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Diffuse interface model of diffusion-limited crystal growth
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A general approach to diffusion-limited crystal growth is proposed. It consists of a modified (nonequili-
brium) Cahn-Hilliard representation of the interface coupled to a diffusion equation. Arguments are given
as to its superiority over previous models. These are illustrated in a one-dimensional solution which shows
how the system selects a unique interface velocity. This selection can be interpreted as the requirement of
consistency between the interfacial undercooling as determined by the (microscopic) kinetics and as deter-
mined by the (macroscopic) diffusion equation.

At present, several unanswered questions about solidifica-
tion morphology and dynamics are being vigorously ad-
dressed. Chief among these concern dendritic pattern-
formation processes and selection of growth velocities in
diffusion-limited growth. (Reference 1 is a good general re-
view of the pre-1980 literature. )

Recently, ~ progress had been made by looking at compu-
tationally and analytically tractable models and trying to ex-
trapolate the results to more realistic systems. These
models suggest that the appropriate physical considerations
for dendritic growth are chemical- or thermal-diffusive
transport, capillary effects, and crystalline anisotropy. Also,
a new mechanism for velocity selection has been identified,
that of "microscopic solvability. "~ How well these ideas
survive in models with true diffusive dynamics is not
known, since there have been no exact solutions as yet.
There are some indications, however, that these ideas will
continue to apply. 5

In this paper, we propose a generalized version of the
usual diffusive model of crystal growth. In particular, we
introduce the idea of a diffuse interface between the two
equilibrium phases. This is not an arbitrary assumption,
since the so-called "plastic" crystals that are observed to
grow dendritically always have extended interfaces. 6 Crys-
tals with sharp interfaces most often have kinetically con-
trolled rather than diffusion-limited growth. The purpose of
this work is more, however, than just to include an addi-
tional physical effect. %e will show that the introduction of
a microscopic length into the problem allows us to demon-
strate the aforementioned solvability mechanism for a
planar interface. This will then be the first case whereby
true crystal growth can be shown to behave in the same
manner as the simple model systems discussed above. In
addition, our model demonstrates a relatively simple
manner of incorporating nonequilibrium interfacial kinetics
into diffusive dynamics. This will be crucial in the future
for the understanding of dendritic growth from the vapor
phase, such as that which occurs for real snowflakes.

The basic idea is to introduce a $4-theory representation
of the interfacial free energy, and couple it to a diffusive-
transport equation. The field @ should be thought of as an
order parameter distinguishing the two phases. The $~
Landau-Ginsberg "potential" is intended to reflect both

bulk free-energy differences between the phases, and capil-
lary effects (we will show, for instance, that it gives a reali-
zation of the Gibbs-Thomson effect). The equation of
motion for the order parameter $ is a mean-field represen-
tation of the nonequilibrium interfacial kinetics. Solving the
equation will then give rise to an extended interface. Since
we are considering growth in a diffusion-controlled regime,
we assume that the region of significant variation of $ (the
interfacial region) will give rise to a source term in an ac-
companying diffusion equation. The resulting pair of cou-
pled equations will be more physical than often-used
singular-interface models, which neglect interfacial kinetics, '
or pure Q4 models, which neglect diffusion. 7'

The first equation we write down represents the time evo-
lution of a solid-liquid order parameter with Landau-
Ginzburg-type time dependence (ignoring the noise term),
1.e.,

SF[/]
5

The order-parameter-dependent free energy is chosen to
have two definite phases at equilibrium, represented by
Cahn-Hilliard terms, 9 and a nonequilibrium linearly
temperature-dependent driving term which is the bulk free-
energy difference between phases. (See Fig. 1.) Explicitly,
we have,

—I $ = [n('r7@)2+P($2 1)2+ c—UQ]d3x

= —2n'72$+4P(@3 —$)+ cU . (2)

n, p are phenornenological constants which will be discussed
shortly. I is the rate of relaxation to equilibrium. The
dimensionless diffusion field U will take the form
(T T)/(L/C~) in th—e thermal case, where T is the tem-
perature, T the melting temperature, L the latent heat, and
C~ the specific heat. Note that we may immediately deter-
mine c= L2/2C~T~ by identifying cUQ as the bulk free-
energy difference between the two phases near the melting
temperature.

The surface tension is just the additional free energy per
unit area introduced by requiring the presence of a planar
phase boundary between two phases in equilibrium, i.e., at

31 6119 O1985 The American Physical Society



6120 JOSEPH B. COLLINS AND HERBERT LEVINE

order parameter in place of the old

Potential V {4}

I

-~.5 -S.a -O.5 O.o 0.5
Order Parameter, 4

1.5

FIG. 1. Free energy as a function of the order parameter.

and fp=/3($2 1) . Similarly, —the interface thickness is
proportional to (o/P)'t2. Measurement of these quantities,
or the assumption of a specific microscopic model, will
determine uniquely the exact values of the phenomenologi-
cal parameters in Eq. (2). After making the rescalings

4/3 /3v= t y= — x, 5=r' ~ '
4p

Eq. (2) becomes

Yp"—$3+ $+Q —5 U= 0 (3)

8 is a dimensionless parameter representing the ratio of the
energy difference between the phases to the bulk free ener-
gy. It will be small whenever the system can be thought of
as close to local thermodynamic equilibrium. This condition
also ensures that the dimensionless interface velocity is
small. This will be seen explicitly later.

The diffusion equation used for sharp interface models
can be written

D'72U U= v„5(x—xt(t))—
where D is the diffusivity, U is a dimensionless diffusion
field, v„ is the normal velocity of the interface, and xt(t) is
the interface position. In this model the interface acts as a
5-function source of latent heat for the thermal case. This
5-function term is just the time derivative of a step-function
order parameter

u„5(x—xt(t) ) = ——8(x —xt(t) )d
dt

To complete our derivation, we merely substitute our new

U= 0. It is easy to check that, for an interface profile $ of
minimum free energy, dP/dx = (P/a)'t2(l —$'). There-
fore, the additional free energy is given by

f —oo f1
o. =

i fpan dx=J (2nfp)'' yd= T(nP)' 't,
1

where

D'72U —U= ——
dt 2

where the ~ is a normalization factor ( —1 ~ $ ~ 1, while

0 ~ 8 ~ 1). This equation, together with (3), completely
specifies the dynamics.

Let us first recall what happens if we consider Eq. (4) in
one dimension with the usual equilibrium Gibbs-Thomson
boundary condition U(xt(t)) =0. A steady-state solution is
only possible for a single undercooling U(~) - —1. With
this undercooling, however, the velocity of interface pro-
pagation is arbitrary. ' This is simply because of the absence
of any length scale in the problem. For nonplanar inter-
faces, the Gibbs-Thomson boundary condition depends on
the capillary length times the local curvature; for a planar
interface there is no curvature. Physically, an arbitrary
velocity cannot be correct, and must arise from some
pathology in the model. Specifically, we believe that, while
this singular interface model outlines the possible solutions
allo~ed by the diffusion equation, it does not adequately
represent the physical interfacial characteristics of the
crystal-melt system. Our generalized system should there-
fore give rise to a unique, physical solution for at least this
simple configuration.

To check this, we turn to the diffuse interface model and
assume steady-state conditions. For a constant undercool-
ing over all space, U(x) = —6, the order parameter solu-
tion to Eq. (3) to first order in 5 is a constant-velocity trav-
eling profile

$(y) = —tanh(y —35hr/2)55
2

Note that the velocity v= ~55 depends linearly on the un-

dercooling, a result that is well known for crystals with
rough interfaces. ' Now, imagine having U vary over
space, but very slowly on the scale of JP/n. We expect that
the velocity will still be a linear function of the interfacial
undercooling, that is, of the value of U at the interface de-
fined as where /=0. Let us denote this point as yp. On
the other hand, we can determine the temperature distribu-
tion U(y) for the constant-velocity phase boundary by in-
tegrating Eq. (5) with the above profile. This is sketched in
Fig. 2. In particular, the value of U at the interface will be
given by

U(yp) = ~ I G(yp —y', t —t')P(y', t') dy'dt'

t

= + ~ J tanh —
yp e 'tdq —~0 4p~

where p = n/4Dr, and the undercooling at infinity is neces-
sarily chosen to equal 1. 6 is just the diffusive propagator.
This is a second relation between v and the interfacial un-
dercooling, which therefore suffices to determine them
both. This idea of getting a nontrivial condition from the
matching of microscopic and macroscopic considerations is
quite similar to what has been proposed for dendritic
growth, as discussed above. The analytical solution will re-
flect this heuristic argument.

We now find a perturbative solution by assuming a
steady-state shape propagating with velocity v =Sv. Equa-
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tion (3) can now be written as

O"+e y'+8(.-@' U(y-)) =-o .

To zeroth order in 5, Eq. (8) has the form

T(e.) +eo- @(=o,
and the solution is easily found to be

»t»p = —tanh (y + a )

FIG. 2. Order-parameter and temperature profiles.

5.0

5.0

(8)

(10)

2nV2@ —4P(y3 —y)+ ca =O (13)

Now in a coordinate system local to the interface,
V' —

»1 /»lg + KQ/»lg, where g is a coordinate normal to the
interface and ~ is the curvature of the interface. The first
order (in curvature) solution is a stationary tanh profile,
with the condition

1/2
2p 4n!
3c p

ly. This will fix Aq, which w'e interpret as the interfacial un-
dercooling. We note that as p 0, AI 0, and, for very
large p, A I~ T. Once we have a fixed value of 5I, we can
compute the contribution to»t i from the first term on the
right-hand side. This leads to the requirement that ~ equal
Yht, a result similar to what we fo~nd in Eq. (6) for the
constant undercooling case. We therefore have proven that
there is a fixed velocity. This result is analogous to velocity
determination in flame fronts. " Finally, we ~ould like to
note that small 8 is not crucial for the selection, but in fact
should occur in general for this system.

Let us, now return to more general considerations. Our
model has two parameters in addition to the undercooling, 5
and p. The Stefan problem, as usually stated, with an
equilibrium condition at the interface and with a sharp inter-
face, corresponds to the limit 8 0, p 0. We have al-
ready seen how, in this limit, the interface temperature ap-
proaches zero for a planar interface, and how p determines
the relative size of the interface in units of the diffusion
length. To complete our picture, we should show how to
recover the idea that local equilibrium requires the interface
temperature to be related to the curvature. We show how
this arises directly from our order-parameter formulation.

Assume that a portion of a gently curved interface is in
equilibrium with a melt at a constant temperature
throughout, U= —h. Equation (2) then becomes

»

f P ws U4
sech y dz cosh"z , dz'

~J 0 cosh4z'
i

(12)

This will be secular unless the integral over z' decays rapid-

where a is an irrelevant constant. To next order we have to
solve the equation

~(»t»i)yy+»t»i(1 —3$r%) = —u($p)y+ U

where U is given explicitly by integrating the diffusion Eq.
(5) with the zeroth-order profile $p. [The form of this in-
tegral has already been given as Eq. (7), above. l The key
point to note is that, for arbitrary velocity, the solution of
Eq. (11) will be secular, i.e. , it will get arbitrarily large for
large y. We must choose the velocity to prevent this from
occurring. It is convenient to introduce an additional un-
known h~, and break up the temperature field via defining
U—= U —EI. There are then two different terms on the
right-hand side of (11):

[—&(»t»p)y —&tl+ [ U')

»t»i has a corresponding two-term particular solution. The
last piece of the right-hand side gives rise to a contribution
to $i of the form

where (2p/3c)(4a/p)' has units of length, and we identi-
fy it with do, the capillary length. This, we note, is precisely
the Gibbs-Thomson condition, since this result for the capil-
lary length can be rewritten using the above equations for c
and o. as dp—= C»7~T /L2 This procedu. re can be straight-
forwardly extended to show that, in general, the growth
velocity will depend on the deviation of the interface tem-
perature from its curvature-dependent equilibrium value.

Much work needs to be done to see what advantages our
approach will have over the usual methods. We forsee two
possibilities. First, the fact that a planar interface already
has a unique velocity may make the problem of deriving the
velocity selection for parabolic "needle crystals" more tract-
able. Also, numerical simulations of the equations of
motion can be attempted without having to explicitly keep
track of a singular boundary. We are pursuing both of these
ideas and hope to report on them soon.

We would like to acknowledge useful conversations with
Y. Pomeau. After completion of this work we became
aware of related ideas due to Fix, ' who introduces a similar
approach for the purpose of numerical simulation without
the need for explicit boundary conditions.



6122 JOSEPH B. COLLINS AND HERBERT LEVINE

tJ. S. Langer, Rev. Mod. Phys. 52, 1 (1980).
2R. C. Brower, D. Kessler, J. Koplik, and H. Levine, Phys. Rev. A

29, 1335 (1984); D. Kessler, J. Koplik, and H. Levine, ibid. 30,
3161 (1984).

~E. Ben-Jacob, N. Goldenfeld, J. S. Langer, and G. Schon, Phys.
Rev. Lett. 51, 1930 (1983); Phys. Rev. A 29, 330 (1984).

~D. Kessler, J. Koplik, and H. Levine, Phys. Rev. A 31, 1712
(1985); E. Ben-Jacob, N. Goldenfeld, G. Kotliar, and J. Langer,
Phys. Rev. Lett. 53, 2110 (1984).

5R. C. Brower, D. Kessler, J. Koplik, and H. Levine, Scr. Metall.
18, 463 (1984); D. Kessler, J. Koplik, and H. Levine, Phys. Rev.
A 30, 2820 (1984).

6D. P. Woodruff, Solid Liquid-Interface (Cambridge Univ. Press,

Cambridge, England, 1973).
7S. M. Allen and J. W. Cahn, Acta Metall. 27, 1085 (1979).
sS.-K. Chan, J. Chem. Phys. 67, 5755 (1977).
9$. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).
' See, for example, R. F. Sekerka, in Proceedings of the Internaional

School of Crystallography, Erice, 1981 (Reidel, Hingham, MA,
1982).

For a review, see P. Clavin and A. Linan, in Theory of Gaseous
Combustion, NATO Advanced Studies Institute Series 8, Physics
(Plenum, New York, in press).

G. Fix, in Free Boundary Problems, edited by A, Fasano and
M. Primicero, Research Notes in Mathematics, Vol. 2 (Pitman,
New York, 1983).


