
PHYSICAL REVIEW 8 VOLUME 31, NUMBER 9 1 MAY 1985

Statistical model for stretched exponential relaxation
in macroscopic systems

D. L. Huber
Department of Physics, University of Wisconsin,

Madison, Wisconsin 53'706

(Received 17 January 1985)

We develop a statistical model for the stretched exponential relaxation, exp[ —(t/r) ], observed in many

macroscopic systems. The model, which is suggested by theories for the decay of luminescence in the pres-
ence of a random distribution of traps, is applicable in two cases. The macroscopic system is composed of a

number of similar, weakly interacting subsystems all of which are characterized by the same set of relaxa-
tion channels and rates, with the subsystems differing from one another in the channels which are blocked.
Alternatively, the model is appropriate to a situation where the relaxation channels open and close random-

ly in time with the correlation times for the fluctuations being long in comparison with the reciprocals of
the corresponding rates. The parameter n characterizing the relaxation is related to the limiting behavior of
a weighted density of relaxation rates. As a special case, the model reproduces results obtained previously
for luminescence decay at low trap concentration.

In recent years attention has been drawn to the nonex-
ponential relaxation of various nonequilibrium parameters
of macroscopic systems. Ngai' has emphasized the
widespread appearance of the so-called Kohlrausch or
stretched-exponential relaxation where the asymptotic time
dependence takes the form

1(t) = Ioexp[ —(t/r) ], 0 & n & 1.

A variety of theories have been proposed to account for this
time dependence. ' - Some of these are statistical in char-
acter. 3 4 The theory outlined in Ref. 6 is fundamentally dif-
ferent from the others, however, in that it involves
hierarchically constrained dynamics. It is fair to say that no
one of these theories is truly universal in the sense that it is
appropriate for all situations where stretched-exponential
decay is observed.

The purpose of this paper is to present a new theory for
the stretched-exponential decay. While statistical in nature,
it is distinct from the other statistical theories which have
been proposed. Although theory is suggested by a model
for the decay of optical fluorescence in the presence of a
random distribution of trapping centers, ' it is applicable in
other situations as well.

The theory is appropriate for two distinct cases. The first
of these is when the macroscopic body can be divided into a
number of similar, weakly interacting subsystems. All of
these subsystems are characterized by the same set of po-
tential relaxation channels and rates, which we label by
v = 1, 2, . . . . The subsystems differ from one another in
the various channels which are blocked due to varying mi-
croscopic environments. Writing the relaxation rate associ-
ated with channel v as W„, we have the time dependence

x

1(t)=lx(exp —g IVt)„
x

where the brackets indicate an average over the ensemble of
subsystems. Denoting by P„ the fraction of subsystems
which have channel v open, we can write the configurational
average in the form '

The result, Eq. (3), is also obtained when the various re-
laxation channels of a single system open and close random-
ly in time due to fluctuations in the interaction with its en-
vironment. When there is no correlation between different
channels the decay is associated with the product of the
average of factors of the form

Q(l —P„+P„e ")=exp Xln(1 —P„+P„e ")
It

t

=exp —X P„(l—e ")

t

=exp —j p( W)(l —e ~')dW

where p( W), a weighted density of relaxation rates, is given
by

P(W)=XP„8(W—W„) .

In the model under discussion asymptotic stretched-
exponential decay is associated with singular behavior in
p(W) as W 0. With p(W) —CW ' we have

j p( W)(I —e ')dW- Cct 't I'(1 —a)+
0

(6)

exp —
&

w„(t') dt'

where ~„ fluctuates between the values 8'„and 0. A stand-
ard Markovian analysis" shows that Eq. (13) is obtained
when the correlation time for fluctuations in the opening
and closing of the vth channel is long in comparison with8'„. In this case I'„ is the fraction of time the vth channel
is open.

In our model stretched-exponential behavior requires that
there be a continuum of channels with a small probability of
any one of them being open. In this case we have

I ( t) = Io ff (1 —P„+P„e " ) (3) In Eq. (6) I denotes the gamma function, and the terms
omitted vary less rapidly than t . The requirement that the
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initial slope of I(r)/l(0)
d goo—1(r)/1(0) ~,=,= —X a„W„=—

J W/-( W) aW,
dt 0

dependent parameter and ro„ is the separation between the
excited ion and the trap. In this case Eq. (4) takes the form
(c « I)

(7) —Pt/ro„g (1 —c+ ce '") = exp —c g (1—e
—Ps/r 6

~) . (9)
be finite leads to the condition that a ( 1.

The other limit on n follows from the fact that
t Il

(1 —P„+P„e ")=exp —X&„

as t oo. Thus I(t) will relax to zero only if the integral

p( W)dW

is infinite. Such will be the case when o. ) 0. Shifting the
nonintegrable singularity in p( W) to a point other than the
origin is ruled out since it gives rise to an infinite initial
slope fcf. Eq. (7)1. Similar arguments also rule out an infin-

ity associated with the upper limit to the integral of p( W);
i.e., it would also give rise to an infinity in the integral of
W/ ( W).

As noted earlier, the theory outlined above is suggested
by a model for the decay of luminescence in the presence of
a random distribution of trapping centers. We make contact
with the approach of Refs. 7-10 by pointing out that in this
case the relaxation channels are associated with traps on the
lattice sites in the neighborhood of the fluorescing ion. Re-
laxation via the v th channel involves the nonradiative
transfer of excitation to a trap on lattice site v, while P„ is
identified with c, the probability that site v is occupied by a
trap. Assuming the transfer takes via the dipole-dipole
mechanism, then W„=P r0„6, where P is a material-

Converting the sum over lattice sites v to an integral over r
we have

c X (1 —e ) 4mnT I r dr(1 —e ~' " )J rmin
(10)

where nT is the trap density and r;„ is a cutoff associated
with the maximum transfer rate. Taking the variable of in-
tegration to be /3/r6 we can write the right-hand side of Eq.
(7) in the form
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(2~/tT/3)pt/z (

" W-3/2(I e- w) JW~ 0

where W~,„=P/r6;„. From this expression we identify the
weighted density of relaxation rates

p ( W) = (2~/t&/3)Pt/2 W-3/2 () & W & W

corresponding to n =
2 and thus I(t) varying asymptotically

as exp[ —(t/r ) t/2]. ~

In summary, we have outlined a model for stretched-
exponential relaxation. Although the assumptions of the
model are quite restrictive, it may be appropriate for
phenomena other than the decay of luminescence.
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