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Quantitative results near the band edges of disordered systems
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By combining the coherent-potential approximation, the potential-well analogy, and theories for
the near tail in the density of states, we obtain, for the first time, explicitly quantitative results for
the various quantities of interest near the band edges of disordered systems. These results exhibit a
certain universality and can be expressed in terms of simple analytic functions, provided that disor-
der is not larger than about 5 of the bandwidth.

I. INTRODUCTION

Recent developments based on the potential-well analo-
gy' allow us to calculate transport or localization prop-
erties such as position of the mobilities edge E„localiza-
tion length A, , fiuctuation length g, conductivity o, and
the mobility p from quantities such as the mean free
path I, self-energy X, etc. , which can be obtained from
mean-field theories such as the coherent-potential approx-
imation (CPA).

Furthermore, recent as well as older work permits
us to obtain the near tails in the density of states (DOS)
due to bound states in clusters of sites. Combining these
results with the CPA result for the DOS, one obtains
quantitative results for the DOS in the entire energy range
starting from inside the band all the way to the extreme
tail due to states (if any) bound to single sites.

Thus combining the CPA, the potential-well analogy,
and the results for the near tail in the DOS, one for the
first time is in a position to obtain exp/icit quantitative re-
sults concerning the behavior near the band edges of
disordered systems. Furthermore, most of these results up
to disorders about —, of the bandwidth exhibit a quasi-
universal character and can be expressed in terms of sim-
ple analytic functions. These results are obtained for a
square or cubic lattice with diagonal disorder and
nearest-neighbor hopping. It will be very interesting to in-
vestigate whether the universality noted above is also re-
tained for more complicated types of disorder.

One should ask how accurate the above-mentioned re-
sults are. We can check the CPA-based results as follows:

In one dimension (1D), there is a rigorous result for the
DOS and the localization length in the white-noise prob-
lem ' against which our CPA-based DOS can be

checked. Furthermore, it is possible to obtain numerically
very accurate results for the localization length versus en-
ergy.

In two and three dimensions (2D and 3D) one can
check the CPA-based results for the localization length A,

(or the fluctuation length g) with the results of the numer-
ical method of strips" ' and rods. Furthermore, the po-
sition where the tail in the DOS starts can be checked ap-
proximately from the position of the few lowest eigen-
values of energy in finite disordered systems. Finally, our
recent work' allows us a semiquantitative check, namely
that of the form of the functional dependence of our re-
sults on the disorder and the other parameters of the prob-
lem. It must be mentioned that the CPA-based results for
A, , g, cr, and E, at the center of the band" have already
been checked successfully against the strip- or rod-method
results.

n, m

(2.1)

where the sites I n I form a regular lattice (square in 2D,
simple cubic in 3D, and simple hypercubic in general) of
lattice constant a. V is the hopping matrix element and
the common probability distribution p(e„) of each e„has
a variance w . We distinguish two classes of p (e„): (a)
the terminating ones, such as the rectangular of total
width W (w = W /12), for which p (e„)=0 when

~
e„~ &&w, and (b) the ones with tails, such as the Gauss-

ian, for which p (e„)&0 even when
~
e„~ &&w. Off-

diagonal disorder, omitted here, may create some qualita-

II. FORMALISM

We consider a tight-binding model with diagonal disor-
der only
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tively new features.
The CPA calculates the average (i.e., the arithmetic

mean) CJreen's function corresponding to H from an ef-
fective periodic Hamiltonian resulting from (2.1) by re-
placing each e„by a common self-energy X, which is
determined by the following equation:

&nXE= dope„
1 —(e„—X)Go(E —X)

UA

2IImXi
where u(E) =uo(E —ReX) is the average value of the velo-
city for that energy. ' A more general formula covering
both cases is

(2.8b)

for E near the band edge or in the tail. a is the lattice
spacing. Inside the band for not so large disorders 1 is
given by

where Go(E) is the diagonal element of the unperturbed
Green's function in which all e„'s are the same. In the
one-dimensional case one can obtain the logarithmic aver-
age (i.e., the geometric mean) of 6 as well from a self-
energy Xs which obeys the following equation:

f dE„p(e„)in[1 (Eq——Xs )Go(E —Xg )]=0 . (2.3)

I= uo(2Vd(1+c) )

2d(1 —c )' ln
i
A+(A' —1)'

where

E —X
A =A, +iA, = —1,

2Vd
(2.9a)

For relatively weak disorder (wGo «1) one can expand
Eqs. (2.2) and (2.3) to obtain c= I I+/ f+g22—[(I+gf+g2) —4g2]'i j'

2iA)
f

X=w G —(2w —)M4)6 ~O(w ), (2.4) (2.9b)

X(E)= i —p(6o '(E)),
Go(E)

(2.6)

and the corresponding extreme tail DOS (per unit volume)
has the form

Xg ———,w 6—( —,w —p4/4)6 +O(w ), (2.5)

where )M&
——Ide„e"„p(e„)is the fourth moment of the dis-

tribution and G= Go(E —X) —or 6:Go(E —X—g), respec-
tively. The zero of energy is taken at the unperturbed
lower ban edge. For the rectangular distribution
2w"—p4 ———,m and for the Gaussian case 2 w —p4

4= —W

It must be mentioned that for the second class of distri-
butions (the ones with a tail) there is always a finite (but
very small) probability for a very deep fluctuation of some
e„[while the neighboring e„have values in the range
( —w, w)]. Such an isolated potential well can trap an
electron around it. The CPA equation (2.2) (which
rigorously treats the scattering from a single site) correct-
ly describes the extreme tail in the DOS resulting from
these single-site bound states. However, the approximate
form (2.4) misses completely these states which are associ-
ated with the pole of the integrand in Eq. (2.2). In the ex-
treme tail Eq. (2.2) can be approximated by

and d is the dimensionality. The proof of the above
formulas for l is based upon the equation E —X
=E(k i /2l) —Near t. he band edge E(k)= Va k (where
a is the lattice spacing) from which Eq. (2.8a) follows
after some algebraic manipulations. Inside the band for
not so large disorder I/2l is very small so that

E(k i /21) =E(k) —ifiu/2l— (2.10)

X2

(El 2+ X2)2
(2.11)

which for weak disorder becomes

2 e
oo—— S(E)l(E) .

(2n) d
(2.12a)

In the above formulas So(E) is the area (length for d =2
and S =So——2 for d = 1) of the surface of constant energy
E in k space. In the disordered case S results from So by
changing the unperturbed relation E =E(k) to

from which Eq. (2.8b) follows.
The CPA allows also the approximate determination of

the conductivity through the formula

2ea =ao= dE'uo(E X E')So(E —X)——E—')
(2m) dm

1 Go«)
p(E)= — d, p(Go '(E)) .

a Go(E)
(2.7)

E —ReX=ReE(k i/2I) . —

Inside the band for weak disorder we obtain

V'"aI= (2,8a)

The combination of equations, (2.4) inside and near the
band edge and Eq. (2.6) in the tail, approximate very well
the numerical solution of Eq. (2.2) for not so large disor-
der.

Having X or Xg, one can obtain various quantities of
interest as follows. The DOS is given by—(I/vr)lmGo(E —X(E)). The mean free path is given by

S(E)=So(E —ReX)

while near the band edge we have for d =3

S(E)= 4~ E -ReX a'
a2 P 4l

(2.12b)

(2.13)

S(E) E(d —) )/2 (2.14)

Inside the band but near the band edge and for weak dis-
order it follows from (2.12a) that



6174 ECONOMOU, SOUKOULIS, COHEN, AND ZDETSIS 31

I (E) E(3—d)/2 (2.15)

while Eqs. (2.8a) and (2.4) give under the same cir-
cumstances

trum, which consists of states bound to potential fluctua-
tions extending over more than a single site. This region
has been studied extensively, ' and the results are the
following for 1D:

so that

(2.16)
pNT(E) = 4 IEI 8 E

exp
~01~01 ~ ~01 3 ~01

for all d for weak disorder. and inside but near the band
edge. Recall that cro in Eq. (2.16) is the weak scattering
limit of the CPA conductivity and hence does not vanish
for d &2.

It has been shown' that almost all the results in lo-
calization theory can be obtained from an effective poten-
tial well whose depth is proportional to S 'l '"+" and
whose extent is proportional to l. Thus the localization
length is given by'

w 4/3/ V 1 /36'01 =W 7

—2/3 y.2/3
01 =W

(2.26)

(2.27)

(2.28)

pNT(E) = 2 0. 120
I
(E —ECPA/~02)

I

~02 L 02

@02——w /4m V,

&&e"p[ 0 93111(E—EcPA)/602 I ]
(2.29)

(2.30)

A, =2l, 1D

=2.72l exp —,2D
Sl

2.2+ 14.12$ i1—

(2.17)

(2.19)

LP2 ——w 'Va .

For 3D, it is found in Ref. 7 that

pNT(E) =pcpA(8. 96/m' —x )3.092(8.96/m —x )

X exp[ —1.504(8.96/m. —x )'/ ],
where x is given by

(2.31)

(2.32)

where I is the mean free path, lg is the mean free path
corresponding to the logarithmic average of the Green's
function 6, S is the surface of constant energy, and P is

X =(E —ECpA ) /EQ3

W4

4(4m) V

(2.33)

(2.34)

Q=Sl /8. 96 . (2.20)

It follows from (2.20) that the mobility edge in 3D is
given by the relation

Sl =8.96 . (2.21)

As localized states correspond to bound states in the ef-
fective potential well, the states strongly fluctuating in
amplitude above the mobility edge correspond to reso-
nance states in the effective potential well with the reso-
nance scattering length being essentially the length g.
This analogy combined with numerical results' allows ex-
plicit determination of g' and the conductivity o:

where

f(P)=2.72l
SI

(2.22)

6f(P)=1+ (2.23)

and

0 =oo/f(P) = e 0.0656
(2.24)

From 0(E) and the DOS one can obtain the mobility
which is given by

1 dCT

ep(E) dE

The CPA is inadequate for the near tail of the spec-

and EcpA is the CPA band edge as determined from the
approximate equation (2.4). In Eq. (2.32) we have chosen
the reference energy at the mobility edge [which accord-
ing to (2.22) is 8.96@03/n above the CPA band edge] in-
stead of the CPA band edge as was done in Ref. 7. Argu-
ments for the validity of this choice are given in Ref. 5, in
which it was also argued that the inclusion of short-range
fluctuations changes the exponent in (2.32) to unity from
one-half. The coefficient of x has been estimated (within
uncertainties of a factor of 2 or so) in Ref. 5. Taking
x 3 /L, as defined in Ref. 5, to be equal to 6 V (because in
the tight-binding models discussed here the kinetic energy
xd/L to confine the particle to a single site is 2dV) and
choosing the quantity go to be equal to the mean free
path, we find that the coefficient of x in the exponent is
about —,'. We do not know how the preexponential of
(2.32) changes as a result of short-range fluctuation. Ac-
cordingly we have chosen to take for the preexponential
function form of pNT/pcpA the same form as holds for
2D, where we know it, ' and we determine the coefficient
from the requirement of smooth joining with the band
CPA DOS. The final result is the following equation
which modifies (2.32) as a result of short scale fluctua-
tions:

x —8.96/m
pNTM(E) =pcpA(8 96/~ —x)1.3 exp

6

(2.35)
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It must be pointed out that in the near-tail equations
(2.32) and (2.35) are not so different numerically. Equa-
tion (2.35) although more sophisticated is to some extent
of questionable validity due to uncertainties in the coeffi-
cient of x in the exponent as well as the preexponential
factor.

m 0.10—
O

III. RESULTS

In what follows we approximate the true unperturbed
Green's function by its form near the unperturbed band
edge. Furthermore, we use the lowest order in w in Eq.
(2.4) or (2.5). These approximations are satisfactory as
long as one stays in the vicinity of the band edge and the
disorder is low, i.e., as long as both w and

~

E
~

are small
.in comparison with the bandwidth. %'hen these inequali-
ties are violated one must use the full unperturbed Green's
function and/or the full CPA [Eq. (2.2)]. To obtain a
feeling of the magnitude of the errors involved in these
approximations we plot in Figs. 1 and 2 results for the
DOS and the mean free path in one- and three-
dimensional lattices, respectively. Solid lines are based on
the exact CPA equation [Eq. (2.2)j, the complete unper-
turbed Green's function for the lattice, and Eq. (2.9) for
the mean free path. The dashed curves are based on the
lowest order in tp solution of Eq. (2.4), the approximate
unperturbed Green's function appropriate for the band
edge, i.e.,

0.20

0.15—

0 OC'-1.50
I

-1.00

1.00

O.OC-1.50
I

-1.00
f

I

0.00
I

0.50
I

1;00

(b)

FIG. 2. (a) Density of states and (b) mean free path I for the
three-dimensional ease with a rectangular distribution of stan-
dard deviation w =2.31 V. The dashed line is the approximation
of the CPA valid near the band edge for weak disorder [Eqs.
(2.4) and (3.2)] while the solid line is the exact CPA results [Eq.
(2.2)].

Q.lo— Gp(E)=, 1D
—14VE— (3.1)

0.05

o.oo

Gp(E) = + & E, 3D——0.2527 1

y3/2 (3.2)

Full CPA—--- Appr. CPA

0 -2
t

0
E

FIG. 1. (a) Density of states and (b) mean free path l for the
one-dimensional case for a Gaussian distribution of standard de-
viation m =1V. The dashed line is the approximation of the
CPA valid near the band edge for weak disorder [Eqs. (2.4) and
(3.1)] while the solid line is the exact CPA result [Eq. (2.2)].

and Eq. (2.8a) for the mean free path.
Despite the fact that both

~

E
~

/(2dV) and tp/(2dV)
(2d V is the unperturbed bandwidth) are not much smaller
than unity, the differences between the exact and the ap-
proximate versions of the CPA are rather small, which al-
lows us to use with confidence the approximate form of
the equations. The only significant differences appear in
3D inside the band (for E!2V&0.1+Ecp&/2V). The
reason for that is the existence in the actual Gp(E) of a
Van Hove singularity at E =4V which influences the re-
sults, causing them to depart appreciably from the ap-
proximate form for relatively small energies, i.e., the DOS
soon ceases to follow the square-root behavior appropriate
for the band edge and appears more like a straight line.
This point is very significant in analyzing optical-
absorption experiments.

In what follows we use everywhere the approximate
form of the equations. But one should keep in mind that
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there may be significant departures when E/
i E0 E—vH i

rather than E/(2d V) becomes comparable to unity, where

i
E0 —EvH i

is the difference of the band edge E0 from
the nearest Van Hove singularity EvH.

The advantage of the approximate equations is not only
that they permit analytic manipulations and results, but
that they produce results which exhibit a certain univer-
sality. By that we mean that most of the results depend
on a single energy scale (instead of the two, w and V, orig-
inally present in the model). As a matter of fact this is a
general feature of our model, independent of the CPA ap-
proximation. Indeed, it has been shown' rigorously that
in the limit w « V and E« Vthere is a single energy (or
length) scale which determines the energy dependence of
most quantities of interest.

I

A. One-dimensional case

We examine first the 1D for which there are many ex-
act or highly accurate independent results to serve as a
check of our approximations. Furthermore, it is known
that the CPA becomes more and more accurate as the
dimensionality increases so the one-dimensional compar-
ison is indeed a very severe test of the validity of our ap-
proximations.

Using for G0(E) the approximate form (3.1) and replac-
ing it in Eq. (2.4) or (2.5) and keeping only the leading
term in w, we obtain for X or Xs the following simple
equations:

4
X —EX — =0,

4V
W4

16VXg —EXg—

(3.3)

(3.4)

It is clear from the above equations that the two indepen-
dent energy parameters of the problem w and V have col-
lapsed to a single natural unit of energy ea& as defined by
Eq. (2.27). From Eq. (2.8a) it follows then immediately
that there is a single natural unit of length. namely i.oi as
given by Eq. (2.28). From hereon we denote by an overbar
a physical quantity expressed in its natural units, e.g.,
A =A, /LQI E=E/60I etc. In terms of the overbar quan-
tities we have a universal behavior, i.e., the equations for
X and Xz become

X —EX —
4
——0, (3.3')

—3 ——2 I
Xg —Erg ——„——0 (3.4')

1 1p= Im
2m +y E

(3.5)

The CPA band edge is at Ez ———3/2 = —1.19, and
very close to Eg, p becomes

p (E E )i' (3.6)

for any probability distribution of the disorder. This con-
cept of the universal behavior of physical quantities near
band edges is discussed in more detail in Ref. 1,4. The
CPA DOS per unit length is

At E=0 (unperturbed band edge), p equals

p(0) = =0.1737,v3
(3.7)

while the exact DOS (Refs. 8 and 10) at E=O is 0.1846.
For E))1 the DOS reduces to the unperturbed one,

p(E)=, E))1 .
1

2' E
(3.8)

(3.9)

At E=Eg

(3.10)

A, =2, E=Ej+j (3.11)

where Ess = ——, for the geometric CPA band edge in 1D.
At E=O

l =2' = 1.26, E=0
a=2'"=3.1748, E=o

(3.12)

(3.13)

while the exact result for A, at E=0 is 3.456. For E))1

we obtain

g=4l =SE, E))1 . (3.14)

The near-tail DOS has the form [Eq. (2.26)]

pNT —— Eexp( ——', i—E
i

i
) . (3.15)

On the other hand, the CPA tail DOS which corre-
sponds to states localized at a single site is nonuniversal,
since as it is seen from Eq. (2.7), it depends explicitly on
the form of the probability distribution for e„. For
Gaussian probability distribution the CPA tail DOS per
unit length has the following form which is obtained by
replacing in Eq. (2.7) Eq. (3.1):

1 1 1
p = — exp

&rely E
E, E «Es (3.16a)

3'

y—:w/V. (3.16b)

There are two observations. First, the combination of
CPA with a Gaussian probability distribution produces an
exponential DOS in the tail in the one-dimensional case
(of course, for

i
E

~

))V, P would be Gaussian since even-
tually G(E)~ 1/E as E~ oo—). Second, this ex-—
ponential (as opposed to all other results near the band
edge up to now) is not universal as evidenced by the pres-
ence of the parameter y in (3.16a).

The universal part of the CPA [Eq. (3.5)] can be com-

The mean free path l is given by Eq. (2.8a) which takes
the universal form

l=—1 1
(2.8')

i
Re+2 —E

i

and the localization length A, by (2.17) which becomes
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)00 l
I
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I
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I

1

near tail: exp E3/2
p=

I
lm)/2 —E

I (3.27)

-4
IO

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

niversol

w=0.577 V

where p=pep3Lr o3 and

8wV
LP3 a.

W
(3.28)

1 1
P = ~x = [(E—EcpA)«o3)]'4~2 2 (3.29)

The mean free path which is given by Eq. (2.8a) reduces
in the present case to a constant for positive x

ll= =—,x)0
LO3

while for negative x we have

(3.30)

Taking into account Eq. (3.23), we can easily show that
(3.27) reduces to the free-electron form, i.e.,

10 I i l

0 1 2 3
E

FIG. 4. Density of states per unit length (in units of col'1.»')
versus energy (in units of so~) for the one-dimensional case (solid
line) decomposed in its three components: the band CPA (dot-
ted line), the near tail (dashed line), and the non-universal CPA
deep tail (dotted-dashed line), drawn here for the case of Gauss-
ian disorder with standard deviation m =0.577 V.

In 3D we combine the general equation (2.4), which we
write as follows:

X=w2GO(E —X)—aw "Go(E —X) (3.21)

where a= 5i for the rectangular distribution, and —1 for
the Gaussian, with Eq. (3.2) for Go(E) to obtain the fol-
lowing equation for X:

W
X—w&GO(0)+ v'X E aw G—o(0—) . (3.22)4~V'"

This equation reduces to a quadratic equation which can
be solved easily to yield

-=1 1l=—
2 (1+ Ix I+2& Ix

I

)'~'

The surface of constant energy in k space is 4~k, which,
in view of the relation

(3.31)

E—ReX=ReE(k i/21) =—Va2(k2 —1/4i ),
becomes

E—ReX 1

2 4j'2

Taking into account (3.23), we obtain

)4', x &0
'0, x &0

(3.32)

(3.33)

r

&x, x+0
x&0 (3.34)

The mobility edge is determined from Eq. (2.21) which
is the present cases gives

E—X=x —1+2&—x,
where

(3.23)
x, =8.96/a=2. 852 (3.35)

EcpA

&O3

and EcpA the CPA band edge, is given by

(3.24)
(Ez —EcpA )/F03 =2. 852 (3.35')

The quantity p that enters in the expressions for the local-
ization length A, [see Eq; (2.19)], the length g, and the con
ductivity o. [see Eq. (2.34)) is in the present case

Ecp& ——Go(0)w +w
3

—aGO(0)4(4~)'V'
(3.25)

77x

8.96
x

(3.36)

W
Ecp~ = —0.253 + + (0.253) a

W4

p 3
(3.26)

Having the self-energy X we can obtain the other quanti-
ties of interest as follows:

For the simple-cubic (sc) lattice Go(0)= —0.253/V so
that

The CPA conductivity o.o is given by Eq. (2.11), which
in the present case reduces to

34x f dt(x —1 t) i 2, x)0—
3m-' —" (t'+4x)
0, x&0.

(3.37)



31 QUANTITATIVE RESULTS NEAR THE BAND EDGES OF. . . 6179

The integral can be performed analytically and gives =4.65 —3.94—.1

4V Gp(E) V
(3.43)

1 x, x&0
cYO

—— 6m

0, x&0 (3.38)

which is identical to the result of the weak scattering
theory, namely

era —— Sl = 2X12~' &
(3.38')

As it is clear from Eq. (2.23) and (2.24), the slope of o. at
the mobility edge is —,

' the slope of op, i.e.,

do 1

x =x, 36m'
(3.39)

The energy E„around which o is close, op, can be defined
from the condition g=l which leads to / =4.05, or, in the
present case

Although the particular values 4.65 and —3.94 do de-
pend on the lattice structure, it seems that the existence of
a region where 1/Gp(E) is almost a straight line is a gen-
eral feature due to the existence of a point of inflection in
Gp (E) which starts at E =0 with a square-root behavior
and ends up for very negative E ( I

E
~

&& V) with an E
behavior. Such a region of linearity of Gp (E) combined
with a Gaussian probability distribution yields, according
to Eq. (2.7), an exponential behavior in the DOS at the
deep tail. This exponential behavior seems to be of great
importance in providing an explanation for the observed
features of the Urbach tail." In the present model the
deep tail due to a Gaussian is of the form

16m Z 2Z

where

xu =4.05xc ——11.55

(E+ —EcpA )/e'p3 = 1 1.55

(3.40)

(3.40')

y—:tp/V, (3.45)

12—

~ ~ ~

I
I 1 I t

I
I I ) I

I
I ~ I I

"-GQ E ) =-A+ B4-E

[a

4J
c4 0

10—

——(4V Gp) =4.65-3.94 EiV

0 I s i s

-1.5 -0.5
I

—I.O
E/Y

0.0

FIG. 5. Plot of 1/460V versus energy for the simple-cubic
lattice. Go(E) is the unperturbed Careen's function and 6V is

half of the bandwidth.

The mobility which is given by Eq. (2.25) becomes in
the present case

2«P3 do/dx (3.41)
p(x)

where

do 1 P —2$ + 19$ —12$
dx 6m. [P(P—1)+6]

The near tail in the DOS has already been discussed
[see Eqs. (2.32)—(2.35)]. The deep tail due to states bound
in single sites is given in general by Eq. (2.7). In the
present simple-cubic case, the quantity Gp (E) follows an
almost straight line for E in the range [—3 V, —0. 1V] as
can be seen in Fig. 5. This straight line is given by the
equation

13=(4m. ) /y (3.46)

Z—=4.65+3.94~ ' 4

4(4~)
(3.47)

Note that Eq. (3.44) is of the form exp(E/Ep) where
Eo is

2
E) N

7.88 V
(3.48)

which depends on the square of the disorder and not on
the fourth power of m as does the natural unit of energy
lEp3 This is not surprising since the deep tail does not fol-
low the universal behavior characterizing the band-edge
region as can be seen by the explicit y dependence of Eq.
(3.44).

Note also that the various p obtained for different
values of the disorder pass approximately through the
same point E/V=4. 65/3. 94=1.18, i.e., a focus is pro-
duced as in the usual Urbach tail. '

In Fig. 6 we plot the universal part of the DOS. Curve
a consists of a smoothed joining of the algebraic DOS,
p=(1/4m )3/x, with p~T [Eq. (2.32)]. Curve b is the
smoothed joining of P=V x /4m with PNTM [Eq. (2.35)].
In Table I we tabulate these functions. It is worthwhile to
points out that pNT [Eq. (2.32)] exhibits over 2 orders of
magnitude in exponential behavior as shown in Fig. 6. Of
course, the modified expression pNrM [Eq, (2.35)] exhibits
by construction the exponential behavior starting from a
lower value (about x = —10 as opposed to x= —5 for
pNr) and falls off more steeply than pNr although the
differences are not so significant in the near tail.

In Fig. 7 we plot in logarithmic scale the two universal

components of the DOS together with the deep-tail
nonuniversal part. The latter is drawn for Gaussian disor-
der and for three different values of the standard devia-
tion u. As w increases the deep tail starts from a higher
value at x =0 and drops faster. Below a certain point (be-
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PCPA+NTMPCPA+ NT

0.537(—3)
0.579(—3)
0.624( —3)
0.674(—3)
0.728(—3)
0.786(—3)
0.849(—3)
0.918{—3)
0.993(—3)
0.108{—2)
0.116(—2)
0.126(—2)
0.137(—2)
0.148(—2)
0.161(—2)
0.175(—2)

, 0.190(—2)
0.206(—2)
0.224( —2)
0.244( —2)
0.266(—2)
0.290{—2)
0.316(—2)
0.345(—2)

PNTMPNT

0.358(—4}
0.419(—4)
0.490(—4)
0.573(—4)
0.670(—4)
0.783(—4)
0.916(—4)
0.107(—3)
0.125(—3)
0.146(—3)
0.171{—3)
0.199(—3)
0.232(—3}
0.271(—3)
0.316(—3}
0.369(—3)
0.430(—3)
0.501(—3)
0.583(—3)
0.679(—3)
0.791(—3)
0.920(—3)
0.107(—2)
0.124(—2)

0.537(—3)
0.579(—3)
0.624( —3)
0.674( —3)
0.728(—3)
0.786(—3)
0.849(—3)
0.918(—3)
0.993(—3)
0.108(—2)
0.116(—2)
0.126(—2)
0.137(—2)
0.148(—2)
0.161(—2)
0.175(—2)
0.190(—2)
0.206( —2)
0.224( —2)
0.244( —2)
0.266( —2)
0.290(—2)
0.316(—2)
0.345(—2)

—50
—49
—48
—47
—46
—45
—44
—43
—42
—41
—40
—39
—38
—37
—36
—35
—34
—33
—32
—31
—30
—29
—28
—27

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.358(—4)
0.419(—4)
0.490(—4)
0.573(—4)
0.670(—4)
0.783(—4)
0.916(—4}
0.107(—3)
0.125{—3)
0.146(—3)
0.171(—3)
0.199(—3)
0.232( —3)
0.271(—3)
0.316(—3)
0.369(—3)
0.430(—3)
0.501(—3}
0.583(—3)
0.679(—3)
0.791(—3)
0.920(—3)
0.107(—2)
0.124(—2)

TABLE I. V

q respectively. E is
d devi

aus sian

tern. x =(E —E
I. Various densit f in uniti y o states p in unit

''ye ge.

~ = — cpA) le03 wher
denote power of 10

E h , E '
h CPAb

X

b d d d

P

b 603 is a universalis
'

energy. Number
siona isordered sy-
m ers in parentheses
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TABLE I. (Continued)

PNT PNTM PcpA+ NT PcpA+ ATM

—26
—25
—24

23
—22
—21
—20
—19
—18
—17
—15
—14
—13
—13
—12
—11
—10
—9
—8
—7
—6
—5
—4
—3
—2
—1

0
1

2
3

5
6
7
8
9

10

0.000
0.000.
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.253(—1)

- o.3s8(—1)
0.439(—1)
0.507(—1)
O.S66(—1)
0.620(—1)
0.670(—1)
0.716(—1)
0.760{—1)
0.801(—1)

0.376(—2)
0.411(—2)
0.449( —2)
0.492(—2)
0.5,38(—2}
0.589(—2)
0.645( —2}
o.7o8( —2)
0.776(—2)
0.852(—2)
0.935(—2)
0.103(—1)
0.113(—1)
0.124(—1)
0.136(—1)
0.150(—1)
0.164(—1}
0.180(—1)
0.197(—1)
0.216(—1)
0.235(—1)
0.2ss( —1)
0.274( —1}
0.292( —1)
0.305(—1)
0.309(—1)
0.298(—1)
0.255( —1)
0.154(—1)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.144(—2)
0.168(—2}
0.194(—2)
0.225( —2)
0.261(—2)
0.302(—2)
0.349(—2)
0.403(—2)
0.465{—2)
0.536{—2)
0.618(—2)
0.710(—2)
0.815(—2)
0.934(—2)
0.107(—1)
0.122{—1)
0.139(—1)
0.157(—1)
0.178(—1)
0.200( —1)
0.224( —1)
0.249(—1)
0.275(—1)
0.300(—1)
0.323(—1)
0.340(—1}
0.346{—1)
0.329(—1)
0.264( —1)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.376(—2)
0.411(—2)
0.449(—2)
0.492(—2}
0.538(—2)
0.589(—2)
0.645(—2)
0.708(—2)
0.776(—2)
0.852( —2)
0.935(—2)
0.103{—1)
0.113(—1)
0.124(—1)
0.136(—1)
0.150(—1)
0.164(—1}
0.180(—1)
0.197(—1)
0.216{—1)
0.23S(—1)
0.255( —1)
0.274{—1}
0.298(—1)
0.325{—1)
0.365{—1)
0.390(—1)
0.425( —1)
0.465( —1)
0.500(—1)
0.520(—1)
0.566(—1)
0.620( —1)
0.670(—1)
0.716(—1)
o.760(—1)
0.801(—1)

0.144(—2)
0.168(—2)
0.194(—2)
0.225( —2}
0.261(—2)
0.302(—2}
0.349(—2)

0.403(—2)
0.465( —2)
0.536{—2)
0.618(—2)
0.710(—2)
0.815(—2)
0.934(—2)
0.107(—1)
0.122(—1)
0.139(—1)
0.157(—1}
0.178(—1)
0.200(—1)
0.224( —1)
0.249(—1)
0.275(—1)
0.298(—1)
0.325(—1)
0.365(—1)
0.390{—1)
0.425( —1)
0.465{—1)
0.500(—1}
o.s2o( —1)
0.566(—1)
0.620(—1}
0.670(—1)
0.716(—1)
0.760(—1)
0.801(—1)

tween x = —15 to —20 in Fig. 7) the deep tail dominates
over the near tail. Note that as the disorder decreases the
region of dominance of the near tail actually shrinks be-
cause our unit of energy in Fig. 7, @03, decreases very fast
(as w ) with the disorder. Thus, it is only for substantial
disorders (w of the order of 1 V or larger) where the
universal near-tail part plays a substantial role. Otherwise
we pass from the algebraic CPA DOS to the exponential
tail DOS characteristic of Gaussian disorder over a very
narrow energy range. The significance of these observa-
tions for analyzing the Urbach tail in ordered and disor-
dered materials will be analyzed in a separate publication.

Thouless and Elzain' have calculated the DOS for the
two-dimensional tight-binding model with diagonal disor-
der. The CPA is used at high energies and the fluctuation
theories are used at low energies, as in our approach.
They have also compared their analytic results with nu-
merical results of the DOS for the two-dimensional tight-

binding model and found good agreement.
In Fig. 8 we summarize the behavior of the main quan-

tities of physical interest near the band region of a disor-
dered system. All these quantities have been expressed in
their natural units and are plotted versus
x =(E Ecp~)/eo3. The—density of states is tabulated in
Table I and is given by Eq. (3.29) for x )0 and by Eq.
(2.32) or (2.35) for —10(x (0. The conductivity starts
from the mobility edge with a slope of I/36m' and ap-
proaches asymptotically the CPA conductivity
cro ——x /6m . The microscopic mobility starts with a
discontinuity equal to 1/9(x, )'~, rises to a maximum and
falls for large values of x as —', ~x. Note that the critical
exponents of o and p, near the mobility edge must be
larger or equal to 1 and 0, respectively. The present ap-
proach, which is equivalent in this respect to the scaling
method or to the field theoretical approach, predicts the
limiting values for the critical exponent. The mean free
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FIG. 8. Density of states p [panel (a), in units of eQ3 LQ3 ], conductivity o [panel (b), in units of 10 e /RLQ3] microscopic mobility

IM [panel (c), in units of eLQ3/III], mean free path [panel (d), in units of LQ3], localization length and correlation length g' [panel (e), in

units of LII3] versus x =(E EcpA )/&Q3. —

TABLE II. Conductivity cr, microscopic mobility p, , mean free path 1, localization length X., and correlation length g versus
x =(E—EcpA )/FO3. For a plot of these functions versus x see Fig. 8.

0

—10
—9
—8
—7
—6
—5
—4
—3
—2
—1

—0
1

2
2.852
3
4
5
6
7
8
9

10

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.457 X 10-'
0.581 x 10 2

0.152x 10
0.283x 10-'
0.441 x 10
0.618x 10-'
0.808 x 10-'

0.100

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.658 x 10-'
0.766 x 10-'

0.146
0.200
0.235
0.252
0.257
0.254
0.247

0.120
0.125
0.131
0.137
0.145
0.155
0.167
0.183
0.207
0.250
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500

0.264
0.275
0.287
0.302
0.319
0.340
0.367
0.403
0.456
0.550

0. 110x 10'
0.547 X 10'
0.201 X 10'

0.144x 10'
0.431x 10
0.431 X 10'
0.232 x 10'
0. 149x 10'
0. 106x 10'

0.813
0.654
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TABLE II. (Continued)

11
12
13
14
15
16
17
18
19
20

0.120
0.140
0.160

- 0.180
0.200
0.219
0.239
0.258
0.277
0.298

0.238
0.228
0.218
0.209
0.200
0.192
0.184
0.178
0.171
0.166

0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500

0.546
0.468
0.409
0.364
0.328
0.299
0.275
0.255
0.237
0.222

22.46 — 22.46
and g= '

as x~x, .
X —X X —XC C

(3.49)

In Table II we tabulate the values of o., P, l, A, , and g'.

IV. SUMMARY

The combination of CPA, the potential-well analogy,
and theories for the near tail in the DOS, allows us for the

path remains constant down to x =0 and then falls off
slowly according to Eq. (3.31) for x &0. This nonanalyti-
cal behavior at x =0 is a spurious result due to the CPA
approximation. Finally the localization length A, and the
fluctuation length g are of the order of LM or less except
close to the mobility edge where both blow up with the
same critical exponent, " and the same residue, i.e.,

first time to obtain explicit results for the various quanti-
ties of interest near the band edge of three-dimensional
disordered systems. For not so large

~

E
~

and not so
large disorder these results exhibit a certain universality as
shown in Fig. 8 and in Tables I and II.

It is an interesting question for further examination
whether this universality is retained in the presence of
complicating factors such as off-diagonal disorder, more
than one orbital per site, topological disorder, etc.
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