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First-principles approach for effective elastic-moduli calculation: Application
to continuous fractal structure
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%'e present a new first-principles approach to the calculation of effective elastic moduli of composites
based on the iterative solution of the Dyson equation for elastic wave scatterings in inhomogeneous media.
Application of the method to the examination of elastic scaling behavior of a continuous fractal shows that
the moduli associated with different elastic eigenmodes exhibit distinct exponents in scaling with the size of
the system.

Recently, the distinction between the electrical and the
elastic percolation behaviors has been the subject of several
studies using discrete elastic models of mass points linked
by springs. ' While the primary focus of these discrete
models is to simulate the behavior of percolation clusters,
their consideration has also raised interest in regard to the
elastic properties of composites in general and the elastic
scaling behaviors in particular. However, together with the
interest comes the realization that the calculation of elastic
moduli for continuous composite with more than a simple
microstructure is a difficult task due to the complexity of
the associated boundary value problem. This accounts for
the scarcity of first-principles calculations on continuous
elastic models. In this work we present a new approach to
the calculation of elastic moduli for continuous composites.
The new method incorporates the boundary conditions im-
plicitly in the equation of motion, thereby circumventing the
traditional difficlty of matching boundary conditions across
complex interfaces. As an application of the approach, we
use it to examine a question in the general nature of e1astic
scaling properties. That is, for a given continuous fractal

t

structure, do all the independent elastic moduli always scale
with the same exponent as automatically assumed previous-
ly'7 Our calculation on a continuous Sierpinski carpet
shows that the moduli associated with different elastic
eigenmodes exhibit distinct exponents in scaling with the
size of the system. This result, which was not observed in
previous discrete models, suggests that not only can there
be more than one elastic scaling behavior for a given struc-
ture, but also the number of distinct scaling exponents may
be dependent on the symmetry of the system. In the fol-
lowing, the formulation of the first-principles approach will
be presented in the context of the Sierpinski carpet calcula-
ton.

In Fig. 1 we show the three stages of a Sierpinski carpet
made of locally isotropic solid characterized by the two
Lame constants X and p, . The size of the system L is de-
fined to be the ratio between the sides of the outer square
to the smallest square. For each stage, the unit is repeated
periodically in both directions. To calculate the three elastic
constants Ei~, Ki2, and E~ of the structure, consider the
inhomogeneous elastic-wave equation5

p(r) = [A. (r)+p, (r)]V'(9 u)+ p, (r)V2u+ [(Vu) VA. (r)+Up, (r) (Vu)+ ('7u) '7p, (r)]$2Q

Bt (I)

where p(r) is the density, u(r) is the displacement field, and A. (r), p, (r) are the spatially varying elastic constants. For an
abrupt material interface, A. (r) and p, (r) approach a step function. The classical elasticity boundary conditions, displace-
ments, and tractions continuous across the interface, can be shown to result directly from Eq. (1). If follows that the solu-
tion of Eq. (1) should yield complete dynamical information about the system. For the calculation of effective moduli
(which are defined in the long-wavelength limit) of a periodic system, it is much simpler to deal with the Fourier transform
of Eq. (1):

j

g [E2g p
—~2p(k) ]up(k) = X X V p(k, K„)up(k —K„)—E 0" u (k —K„) (2)

K„AO p P p 0

Here we have assumed the time dependence of u is exp( —iEt), 0, , p = 1, 2, and 3 denote the three components of a vector,
k is a continuous wave vector, K„is the nth reciprocal lattice vector of the periodic structure (for three-dimensional struc-
tures n = [nt, n2, n3), where the three numbers index the periodicities along the three principal axes), and

'[Z(K„)+p,(K„)]k(k —E„)+p,(K„)k (k —K„),n=P
A (K„)k(kp —Xp)+ p(K„)kp(k —K„),n&P

cv2p(k) = V p(k, 0)1

p 0

6131

(4)

1985 The American Physical Society



6132 PING SHENG AND RUIBAO TAO 31

H H H
dependent of p. If now for K„a0we define a scattering
matrix S(k, K„)linking u(k —K„)to u(k) such that

H H El

FIG. 1. The three stages of a Sierpinski carpet. Area. that is emp-
ty is indicated by shading. The ratio between the sides of succes-
sively sized squares is 3.

u(k —K„)= S(k, K„)u(k)
then Eq. (2) becomes

g [~'5 p
—C's (k) —r p(k) ) up(k) =0,

P

where ~ —= E/lkl C (k) =co' (k)/lkl' and

& p(k) = g X lkl 'V.„(k,K, )S~p(k, K, )
P K„&0r4

(5)

It should be remarked that V &(k, K„),K„~O, simply
represents the effect of multiple scatterings by the elastic
constant inhomogeneities. For a homogeneous medium,
the right-hand side of Eq. (3) vanishes, and it is straightfor-
ward to check that the diagonalization of the left-hand side
directly yields the eigenfrequencies of acoustic and shear
waves.

If we now specialize to the case of elastic waves in the
limit of Ik I 0, with En I k I, then an analysis of the order
of magnitude of the various terms show that the

E'p (K„)u (k —K„)/p(0) (K„w0)
term is of higher order in lkl than the other terms and
therefore can be neglected in the calculation of effective
moduli. Physically, the absence of density effects [apart
from p (0) ] is expected since the effective moduli measures
only the static potential energy of the system, which is in-

Diagonalization of Eq. (6) yields directly the eigenvelocities
v of the inhomogeneous structure. The analysis of the as-
sociated eigenfunctions could then tell us about the polari-
zations of the elastic-wave eigenmodes. For a longtitudinal
wave in a cubic structure [k II (1,0, 0) ], for example, we
can define K~t= u2P(0). Other moduli can be defined simi-
larly.

From the definition of S(k, K„),Eq. (5), it can be shown
after straightforward but lengthy algebra that the scattering
matrix S rigorously satisfies the matrix Dyson's equation for
elastic wave scattering:

S(k, K„)= F(k —K„,K„)
+ g F(k —K„,K„—K„')S(k, K„') . (8)

K„WK„

Here the elements of Fare defined by

k —K K-K'= 1

(k —K„) (k —K„)„
&& V p( —k+K„,K„—K')+A

( ) g ( )
V„p(—k+ K„,K„—K„')

E'-~' (k-K„)

where A = [A, (0) + p, (0) )/p(0),

(k —K„).'
E'- .'.(k-K„)

and

""-"'=& I+ k-K

(10)

Equation (8), with E2 neglected in comparison to
~2 (k —K„)(K„~O),can be solved iteratively. Rapid nu-
merical convergence was observed. In the worst case
(spheres just touching, for example) convergence to three
or four singinficant figures was obtained after 15-20 itera-
tions. Physically, the iterations can be interpreted as multi-
ple scatterings of the plane wave by structural inhomo-
geneities.

The combination of using Fourier coefficients of material
parameters as inputs and the capacity to harness the itera-
tive solution technique makes the approach described above
generally applicable to the elastic-moduli calculation of
periodic composites with arbitrary unit-cell geometry. %e
have successfully used this method to evaluate the moduli
of three-dimensional, two-component composites and bicon-
nected porous frames. 6 For our present application, Eq. (8)
is solved for up to a maximum + N of E„'sfor each of the

two directions, with A. + 2p, = 1 and p, = 0.4. The conver-
gence of the solution is monitored as a function of N. In
Fig. 2(a) we plot the K~t/p(0) for stages 1, 2, and 3 as a
function of 1/N. The fact that the points iie on good
straight lines is utilized to extrapolate the results to I/N = 0.
In Fig. 2(b) we show log&0[K/p(0) ] plotted as a function of
log~oL, . From the excellent power-law behaviors we deduce
that K~/p(0)rx: L ', where K~= K~t [longitudinal wave in
(10) direction], K2—= K~t —K~2 [shear wave in (ll) direc-
tion], and K3 —=K44 [shear wave in (10) direction) are the
three rnoduli associated with three of the eigenmodes of
elastic-wave excitations. The values of a are o, ~

= 0.16
2 0.01, cx2 = 0.14 k 0.01, and n3 = 0.35 +0.01. The error

bars on the points indicate the range of possible extrapola-
tion errors estimated by using maximum and minimum
slopes compatible with the data in the extrapolation. In the
present case since p(0)~ L 0'072, we have K,cc L ' [or

T
p(0) '], where v 0t.27(T~=2.5), r 0225(T 2.23), an.d
T3 = 0.46( T3 = 4.3). It is seen that whereas r~ = 72 within
the errors of calculation, r3 definitely differs from v. i and ~2.
Calculations have also been performed using different ratios
of p, /A. . The exponents obtained are the same, demonstrat-
ing the independence of the exponent values from material
properties. It should be noted that as a consequence of Ei
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FIG. 2. (a) Variation of the moduli as a function of X. (b) Variation of the carpet moduli as a function of sample size L.

and K3 scaling differently, the bulk modulus, or other com-
binations of K~ and K3, does not exhibit scaling behavior as
a function of I in the initial stages. Also, the ratio of
~, = [E44/p(0) ]t~2 to u~ = [E'tt /p(0) ]' 2 approaches zero as
I.~ oo.

There are usually corrections to scaling behaviors which
tend to zero as I. ~. In the present case, the corrections
are surprisingly small as evidenced by (I) the excellent
power-law behavior exhibited by the initial three stages and
(2) the iterated cases, such as substituting stage I result
back into stage I (in that case the solid is locally cubic) or
substituting moduli of stage 1 into stage 2, all yield results
almost indistinguishable from the directly calculated stage 2
or the stage 3 results ((3% difference). This latter fact
shows that for the Sierpinski carpet, the scaling behavior of
the three moduli begins almost immediately at stages 1

and 2.
Since our results differ qualitatively from those of previ-

ous discrete models, it is interesting to speculate on the ori-
gin of the discrepancy. One possibility is that the features

observed in the present work are special to the Sierpinski
carpet and its associated symmetry, suggesting that the
number of distinct elastic scaling behaviors is highly sym-
metry dependent. Another contributing factor may be the
breakdown of analogy between the discrete and continuum
elasticity7 for fractal and percolation cluster models. It is
well known that while discrete models can exhibit classical
elasticity behavior in the limit when the number of springs
and nodes are large, there are nevertheless, clear differences
between the characteristics of continuum elasticity and those
of a single (or a few) spring(s). In view of the importance
of single-spring connections in discrete, fractal, or percola-
tion cluster models, it would not be surprising that such
differences could account for the different scaling behaviors.
It is proposed that a careful experimental study of two-
dimensional and three-dimensional elastic fractal structures
could shed illuminating insights on these issues.
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