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Elementary derivation of one-dimensional fermion-number fractionalization
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An elementary explanation of the origin of topological or fractional charges in one dimension is present-
ed. Attention is paid to wher'e the balance of the charge is located and the influence of the choice of boun-
dary conditions on the problem.

I. INTRODUCTION nors. If we define an angle 8(x) by

In a variety of different contexts in both condensed
matter physics and relativistic quantum-field theory, a Fermi
sea in interaction with a solitonlike external field can endow
the soliton with fractional or otherwise unusual quantum
numbers. Examples occur in one-dimensional polymers
such as polyacetylene, ' in He superfluids, and in bag or
Skyrme4 models of hadrons. Since the original observation
of this effect by Jackiw and Rebbi, 5 a variety of sophisticat-
ed tools have been used to analyze the phenomenon: index
theorems and ( function methods by the more mathemati-
cally inclined, Green's functions, Jost functions, and
anomalies by the physicist. The more powerful the tool
employed, the deeper the results obtained —but often at the
expense of losing a simple physical picture. I am sure that
many people have felt uneasy about what is happening until
they have worked out simple examples such as those recent-
ly published by Mackenzie and Wilczek, ' and-by Zahed. "
My purpose here is to give an elementary proof, using noth-
ing more technical than integration by parts, of the general
result that a charge

2 = tan8 (2.3)

it is our goal to establish that

Q = dx p(x) = q
60 (2.4)

d [x'Hy —(Hx)'y] = i(x'~, y) I„",'= o,dxi (2.5)

for all permitted solutions X, @, i.e. ,

where b, 8 is the change in 8 as we cross the region of vary-
ing 8.

To make the problem well defined we must establish
boundary conditions for the differential operator (2.1).
Periodic boundary conditions are not suitable since (2.1) is a
different equation at the two ends when 50&0. Let us
choose self-adjoint boundary conditions (BC's) at the two
ends separately.

Self-adjoint BC's are such that'

(2.6)

can be locally induced in a one-dimensional Dirac-
Hamiltonian for particles of elementary charge q.

or

= —i tan0&
X2 x( Q2 xl

(2.7)

is

II. PHASE-SHIFTS AND LEVINSON THEOREMS

The Hamiltonian which occurs in many of these contexts

H= Io 8t„+$~( x) 'a2+g (2x)cr3 (2.1)

where a., are the Pauli matrices. (The interpretation of the
two components varies with the context. Ia polyacetylene
they are the odd and even sites. In He-A they are particles
and holes. ) I shall concentrate on the case where $~, Q2
are asymptotically constant and where, for simplicity,
($f+P/)'i2 takes the same values on both sides of the re-
gion in which $~, $2 are varying. The local charge is

p(x) = q X @'(x)y(x)

for some angles 8~, 82 [not to be confused with 8(x)] de-
fined at the ends xi, x2.

We will temporarily leave open the choice of these angles
as it will turn out that some choices are more convenient
than others —although the local effect of the changing 8(x)
is independent of effects at a distant boundary.

We will obtain the induced charge from phase shifts and
to do this it helps to have an equation of fixed asymptotic
form. To achieve this we use the identity

H = exp [ —i8 (x)o
~ /2] [i o ~8„+ ($/+ $)) ' a 2+ Trl„8]

x exp[ i8 (x)o. ) /2]

=exp[ —i8(x)a.~/2]H'exp[+ i8(x)a, /2] . (2. .8)

If p is an eigenfunction of H then
negative
energy
states

ia ia(x)/3
e (2.9)

where the P are properly normalized two-component spi- is an eigenfunction of H' —provided we change the boun-
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sinH&

exp(rico, )
sin(()) —T() )

i cos(()( —T() )
(2.10)

dary angles for H' to ()&'=8&—I/28(x&). This is because tance. This case has been dealt with by Grossman' and
Yamagishi. s)

We will now prove a "relativistic" form of Levinson's
theorem (otherwise known as the Friedel sum rule) by a
simple extension of a problem in Landau and Lifshitz. '

Let us rewrite 0' as

It is the 8&' which is convenient to fix to certain values.
The reason for this is that, when 9„8= 0, 8' has a sym-
metry between positive „and negative energies induced by
the identity

cr30' = —0'o.
3 (2.11)

For the boundary conditions to respect this symmetry we
must arrange for P', o 3Q' to both satisfy the boundary con-
ditions. This requires () &'= 0, n/2. Further, unless we
choose the left-hand (()t) value to be 0 and the right-hand
value to be n/2, there will be bound states attached to the
ends (see Appendix). We want particle-hole symmetry and
no bound states or else there will be locally induced charges
near the boundary and this will be confusing. (In the case
of a monopole in a 8 vacuum the monopole is the boundary
and the boundary charge is the physical effect of impor-

I

H'=io, ()„+m(x)(r2+ V(x)

where

m(x)=(y(+y1)'/2~ m as x oo

V(x) = ~8„8 0 as x

Let us also set x1 = 0.
At large distances (2.12) has solutions of the form

1
leak (x) = (5+ ) s)n(kx+ 5 + )

E( ~)
k

E„(~) = X (k'+ m') 'i', k & 0 .

Now

(2;12)

(2.13)

[(y (P))tHly(+) (H~y( a))ty (+)Jd (E(+) E( a) ) I (y (k))ty (+)d [(y (+))ti y (+)]tt( (2.14)

Put k'+ dk = k and substitute the form (2.13). After a little arithmetic we find

+ 1 ~E(+)
leak- I'dx= sin(kR+5+) [(()„+m) sin(kx+5 g)] =R

Bk 0 E2
(

88++ R+ (+)—

Using 6E+/Bk = k/E(+) we find

(+) sin2( kR + 5 + )1
2E( +) (2.15)

1 1

2k
sin2 ( kR + 5 + ) +

2
sin(kA + 5 y ) [(5+ m ) sin( kx +5 + ) 1„=RE2 (2.16)

This is our key result as it identifies the extra normalization
pulled into the region by the potential V. If B()(x) &0,
positive energy particles are repelled from the potential
while negative energy ones are attracted and this is the ori-
gin of the local charge.

To use (2.16) we need the values of 5g at k=0 and
k = ~. These are.easily found. For large k 0' becomes

For k=0 we notice that if we multiply Vby )(. then 85/8)(.
gives the flow of eigenvalue density for 0' and this must be
zero at k=0 (the edges of the continua) unless a bound
state escapes into the gap when 5 changes by m. Thus
5 g(0) = nm

We can now calculate Q by first normal ordering so that
Q = 0 if there is particle-hole symmetry:

V(x) i5„
iB„V(x) (2.17) negative

energy
states

a11
states

(2.20)

since we can ignore m compared to k in the off-diagonal ele-
ments. Thus

y„+(x)=
sin Ex —' dx V(x)dp

X

icos Ex —
J dx V(x)

0

(2.18)

5 (k= )=+Jt, V(x)d =+~we .
(2.19)

with E = + k and where I am using the boundary condition
HI = 0 at x = 0. Comparison with (2.13) reveals that

P oo

5, (k= ) = —
J~ V(x)dx= —Th(),

The subtraction term is a V independent of infinity by com-
pleteness. Thus

p(x) = —&q(x) = —& g sgn(E)lyl' .
al1

states

(2.21)

This local form of the q invariant'7 (or spectral asymmetry)
is finite and needs no regularization.

%'e can perform the continuum parts of the sum by not-
ing that, as long as the system has length L large compared
to the support of 98, the normalization integral is —L and
the density of states dn/dk —L/m. . So we obtain the con-
tinuum contribution to the charge between 0 and R by mul-
tiplying by m ' and integrating over k.
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dk I
" (+) 2 (-) 1Iliiii+ I Iilla I ] dx= —[g+ (~)—5+(0) —5 (~)+5 (0)]+terms small as 8~o ~ o 7r

(2.22)

The smallness of the oscillating terms' contribution to the integral follows from the Rieman-Lebesgue lemma and the vital
fact that 8(0) = nor renders the k ' singularity in the second term of (2.16) harmless. Thus

lim t p(x) dx = —~(N —N„) + q + [5 (0) —& (0) ]R~ oo& 0 2m 2m
(2.23)

where N~ is the number of positive-energy bound states and N„ is the number of negative-energy bound states. Information
on the bound states can be found by adding, instead of subtracting the two terms and using completeness: if Qk0 are the
solutions of H' with m =constant and V=O

P

lim J, X lyl' d +„, ", (Iyk"I'+ Iyk 'I' —Iykto'I' —Iekto'I')d =o=N, ——'[~+(0)+5 (o)], (2.24)
bound

, states

where N~ denotes the number of bound states. This agrees
with our assertion that the number of bound states escaping
from the two continua are 8+(0)/n, 8 (0)/7r, respectively.
So, up to the number of levels crossing zero —and conse-
quently being counted as filled by the formulae —we have

I

A bound state of the form

E~= i(rl+m) (A2)

J p(x)dx= q
can exist near the boundary if o. has the appropriate sign,
m2 = E2+ n2, and if Q satisfies the BC

as promised.

III. DISCUSSION

1

sin9'
y(0) (A3)

Twisting the BC's at the same time as changing 0 is very
natural. In most systems the solitons will occur in pairs
—one with +0 and one with —0. Cutting the system
between them leaves us with the rotated BC's. Any other
choice leaves us with a charge located at the boundary. It is
instructive to repeat the calculations with 8, (not 8i') left
fixed at zeroyo 8i = —8(xi)/2. We find that the 8i contri-
bution to p(x)dx is canceled by a charge at the boun-

0
dary xi. This means that, of the total charge
q [8(x2) —8 (xi ) 1/~ on the soliton, the q 8 (xi )/ir has
resulted from charge expelled to the left and q8(x2)/ir
from charge attracted from the right. The total charge has
stayed fixed and the expelled charges can be found within a
distance m ' of the right- and left-hand boundaries. A
brief discussion of these bound states and charges at the
system boundaries is included in an Appendix.
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i(8 —m)
'
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Put o. = m cosX, E= m sinX then

sinX

i (1+cosX)
i

(A4)

tang g(k) = k
E~+-i costi —m

(AS)

This is equal to +tan8i for k ~. If we adopt the con-
vention that 5 g(k ~) = +8i we can easily follow the
evolution of 5+ (0) as 8i increases from zero. For
8i & m/4, 5+(0) is zero. At 8i=ir/4 it discontinuously
changes to m/2 [there is now a bound state exactly at the
edge of the positive-energy continuum —the famous excep-
tion to the 8(0)=nn rule'6]. For 8i) ir/4 we find that
Bi(0)=ir so it is keeping track of the state lost from the
positive-energy continuum. 5 (0) remains zero, until the
lower continuum receives the ejected state at 8i=3rr/4,
when it changes to ( —7r) —all in accord with Eq. (2.24).
We can use Eq. (2.16) to calculate the charge in the neigh-
borhood of the boundary and confirm that the charge ex-
pelled to the left is indeed all caught there when we leave
Hi =0.

so tan8'=tan(X/2). There is a bound state at the left if
n & 0, i.e., ir/4 & 8i & 3m/4 and one at the right if
0&82& m/4, 3w/4&82& m.

Let us concentrate on the left-hand boundary where one
can easily calculate the phase shift due to the boundary con-
dition as
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