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Using the theoretical formulation of Cahn and Hilliard and of Langer, we study the initial growth of nu-

cleation droplets in systems with no conservation law for various dimensions and for an arbitrary distance

from the coexistence curve. In the vicinity of the coexistence curve the nucleating droplets are compact at

the center and growth occurs only at the droplet surface. Close to the classical spinodal the nucleating

droplets are ramified and the growth occurs preferentially at the droplets' center, The growth is always

maximum where the second derivative of the free-energy density is negative, i.e., at unstable concentra-
tions. The droplet profile for any specified field tends to a universal tanh(x) profile for large dimension.
We argue that certain aspects of the droplet depend only on a single scaling field that combines dimension

and quench depth.

Metastable states can occur at almost any first-order phase
transition; the metastable states exist for a finite time before
the system decays to the absolutely stable state. ' Recently
there has been increasing evidence that metastable states
can decay by several different modes. 2 5 Classical nu-
cleation theory' assumes a metastable state decays, or nu-
cleates, through the formation of a compact and localized
fluctuation of the stable phase. By compact we mean that
the volume of the drop V is related to its linear size l
through V~ l~, where d is the spatial dimension. These
droplets grow by increasing their radius by accreting matter
at their surface. 7 8

Classical nucleation theory predicts a smooth crossover
between metastability and instability, while mean-field
theory predicts a sharp spinodal dividing line. Heerman and
Klein ~ studied nucleation in the three-dimensional Ising
model for various interaction ranges with the use of Monte
Carlo simulation. Nucleation from metastable states far
from the coexistence curve showed significant deviations
from the classical theory. 9 The droplets become of small
amplitude and ramified having a fractal dimension'o df
smaller than the dimension of space. That is, V~ I f with

df( d.
%e have previously obtained4 a description of these

ramified droplets occurring near the classical spinodal start-
ing with the field theoretic Landau-Ginzburg-wilson free-
energy functional7

F(ill) = dr[R2/2(~ill) +f (iti) ] (I)

where f(P) =o.iti4 —e$2+ hiri is the free-energy density for
a uniform state; h is proportional to the external magnetic
field; e is proportional to (T', —T)/T, ; a is a positive con-
stant and 8 proportional to the range of the interaction.
The metastable state remains well defined for fields right up
to the spinodal field h, = (8e'/27n) t~2 for R

In this Rapid Communication we treat with these tech-
niques the initial stages of the nucleation and growth of
droplets as the field and dimension change. The crossover

between spinodally assisted nucleation near the classical
spinodal and classical nucleation near the coexistence curve
is shown to occur smoothly over a range of magnetic fields.
The growth mode remains peaked where the second deriva-
tive of the free-energy density is negative, leading to an
analogy with classical spinodal decomposition theory. Final-
ly, this same crossover is shown to occur as a function of
dimension, and a scaling field is conjectured.

For long-range interactions the nucleating droplet profile
is expected to be a stationary point of the free-energy func-
tional and satisfy ' the Euler-Lagrange equation'.

1

oF 2 d2 (d —1) d2+ —Q+4uiti —2ef+ h =0
dr r dr

(2)
The solutions to Eq. (2) that correspond to the metastable
and stable states are independent of r (itr=iiiMs and Q =ps,
respectively) and are local minima of F(@). The noncon-
stant solution to Eq. (2) with boundary condition
i'�(~)= iiiMs is a saddle point of F(P) and corresponds to a
localized fluctuation away from the metastable phase; this
fluctuation is the nucleating droplet.

The direction in which the free energy F(Q) decreases as
the solution moves away from the saddle point corresponds
to the initial growth mode of the droplet (within a quasistat-
ic approximation). 7 If we rewrite the droplet profile as the
nucleating droplet plus a small deviation, Q (r) = Q (r)
+ v(r), we can expand F(Q) to second order in v:
F(i') = F(iIi) + F"(u), where

1

Q2 f'
F"(v) = dr R'/2('7v)'+; v'

Thus, the solutions to the Schrodinger equation

—R/2, +d' (d —1) d—+12ny —2e u„(r) = iv„v„(r)2

r dr .I

(4)
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are the normal modes of the system near the nucleating
droplet configuration. 7 There is exactly one mode with a
negative eigenvalue ' ' corresponding to an instability;
this growth mode will initially increase exponentially.

This stability analysis is independent of thp detailed
dynamics of the system, and thus rates of growth and the
behavior in later stages of growth must depend on other
factors affecting the dynamics. For the Ising model with
Glauber dynamics, the initial growth mode predicted by the
full dynamical theory is identical to the growth mode ob-
tained by linear stability analysis. Depending on the relative
sizes of the nucleation time, the droplet growth time, and
the time needed to move material across the radius of the
droplet, the initial growth mode derived below (valid for in-
finitesimal times) may be independent of the dynamics and
be valid for several dynamical universality classes.

As the dimension is raised for fields near the spinodal
value, the droplet crosses over from a ramified droplet for
low dimensions to a compact droplet (having a concentra-
tion at its center approximately the concentration of the
stable phase) for large dimensions. This can be seen by re-
garding Eq. (2) as an equation of motion for a damped par-
ticle in a potential: r is the time; P is the displacement; f—

I

[in Eq. (1)) is the potential; and the cubic polynomial in Eq.
(2) is the force. 7 Near the spinodal for low dimensions,
where the metastable peak in —f is at much higher free en-
ergy than the stable peak, the particle never passes close to
the stable peak. As (d —1) increases, the damping in-
creases, and the particle must start with more energy (i.e.,
higher on —f and closer to the stable peak) to have the po-
tential energy of the metastable peak at r = ~.

We examine the behavior of the solutions to Eq. (2) by
studying an approximate equation appropriate for large
dimension. For low dimensions, the damping term
[(d —I)/r]d/dr is less important and ignoring it does not
change the scaling of the solution. 5 For very large dimen-
sions this damping term becomes more important, and only
for very large r [where (d —I)/r is small] should the solu-
tion be determined again by inertial effects. So, for large
dimensions and h near h, we ignore the second derivative
and study the solution to

—R2 (d —1) di" + 4ag2 —2eg+ h = 0
f Qf

which is

—k exp{—r /[2(d —1)R ]}= {[p(r)—av'/s, h ]/[p(r)+aJ&h H' "{I/[Q(&)—$,])

where a and b are constants, Ah= h, —h, and k is an in-
tegration constant which must be fixed by the boundary
condition. Since the linear and second derivative terms
scale identically with and r, 5 this solution should scale
correctly with R, ~, o. , and Ah.

In order to understand the physics described by Eq. (6)
we investigated two asymptotic cases. In the first case we
assume that the system is quenched to hear the spinodal
and Q(r) —JAh for all r. ' To determine k we must use the
boundary condition that P(r = ~) = /Ms. Unfortunately the
solution in Eq. (6) is not a valid description for
r ~ (d —1)R. In order to obtain k we will make the ap-
proximation that for r ~ (d —1)R the solution of Eq. (2)
neglecting the first order derivative is-valid, while this as-

sumption and the following matching condition are only ap-
proximate, the resulting scaling forms should be insensitive
to the detailed approximations, since both derivative terms

, scale similarly:5

i[i (x ) =Jh h [ —1+3/cosh2 (44k h x/R ) ]

To obtain k then we demand that at x=(d —1)R,
Q (x ) = if' (x) and dQ (x )/dx = dP (x)/dx.

With this method it can be seen' that

(kQ ) ~~"= c exp[b(d —1)dhh/2]

where c is a constant. Using Eq. (7), Eq. (6) becomes, for
Ah small,

Q (r) = {1+c exp[b (d —1)dhh /2] exp[ —r24hh /2(d —1)R2)]/(I —c exp[ b(d —1)Jb, h /2] exp[ —r24hh /2(d —1)R2]]

(g)

An interesting situation occurs with r =0, Eq. (8) becomes

1+ c exp[b(d —1)dhh /2]
1 —c exp [b ( d —1)v'5 h /2]

(9)

If 6 h or d is increased P (0) becomes negative while

Q (r = (d —1)R ) is positive. This is clearly unphysical.
Near the center of the droplet for (d —I )R dh h large
enough the scaling solution is not valid. This implies that
the P4 term cannot be neglected and that the center of the
droplet is more compact than the edges. This point should
be-stressed. The equation predicts that for fixed d as Ah be-
comes larger the center of the droplet becomes more com-
pact; this effect is readily seen in the numerical solution to
the full equation presented below. This then describes how
the droplet which is ramified for Ah small starts to evolve

J

P(r) —P, = —k ' exp[r2db h /2(d —1 )R ] (10)

From f(i[i) in Eq. (1) it is simple to see that i[i, is of the
form for small 5 h, P, = Q (0) —wh h, where w is a positive
constant. With Eq. (9), we obtain k = ce" '/ [Q (0)
—wb h], so that

into the compact droplet seen for h —0; that is, it begins to
compactify in the center. This is reminiscent of the growth
of ramified critical droplets after nucleation. 3 5

In order to describe the movement of the compact part of
these hybrid droplets (i.e., compact core and ramified
"halo" ), we consider the center of droplets in systems shal-
lowly quenched where Q(x) —i[i, . In this region Eq. (6) be-
comes

p ( r) + wh h =f (0) + exp [r2v'6 h /2 (d —1)R ] [Q (0) —wA h ]/ e~
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I

We have also solved Eqs. (2) and (4) numerically for the
nucleating droplet and growth mode profiles for several
fields and dimensions; the details will be reported else-
where. '5 Figure 1 shows the resulting nucleating droplet
and initial growth mode profiles for several fields in three
dimensions. The nucleating droplet near the spinodal is a
small amplitude fluctuation that has been shown to have the
ramified structure of a percolation cluster. 5 The growth
mode is peaked at the droplet's center, corresponding to
growth through compactification, In contrast, the droplet
for h & 0.4h, is a large fluctuation (radius al/h) of the
stable phase at its center, with a bulk stable-metastable
phase interface separating the interior and exterior of the
droplet. The growth mode is peaked at the surface of the
droplet; the draplet grows by simply increasing its radius
with a constant interface shape. " The profile shape seems
to depend only on the scaling field z= (h, —h)'~~ ' to
within a few percent, for z not too small. '

The growth mechanism for intermediate fields is a mix-
ture of radial growth and compactification. For all fields,
however, the peak of the growth mode occurs at a radius
(or concentration) where the second derivative of the free-
energy density is negative: that is, 82f/8/2! $ ( rm, „)& 0,
where r,„ is the location of the maximum initial growth.
This can be seen by examining each term in Eq. (4). The
eigenvalue eo must be negative for the mode to grow in time

h =0.9hs

0 ahs

0 7hs

0 4hs

0.1hs

FIG. 1. Plot of nucleation-droplet and growth-mode profiles in
three dimensions. The solid line is the nucleation-droplet profile;
the dotted line is the growth-fnode profile,

rather than decay. The term —dzu/dr2 must have the same
sign as v since the growth mode curves toward the axis at
its maximum. Furthermore, if the maximum of the growth
mode occurs at r~0, the linear derivative term is zero at
that point; if the maximum occurs at r = 0, a Taylor series
expansion 6f v shows that the first derivative term is
(d —1) times the second derivative, and thus has the same
sign. Hence, 8'f/8/2 must be negative at the growth mode
maximum if cu is to be negative.

The condition of negative second derivative is the same
condition as for growth of fluctuations in spinodal decompo-
sition. While it is well accepted that there is a smooth
crossover between nucleation and growth and spinodal .

decomposition, no one has developed a dynamical theory
sho~ing the same process occurring on both sides of a
"spinodal. " The linear stability analysis presented in this
paper shows that both spinodal decomposition and growth
of all droplets, both ramified and compact, can be regarded
as an unstable phase separation of the droplet's surface or
the system's bulk. " A more complete dynamical theory
based on this approach, along the lines of the extensions of
the simple Langer-Cahn-Billiard theory, "' may be able to
prove the smooth crossover.

While the ramified nucleation droplets and changing
growth modes have been seen in camputer experiments, it
is important to search for them in physical systems as well.
For most experimental systems, however, if the nucleation
time is short enough so that there are sufficient droplets to
measure, then the growth (or compactification) time is also
so short that the effects of ramified droplets wauld be unob-
servable. In systems with long-range potentials one may, by
properly adjusting the range of the interaction and the dis-
tance from the spinodal, be able to produce a sufficient
number of long-lived droplets to measure their ramified
structure by neutron scattering. This point is currently be-
ing investigated. ' It is perhaps useful to briefly discuss the
reason why initial growth can be described with the
quasiequilibrium picture of Langer. As can be seen in both
Langer's work7 and ours5 (and also from the dynamical
models), the eigenvalue that describes initial growth goes to
zero as the radius af the critical droplet diverges. It can be
shown'5 that the vanishing of the eigenvalue implies that
the droplet grows quasistatically compared with relaxation
times both in the droplet bulk and in the metastable phase.
This quasistatic growth makes possible the treatment with
Langer's methods. A more detailed analysis will appear
elsewhere. "

We have described the crossover between classical nu-
cleation theory and spinodally assisted nucleation. This
crossover occurs as either the quench depth is decreased, or
as the dimension is raised. The maximum of the, initial
growth must always occur ~here the second derivative of
the free-energy density is negative. This suggests that the
dynamics of compact or rarnifled droplets as well as unstable
fluctuations are at some level equivalent, all having to do
with the compactification of ramified regions of the stable
phase.

We have found an approximate scaling relating the
change of the nucleating droplet with field and dimension.
The ramified nucleating droplets also become more compact
as they grow and time increases. We are currently extend-
ing this work by examining whether there is an extended
scaling relating the compactification of the droplets with
time, field, and dimension.
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