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Magnetoresistance of yttrium alloys with dilute rare-earth solutes
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The magnetoreslstance (MR) of some yttrium —rare-earth alloys has been investigated ln the liquid-

helium temperature range in magnetic fields up to 30 kOe. A negative MR is observed for the "Kondo"
alloy, Y-Ce(3 at. %), which is consistent with theory based on lsotropic conduction-electron-f-electron
scattering between the conduction electron and the magnetic ion. In the paramagnetic phase the spin-glass

alloy, Y-Dy(2 at. %), shows a negative MR at low fields but at higher fields and temperatures the MR be-

comes positive. The positive MR is thought to be associated with "normal magnetoresistance" due to the

Lorentz force. A contribution due to anisotropic k-f scattering is also expected in the MR data. The MR
of antiferromagnetic Y-Tb(3 at. %) is positive and increases with field up to H, =12 kOe at 4.2 K. For
T ( T& (T&= 5.2 K), the positive MR is interpreted to be the result of field-induced enhancement of the

spin fluctuations. The MR is negative for T ~ T& and H )H, as expected in the paramagnetic phase. The

longitudinal and transverse magnetoresistances are not equal. It is believed that this anisotropy arises from
an anisotropic scattering between the conduction electrons and the f electrons. The sign of the anisotropy

is found to be consistent with the present theory.

Hij= —/Si SJ, (2)

where j is called the exchange integral and is normally as-
sumed to be isotropic. The Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction is long range and oscillatory behaving
as cos(2KFr)/r3, where KF is the Fermi wave vector and r
the spacing between two interacting magnetic ions. The
RKKY interaction can account for various magnetic proper-
ties of metallic rare-earth systems, e.g. , ferromagnetism, an-
tiferromagnetism, spiral spin arrangements, and spin
glasses.

It has been shown in a recent study2 that Y-Ce(3 at. %) is
a Kondo alloy with a resistance minimum at —22 K, Y-
Dy(2 at. %) is a spin glass with a freezing temperature
Tf ——4 K and Y-Tb(3 at. %) orders antiferromagnetically
below T~= 5.2 K. Thus, we have three alloys exhibiting
three different kinds of magnetic properties. Y-Ce(3 at. %)
can be treated as a dilute magnetic alloy where the interac-
tion between the magnetic moments is insignificant and the

Yttrium alloys with small concentrations of rare-earth ions
(Y-R) show various magnetic properties depending on the
nature and concentration of the rare-earth ions. For exam-
ple, Y-Ce (Refs. 1 and 2) shows the Kondo effect while a
few atomic percent of Tb, Dy, or Gd can produce either a
spin-glass or long-range magnetic order at low tempera-
tures. 23 Because of the localized nature of 4f electrons,
which are responsible for magnetism in rare earths, the in-
teraction between two neighboring magnetic moments is
mainly indirect. The conduction electrons interact with the
magnetic ions according to the s-d (for transition metals) or
s f(for rare earths-) exchange Hamiltonian

H, f= —Js ~ S,
where s and S are the spins of conduction electron and
magnetic ion and J the coupling constant. Each magnetic
ion spin polarizes the conduction electrons in the immediate
vicinity and at sufficient concentrations the polarization in-
teracts with the spin polarization on neighboring magnetic
ions. This indirect interaction via the conduction electrons
is called the RKKY interaction and is expressed as

Kondo effect is caused by s fscattering. -In Y-Dy(2 at. %)
the neighboring magnetic ions interact via the conduction
electrons but instead of producing spin alignment the in-
teraction freezes the spins in random directions below tem-
perature Tf called the spin freezing temperature. And final-

ly, in Y-Tb(3 at. %) the magnetic moments are aligned by
the RKKY interaction in an antiferromagnetic order below—5.2 K.

The magnetoresistance (MR) of dilute Kondo alloys has
been theoretically calculated by Beal-Monod and Weiner4
using an isotropic Hamiltonian of the form shown in Eq.
(1). It is found that the MR is negative and for
(gp, &H//ks T) & 1 the isothermal MR has a H field depen-
dence, where g, p, z, H, k~, and T are the Lande g factor,
Bohr magneton, external magnetic field, Boltzman constant,
and temperature, respectively. This behavior is exhibited
because of the freezing out of the spin-flip scattering due to
the alignment of the magnetic moments in an external mag-
netic field. At temperatures above Tf it should be possible
to treat the MR of a spin glass using the dilute alloy approx-
imation. On the other hand, the interactions that cause the
MR in an antiferromagnetic metal are more complicated,
particularly for systems containing rare-earth ions where the
magnetic interaction is indirect. However, there is a
theoretical calculation of the MR for an antiferromagnet by
Yamada and Takada for systems where the conduction
electron-magnetic moment interaction strength is much
smaller than the ordering temperature. This assumption
does not hold true for rare-earth systems so it is not possi-
ble to make quantitative comparisons of theory with experi-
mental results, but, the qualitative conclusions of Yamada
and Takada may provide a guide to understanding the ex-
perimental results. They find that (i) the MR of an antifer-
romagnetic metal is positive and increases with increasing
field for T & Tz up to a critical field H„ the antiferromag-
netic to paramagnetic phase transition field, and (ii) in the
paramagnetic phase (T) T~) the MR is negative because
of the field-induced alignment of the spins.

In this Brief Report we present the experimental results
of the MR of a Kondo alloy Y-Ce(3 at. '/0), a spin glass Y-
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3 = (Ap/po) ll (/J p/po) i~ L (S—~), (4)

where L is the total orbital angular momentum of the mag-
netic ion and S the spin. One expects zero anisotropy for
Gd3+ ions (L =0) and such behavior is observed for AuGd
and AgGd alloys. The sign of A is expected to be positive

therm and for the 10-K transverse isotherm, and becomes
positive with increasing field. At higher temperatures the
MR remains positive at all values of the field and increases
with increasing field as —H . Another interesting feature
of the MR data for the Y-Dy(2 at. %) alloy is that the LMR
is always greater than the TMR.

In the paramagnetic range it is reasonable to treat the Y-
Dy(2 at. %) alloy as a dilute magnetic alloy in the context of
the Beal-Monod and Weiner4 theory. We then expect a
negative MR with (Ap/po)~ —H", 1 & n & 2. The nega-
tive MR at 4.2 and 10 K for low fields is mainly caused by
the reduction of spin-flip scattering due to the field-induced
alignment of the magnetic spins as expected in the case of a
dilute magnetic alloy. The positive MR in Y-Dy(2 at. %)
probably arises from the domin'ance of the "normal magne-
toresistance" at higher fields and temperatures. ~ This term
is small in dilute Au-R and Ag-R alloyss (R =rare earth)
but is expected to be large in Y-R alloys. From the magne-
toresistance study on the parent metal by Young, we esti-
mate that hp/pc ——0.32 at 26.5 kOe and 4.2 K for Y, which
is quite large compared with the MR we observe for dilute
Y-R alloys. Of course, the asphericity of the electron ener-
gy surfaces and the variation of the relaxation times on the
Fermi surface, on which the normal MR depends, are not
quantitatively similar in an alloy and a parent metal.

At the same time there is a contribution to the MR due
to the anisotropic scattering between the conduction elec-
trons and f electrons that is not included in the theory for
dilute magnetic alloys. ~ It has been shown by Pert and co-
workerss'o " that the anisotropy A [ =—(6p/po) s
—(hp/po)i] of dilute Au-R and Ag-R (R rare earth) al-
loys is due to the anisotropic conduction-ele tron —f-electron
scattering and it is mainly of quadrupolar type. The sign of
the anisotropy changes as

for Dy3+(L=5, s=T) and for Y-Dy(2 at. %) A is ob-
served to be positive at all temperatures. The difference
between LMR and TMR is very small for the Y-Ce alloy;
hence, the anisotropic k-f scattering must be insignificant in
this material.

The MR data of the antiferromagnetic Y-Tb(3 at %.) can
be discussed in two temperature regimes: one for
T & Ttt(Ttt=5. 2 K) and the other for T) T~. For the
4.2-K isotherm in Fig. 3, the MR is positive, increases with
increasing field and reaches a maximum at a critical field
H, (T=4.2E) =12 kOe, and above H, the MR decreases
monotonically with increasing field. The critical field
0,= 12 kOe is the field at which the transition from the an-
tiferromagnetic to the paramagnetic phase occurs at 4.2 K.
The increase in the positive MR with increasing field is con-
sistent with the Yamada and Takada5 6 theory in which an
increase in the MR arises from an enhancement in the spin
fluctuations with increasing field up to the critical field 0,.
This is a mechanism opposite to the ferromagnetic or
paramagnetic case where the spins align in the presence of
an external magnetic field causing a suppression in the spin
fluctuations and, hence, a negative MR. That is why the
MR decreases with increasing field for fields above 0,= 12
kOe as observed on the 4.2-K isotherm of Y-Tb(3 at. %) in
Fig. 3.

The MR of Y-Tb(3 at. %) for the paramagnetic tempera-
tures (i.e. , T) T~) is always negative and decreases with
increasing field as expected in a paramagnetic alloy. The
field dependence of the MR is hp/pa~ —H" (1 & n & 2).
The anisotropy (A) in the paramagnetic regime has a posi-
tive sign; that is, LMR is greater than TMR. This is con-
sistent with the expectations of Eq. (4) for Y-Tb(3 at. %)
with Tbs+ (L =3, S=3). A final remark should be made
that the anisotropy (A) decreases with increasing tempera-
ture again in qualitative agreement with the results of Fert
and co-workers. ~
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