a striking correlation between this quantity and ground-
state properties, including reaction paths, of a great
variety of molecular species in both regular and nonregu-
lar topologies. In the latter case, we generalized Eq. (30b)
to

@',"" (G,q) =8'„gz,q)+b, ,

where

XS'„r=—gZ pp(Z, q)

(43)

(45)

is the HMO generalization of Z hp [see Eqs. (30)]. Use of
approximation (35) in Eq. (44) does not change b, notice-
ably. The correlation referred to above is simply that

summed over all sites m, with p&(Z, q) calculated for
the mth site as if it belonged to a Bethe lattice character-
ized by Z (this is very similar to the second-moment
method with nearest-neighbor bonds assumed to be identi-
cal), and where

TABLE I. Values of the parameter S=O/A. for some noble and simple metals, from Eqs. (40) and
(42).

CU

Ag
Au

l «ws. '

0.192
0.168
0.148

(BB/BP )T'

5.23
5.86
5.90

0.79'
0.69'
0.59'

e
Pm

0.206
0.206
0.206

s'
3.68
3.76
2.31

Sg

3.13
2.73
2.35

Al 0.212 4.72 3.29

Li
Na
K
Rb
Cs

0.323
0.270
0.254
0.239
0.240

3.5
3.90
4.07
4.07
4.0

1.62
097
1.05

0.96

0.26
0.26
0.26
0.26
0.26

3.59
3,22
3.15
2.46
2.2

6.3
3.27
3.63

3.27

'From compilation of Ref. 35.
Ar, :—r, —r, 2, where r, is taken from Ref. 51.

'r, z taken from R. C. Baetzold [J.Chem. Phys. 55, 4355 (1971)].
r, 2 taken from Ref. 53.

'Calculated by the recursion method of Ref. 18.
From Eq. (42).

0From Eq. (40).
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6 &0 is associated with a stable species or with thermally
allowed reaction paths, while 6 &0 corresponds to unsta-
ble or highly reactive species or to thermally forbidden re-
action paths. Consider, for example, the n-atom string
and ring topologies, referred to as S„and R„, respective-
ly, and Mobius rings M„(a ring in which one of the off-
diagonal matrix elements has its sign reversed). Figure 4
shows b, versus n for certain q = 1 and q&1 species of S„,
R„, and M„. (Thus, S5+ has q=0. 8. ) The most striking
feature in Fig. 4 is the appearance of distinct families.
Within each family, the magnitude of 6 falls off approxi-
mately as n . The cyclic topologies (M„,R„) have mag-
nitudes of b, appreciably larger than their acyclic counter-
parts (S„). Consider now the correspondence of b, to the
ground-state character of sp -hybridized systems, [in these
systems, the sp -orbitals are relegated to a "molecular
core," while the m. electrons (one per atom) are treated as
valence electronsj: (i) For —b, &0 the family headed by
S2 corresponds to stable polyene molecules and molecule
ions. The R„members of the family headed by M3, R3+
correspond to annulenes satisfying the Hiickel 4n+2 rule
relating electron number to aromatic stabilization. + ' (ii)
For —6 & 0 the family headed by S2 corresponds to
highly reactive polyene radicals and radical ions. Finally,
the family of cyclics headed by M3+,R3 corresponds to
species, called antiaromatic diradicals, satisfying the
Hiickel 4n rule. No such species has ever been isolated
in a form that retains the indicated topology. The
correspondence of 6 to chemical behavior is not limited to
sp -hybridized systems. Thus, apart from M3, the lead-
ing members of the families with —6 & 0 have achieved
special status: S2 corresponds to the almost universal
two-center —two-electron (2c-2e) bond, while S3+ and R3+

correspond to the (3c-2e) bond types so important in bo-
ron chemistry. The theory of pericyclic reactions ' '

also demonstrates the correspondence of b, to chemical
behavior: Cyclic species with —6 & 0 correspond to sad-
dle points of low-energy (thermally allowed) chemical re-
actions, while cyclics with —6 &0 correspond to high-
energy intermediates in ground-state forbidden reactions.
The observable consequences of these topological "selec-
tion rules" are well documented.

Generally speaking, when q =1, the quantity b. (or for
regular structures, bp) militates against interaction topo-
logies with small (three- and four-atom) loops and favors
the covalent bond (S2) and six-atom loops (e.g., benzene).
However, 5—considered either as a function of X for
fixed G and q, as a function of q for fixed /V and G, or as
a function of G for fixed X and q—is a highly oscillato-
ry quantity. For example, when q changes from q=1 to
q= —,, 6(R3) changes from a relatively large positive
value to a relatively large negative value. Or when q=1
and G is a string topology, 6 & 0 for N even and 5 & 0 for
N odd. As a final example, when q=1 and N=4, 6 has
a very large positive value for a tetrahedron, a small nega-
tive value for a string, and a relatively large negative value
for a Mobius ring. The fact that the quantity b, correlates
so strongly with observed ground-state properties of
molecular species implies that the leading term in Eq. (37)
is nearly constant, and therefore relatively unimportant.
Thus, in the present theory, molecular behavior is charac-
terized by S=2. Strictly speaking, the quantity 5 is a
measure of relative stability rather than absolute stability.
Statements about absolute stability require an analysis of
the dynamical matrix of the species in question. Thus, it
is not at all obvious that the quantity 4 should correlate
with chemical stability. Apparently, 5&0 implies that
the dynamical matrix has at least one negative eigenvalue.
Harmonic analysis of Eq. (7) is possible, but is beyond
the scope of the present study.

Chemical theory has recognized for some time that the
topology of valence-orbital interactions is a fundamental
determinant of structural stability and reaction path-
ways, so we place no claim to originality in that regard.
However, the present theory has demonstrated the role of
interaction topology in a total-energy context and has ac-
counted for both metallic and covalent bonding extremes
in terms of a single parameter S. This parameter is essen-
tially a measure of the steepness of Vz(r) relative to that
of V~(r).

FDIC&. 4. Plot of 6, the contribution of nonlocal topological
features to the HMO energy, vs number of strongly coupled
atoms n for string (S„), ring (R„), and Mobius-ring (M„) pri-
mary interaction topologies.

V. QUANTITATIVE DETERMINATION
OF Vg AND Vg

In Sec. II it was argued that Eqs. (5) and (6), when used
together in the determination of binding energy, had fun-
damental justification within chemical pseudopotential
theory and, more generally, within local-density-
functional theory. In this section we present empirical
evidence in support of these arguments.

The great virtue of Eqs. (5) and (6), when combined in
the form of Eq. (8), lies in the fact that knowledge of Vz
and V~ for a pair of monovalent atoms M allows a
straightforward determination of any point on the Ez hy-
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persurface of an arbitrary M„species. The hypersurface
analysis of Sec. III is based on a pararnetrized version of
Vz and Vz which allows for a very general application,
but which is no more than an approximate representation
of V& and Vz for any particular system. In this section
we give a quantitative application in which known
potential-energy curves for Hz and symmetric linear H3
are used as inputs to determine Vz and Vz. These are
then used, through Eq. (8), to predict hypersurface points
for various Hs, H4, and H~4 species, that are already
known to a high degree of accuracy from total-energy cal-
culations based on the configuration-interaction (CI) tech-
nique. We also present results for some Li species. To-
ward this end note that Eq. (8) gives, with pk and q~ ob-
tained by direct solution of the secular equation in the
Huckel limit,

E~(M2', r)=2[Vg(M;r)+ Vg(M;r)],

Ez( sl-Ms;r) —=4[V+(M;r)+ V„(M;r)/V 2],
Ez(e-M, ;r ) =6[V~ (M;r )+ V„(M;r)/2],

(46a)

(46b)

(46c)

where r is the nearest-neighbor separation and Mz, sl-M3,
and e-M3 are, respectively, the diatomic, symmetric linear
triatomic, and equilateral triatomic species. [Expression
(46b) is an approximate solution, but where we have used
it the corrections are less than a percent of E~ and will be
ignored. ] Knowledge of E~(r) for any two of these
species determines VR(r) and Vz(r). To obtain V~ and
Vz for hydrogen pairs, we used Truhlar and Horowitz's
functional representation ' of Siegbahn and Liu's CI cal-
culations for sl-Hs, together with Liu's functional repre-
sentation of the H2 potential calculated by Kolos and
Wolniewicz. These calculations (and their functional
representations) are claimed to be within 1 kcal/mol of
the true adiabatic potentials. " Values of Vz and V~ for
hydrogen pairs, derived from Eqs. (46a) and (46b) using
the above CI calculations, are presented in Table II. Their
functional representations are

(8—V32)V„=E~(H2, r) —E(r) —2 E(2r)

where E~(H2)+2eo(H) is given by Eq. (1) and Table III
of Ref. 43, and E(r) is given by Eq. (10) and Table I of
Ref. 41. It is encouraging that Vz and Vz are indeed
repulsive and attractive, with magnitudes that decrease
monotonically (and almost exponentially —see Sec. III) to-
ward the zero of energy (separated atoms), but the real
test of the basic assumptions contained in Eq. (8) is
whether or not Vz and Vz can be used to predict Ez for
other configurations. Total-energy calculations exist for a
variety of additional hydrogenic species, including non-
linear H& structures, symmetric linear Hq (sl-H4, ), rec-
tangular H4 (r-H4), square H4 (s-H&), " ' ' and
symmetrical cyclic monatomic H&4 (c-H~4). These cal-
culations are based on truncated CI expansions and are
thus upper-bound approximations to the true ground-state
potentials, with an accuracy that generally decreases with
increasing electron number.

Using the pair interactions of Table II, Eq. (8) gives
predicted values of Ez for nonlinear H3 which, when
compared with the corresponding CI calculations at 56
distinct points, show a root-mean-square deviation of 0.27
eV, which is about 6% of the maximum value of

Eg (H3 ). The individual deviations are nearly constant
for a given bond angle and increase as the system changes
from sl-H3 toward e-H3. Generally speaking, the predict-
ed hypersurface for nonlinear Hs lies below and is parallel
with the CI hypersurface. Table III gives a representa-
tive sampling of the comparison for both linear and non-
linear Hs. Figure 5 compares predicted values of
Ez(sl-H4', r) with the CI values of Bender and Schaefer,
who estimate that their calculated values are about 0.54
eV above the true surface. The predicted values are from
exact solution of the secular equation, but are very
well approximated by Ee(sl-H4) =6V~(H)+4. 47V~(H).
Table IV compares predicted interaction energies of r-Hq
with various CI results. Interaction energy is defined as
EI—:ET(r-H4) —2ET(Hz,'r, ), where the calculations of
ET(H2) and ET(r H4) use the same atomic basis so that
correlation errors tend to cancel. (Clearly, EI is not a
variational quantity. ) The predicted values in this case are
given by

Vg =Eg(Hp) —2', /

EI ——4[Vg(rt)+ Vz(r2)+ Vz(d)+ Vg(ri)] —2D, (H2),

Vg (eV)

TABLE II. Hydrogen pair interactions obtained from CI calculations of E&(H2) (Ref. 44) and
Eslsl-H3) (Ref. 42) using (4—V 8)V„{H)=2Es{H2)—Es{sl-H3) and 2Vz{H)=Es{Hz)—2V&{H).

r (A)' V„(eV)' Vg (eV)' r (A) Vg (eV)

0.741
0.846
0.952
1.058
1.164
1.270
1.375
1.481
1.587
1.693

—5.093
—4.234
—3.506
—2.889
—2.366
—1.922
—1.548
—1.235
—0.974
—0.760

2.730
1.952
1.407
1.020
0.742
0.539
0.391
0.283
0.203
0.146

1.799
1.904
2.010
2.116
2.222
2.328
2.433
2.539
2.645
2.751

—0.587
—0.448
—0.339
—0.254
—0.189
—0.140
—0.103
—0.075
—0.055
—0.040

0.104
0.074
0.053
0.037
0.026
0.019
0.013
0.009
0.006
0.005

'The conversion from a.u. used 1 hartree = 27.2 eV and 1 bohr = 0.529 A. The increment in r is 0.2
bohr = 0.1058 A.
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TABLE III. Comparison of predicted values with CI calcula-
tions (Ref. 42) of E~(H3).

P (deg)'

180
180
150
150
120
120
90

-90
60

rl (A)'

1.22
2.05
0.94
1.41
1.49
1.80
1.32
1.31
1.32

1.22
0.76
0.94
1.41
0.86
1.59
1.32
0.77
1.32

Eg (eV)

—3.524
—4.640
—4.279
—2.709
—4.333
—1.662
—2.961
—4.410
—2.425

AE (eV)'

—0.025
0.036

—0.056
—0.085
—0.052
—0.041
—0.333
—0.392
—0.834

'P is the angle between the two sides of length r& and r2.
"Predicted value based on Eqs. (1) and (2).
'b,E—=E~(predicted) —E~(CI).
Nonzero because Eq. (3b) is approximate.

~ CI Values

~ This Work

0.6

0~ ~~ ~
~ g g

I

0.8 1.0
I

1.2
r (A)

FIG. 5. Comparison of predicted values of E~ with CI calcu-
lations of Bender and Schaefer (Ref. 45) for symmetric linear
H4.

where D, (Hz)=4. 733 eV, while rt and r2 are the short
and long sides of the rectangle and d is the diagonal dis-
tance. Table IV also compares optimized values of EI for
s-H4 for which

EJt (s -H4', r ) =8 V~ ( r ) +4 Vg ( W2r ) +4 Vg ( r ) .

The final comparison is for optimized c-H&4, where we
predict —Ez ——22. 3 eV at r, =1.03 A compared to the CI
results: (i) E~ ——19.6—eV corrected to 25.3 eV at
r, =0.98 A " and (ii) Ez 18.5—eV ——corrected to

(24.2+3) eV at r, =1.00 A.
The above results for hydrogenic species strongly sup-

port the basic assumptions; in particular, the degree of
transferrability of Vz and Vz is remarkable. Additional
support is provided by comparison with existing calcula-
tions for Li2, Li3, and Li&. Vz(Li) and Vz(Li) were iso-
lated using Eqs. (46a) and (46c) in conjunction with
Gerber and Schumacher's functional representation of

TABLE IV. Comparison of predicted values with CI calcula-
tions of EI——E&(H4) —2E&(H2, r, ) for rectangular and square
H4.

r) (A)

0.741
0.794
1.164
1.164
1.270
1.307

r2 (A)

1.587
1.164
1.375
1.587
1.270
1.307

E, (eV)'

1.36
4.54
4.98
4.06
6.50

EI (eV)

1.12'
408
5.44'
4.46'

6.17

'This work.
"Reference 46(a).
'Reference 46(b).
Optimized value. CI result is from Ref. 47.

their CI calculations for Liz and Li3. It must be em-
phasized that these Li calculations are considerably less
accurate than the H2 and H3 calculations. Moreover, even
though there are no calculations for e-Li3, most of the
calculated points are in the neighborhood of e-Li3, while
only three points lie in the neighborhood of sl-Li3. The
resulting values of Vz and Vz derived from Eqs. (46a)
and (46c) are thus based on an extrapolation of existing CI
calculations of limited accuracy, and hence will probably
be noticeably altered when more accurate CI results for
e-Li3 or sl-Li3 become available. These values are func-
tionally represented by

3 Vz (Li;r ) = —[1—tanhG(Q„O, O) ]F(Q„O,O)

V~(Li) =0.5'(Lt2) —Vg(Li),
0

where Q, =(r ro)lv 3, with ro———
. 2.978 A, while G, F,

and Es(Li2) are specified by Eqs. (4)—(9) of Ref. 49. The
Li3 hypersurface based on these pair interactions is con-
siderably flatter than the CI hypersurface, but shows the
same general trends. The maximum deviation occurs for
sl-Li3 and is about 15% of the corresponding value of
Ez(sl-Li3). We predict the following optimized values for
square (s-) Li4 and tetrahedral (t-) Li&. —E~(s-Li4)
=1.88 eV at r, =2.91 A and —E~(t-Li4)=1.77 eV at
r, =3.02 A. These may be compared with the CI results
of Beckman et al.: —Ez(s-Li4, ) =1.85 eV at r, =2.95 A
and Ez(t Li4)=1.71 e—V at r-, =2.98 A. Using the re-
cursion method' with a nearest-neighbor approximation
for V~ and V~, the predicted optimized values of Ez and
r, for bcc Li are E~(r, ) =0.89 eV/—atom and
r, =3.11 A. The corresponding experimental values for
bcc Li are ' 1.66 eV/atom and 3.023 A. The agreement
here is poor, but the bcc prediction is very sensitive to er-
rors in Vz and Vz.

It would be interesting to determine Vz and Vz from a
simpler total-energy scheme, such as the local-spin-density
(LSD) approximation. In fact, we have obtained prelim-
inary results based on the LSD calculations of Martins et
al. for Li3, K3, and Na3. Reasonably well-behaved pair
interactions are obtained only if the LSD binding energies
are shifted by small constant terms; presumably, the effect
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of this is to correct for small correlation errors in the LSD
calculations. The LSD pair interactions obtained for Li
are similar to those given by the CI calculations, and
give S(Li)=-8.5 over the relevant range of interatomic
separations, which is very close to the value obtained from
fitting the CI pair interactions. The LSD pair interac-
tions for K, when fitted by simple exponentials, over the
relevant range, give S(K)=3, which compares well with
the values obtained from Eqs. (40) and (42) (see Table I).
Finally, the LSD calculations for Na give S(Na)-=2. 5,
but in contrast with what was found for Li and K, S(Na)
decreases significantly with increasing interatomic separa-
tion.

The results of this section strongly support the notion
contained in Eq. (8) that two-center atomic pair interac-
tions determine the overall shape of the potential hyper-
surface, at least for H„and Li„species. The deviation
shown in Table III for e-H3 indicates that three-center
terms cannot always be ignored, but the overall success of
the two-center approximation is quite good. Vhth the
LSD method it should be possible to obtain useful approx-
imations of V~ and V~ for larger, more complex atoms
than those considered in this section.

VI. CONCLUDING REMARKS

A key assumption underlying the major results of this
article is that use of unperturbed atomic orbitals as the
LO basis in CP theory gives accurate binding energies.
Without this assumption, the two-center matrix elements
depend not only on the pair separation for a given atomic
species but also on the total molecular environment
through the self-consistent adjustment of the LO basis,

according to the pseudopotential equation (2). To that ex-
tent, any conclusions based on the assumption of
transferrable pair interactions are likely to be misleading.
But the success of that assumption in the determination of
binding energies for Li„and especially for H„species,
described in Sec. V, implies that the net contribution asso-
ciated with the self-consistent adjustment of the LO basis
is quite small. It was suggested in Sec. II that this is due
to cancellations which can be understood in the context of
local-density-functional theory. However, that assertion
remains to be demonstrated.

Perhaps the major accomplishment of our work is the
development of a relatively simple general model of bond-
ing energetics. The model successfully mimics both me-
tallic and molecular bonding behavior; in the latter case it
provides a method for predicting stability and reaction
pathways. For homopolar species, the key atomistic pair
parameter is the ratio (S) of the steepness of the repulsive
pair interaction relative to that of the attractive interac-
tion. It was shown in Sec. III that this parameter deter-
mines structural preference. The scaled binding energy
given by Eq. (26) suggests that S may also determine vari-
ations in the dynamical matrix for different species in a
given structure. Harmonic analysis of the scaled binding
energy, using the approach of Finnis et a/. , would be a
useful extension of the present study. The model should
also be extended to include heteropolar species.
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