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The critical temperature for an isotropic Blume-Emery-Griffiths model is discussed in a new type of
effective-field approximation. The method, which can systematically include correlation effects, is illustratee

ed by applying to linear, honeycomb, and simple-cubic lattices. The relation between the present method
and that very recently proposed by Chakraborty is widely discussed.

In a recent report, ' Chakraborty, using an effective-field
model of a spin-1 Ising system with both dipolar and quad-
rupolar interactions [isotropic Blume-Emery-Griffiths
(BEG) model], which is described by the Hamiltonian

H = —$ J~S Sf—gj~S Sj
g'f sf

drew the following basic conclusions about the transition
temperature.

(i) For a linear chain, a nonzero, real, positive critical
temperature T, exists for both positive and negative values
of n [where a= j/J is the quadrupolar (j) and dipolar (J)
interactions ratio], although c(=0 does not favor any phase
transition.

(ii) For both honeycomb and simple-cubic lattice struc-
tures no solution is found for T, for any positive values of

%e should like to point out that the results obtained by
the use of Chakraborty's approach' provide no reliable in-
formation about thc nature of the transition temperature of
the BEG model. His drastic assumption (A)/(8)= ((A/8)) is not appropriate and leads to unphysical
results in both a qualitative and quantitative point of view.
The usual Honmura and Kaneyoshi mean-field approxima-
tion2 (HK-MFA, as he calls it), does not need so drastic a
supposition.

In fact, Eqs. (18) and (19) of Chakraborty's paper are
correct; however, his development beyond that point, based
in his Eq. (13), introduces modifications in the original
HK-MFA procedure and, as a consequence, spurious results
may occur. In order to clarify this, firstly we should note
that the summations appearing in Eqs. (18) and (19)
through the definitions of Eq=ps J~Ss and E~=gs j&Ss'
can be transformed in products over the nearest neighbors
of the site f; as follows:

I

m = (Sj)=(rt exP(j& jggxD &rt exe(j&j, SxDx))j'(x y)
II x=0;y=0

(? = (Sj') =(rt exp(j)j S,D, )rtexp(jjj;jS', D„))g(x y)
g x=0;y=O

(la)

(lb)

where the functions f(x,y) and g(x,y) are defined as

f(xy) = 2e»sinhx/(1+ 2e»coshx)

(&=(rt y(D, ;S,,Sx&tt D(D„;Sx,&)g(xy), (gb)
g x=0;y=0

and

g (x,y) = 2e"coshx/(1+ 2e»coshx)
~here the operators functions F(D„;S,S2) and G(D;S2)
are defined by

and D„=8/B„and D»= 8/—6» are the two differ—ential opera-
tors. Now, by using the van der Waerden identities for the
spin-1 Ising systems (i.e.,

F(D„;Sg, Sg') = 1+Sg sinh (PJ~D„)

+ Sg2[cosh(P J&D ) —11 (3a)

m= I D„;Sf,Sg 6 Dy', S2I x,y
g g x=0;y=0

(2a)

exp(A. Ss) = 1+Ss sinh(l). ) + Ss2[cosh(A. ) —1]

and exp(l). Ss2) = 1+Ss2[exp(A. ) —11 A )).), Eqs. (Ia) and
(lb) may be rewritten in a more useful and elegant form

G(D»;Sg2) = 1+Ss2[exp(Pj~D») —1] (3b)

The exact set of mutually coupled Eqs. (2a) and (2b) is
particularly amenable to systematic approximations and will
be used herc as the basis for thc present formalism. Firstly,
we should note that the exact Eqs. (2a) and (2b) provide a
set of relations between the two relevant statistical-
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mechanical quantities m and Q and associated multispin
correlation functions of the various sites. Thus, if we try to
exactly take into account all these spin-spin correlations, the
problem quickly becomes mathematically untractable, so
that some approximations have to be done. However, as
has already been pointed out in earlier works on both spin-

(Refs. 4—9) and spin-1 Ising systems'p as well as in other

models, " this kind of exact formal set of identities can be
used as a basis for various approximate schemes which can
explicitly and systematically include effects of correlations.
On the other hand, a first obvious attempt to deal with it is
to ignore correlations. It is clear that within this approxima-
tion, the strict criticality of the system is lost (in particular,
the critical exponents are going to be the classical ones),
and the real dimensionality of the system is only partially
taken into account through the coordination number z.
Nevertheless, this kind of approximate procedure is quite
superior to the ordinary MFA, and this is so because, in the
present framework relations like Sg =0, 1 are taken exactly
into account (and, as a consequence, neglects only correla-
tions between different spin variables), whereas the usual
mean-field approximation neglects all correlations.

Based in this approximation (where spin-spin correlations
are neglected) the two statistical-mechanical quantities m

and Q pertinent to the BEG model can be evaluated from
the following set of equations:

m = [F(D„;m,g) G(D;Q)]'f(xy) ~„=p. =p, (4a)

Q = [F(D;m, g) G(Dy, g)]'g(x,y) lx=p;y ——p, (4b)

where now

F(D„;m, g ) = 1+ m sinh(P J~D„)+ Q [cosh(P J~D„)—1]
and

G(Dy, g) =1+Q[exP(PJafDy) —1]

Thus, by using the property of the exponential operator
[namely, exp(ltD„) f(xy) =f(x+ A. ,y) ], Eqs. (4a) and
(4b) can be transformed for any lattice structure, character-
ized by the coordination number z, into polynomial expres-
sions of the general form

m = QA„,m", r =1,3, 5, . . . , v ~ z (5.)

Q = Q B i m", '=r0, 2, 4, 6, . . . , v' ~ z
I

(Sb)

In fact, our conclusion (i) is in complete agreement with
the exact result obtained by means of the transfer matrix'
and by the use of other approximate methods. ' Moreover,
we also note that our conclusion (ii) is in qualitative
disagreement with Chakraborty's results' once he predicts

where the coefficients A„, and B„„which are not explicitly
presented here, are dependent on the variables Q and T.

With the Eqs. (Sa) and (Sb) the computation of the
relevant thermodynamical quantities for different lattice
structures, with nonzero biquadratic parameter o., have been
carried out, and the main conclusions are summarized as
follows.

(i) For a linear chain (z = 2), in contrast to Chakraborty's
results, we found no solution for T,e0 for any value of o..
g = 1 and m = 1 is a solution only for T, = 0.

(ii) For honeycomb (z = 3) and simple-cubic (z = 6) lat-
tices, we have found that a nonzero, real, positive solution
for T, always exists for both positive and negative values of
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FIG. 1. Nature of variation of k&T, /J with respect to n over the

range —n, ~a~1 for a honeycomb lattice. The curve refers to
the second-order phase transition and the critical point (T, , a, ) is

indicated by arrows.

no solution for T, for any positive o. in both cases of honey-
comb and simple-cubic lattices.

In Fig. 1 the results of our calculation for the critical fron-
tier in the (T, n) space —which determines the limit of sta-
bility of the long-range ferromagnetic order —is illustrated
for the case of a honeycomb lattice. %'e find that there ex-
ists a certain critical negative value of n (n, = —1.548)
below which the set of Eqs. (Sa) and (Sb) does not exhibit
solutions with m=0. In fact, we have found that for
a( o., the magnetization exhibits a discontinuity which
goes from certain finite value m, to zero, at a certain tem-
perature T„suggesting a first-order phase transition, which
characterizes a different behavior of the system over the
range —~ & o. ( —1.548. The fact that the present system
undergoes the first-order or the second-order phase transi-
tion according to the value of the biquadratic parameter o. ,
is also provided by the usual MFA' as well as other approx-
imate schemes. '3

Let us conclude by saying that our results support the be-
lief that the present- framework provides qualitative and to a
certain extent quantitative confidence. So, as a main con-
clusion we would like to emphasize that the discrepancies
we have found between our results and those from
Chakraborty's work are basically due to his drastic assump-
tion (A)/(B) = (A/B). Finally, we should also mention
that, owing to their simp1icity, the method developed here
can be used to study more complex problems associated
with the Ising spin-1 Hamiltonian. In a forthcoming paper
we intend to discuss thermodynamical properties which have
not been analyzed herein, such as the thermal behavior of
the m and g order parameters, internal energy, specific
heat, and so on.
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