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An analytical solution of the resistively shunted-junction-model equation for the case of a periodic ampli-
tude modulation of the supercurrent is presented. The occurrence of current steps in the junction I-V
characteristics at integral multiples of the modulation frequency is predicted. The height of the first current
step is calculated and discussed in detail. The result is in very good agreement with the published numeri-
cal calculations.

The ac Josephson effect is usually demonstrated by apply-
ing, via a microwave field, a rapidly oscillating voltage which
modulates the superconducting phase difference and leads
to Shapiro steps' in the dc I - V characteristics. These steps
appear at dc voltages corresponding to integral multiples of
the microwave frequency.

It can be shown2" that a similar effect [referred to as
amplitude-modulation (AM) steps] should be observed if
one modulates the amplitude of the Josephson super-
current, Io, rather than the phase. The theoretical feasibility
of such an effect has been recently demonstrated by Perrin
and Vanneste, where the authors study the behavior of a
superconducting film perturbed by a periodic laser drive.
Earlier, Vanesste, Gilabert, Sibillot, and Ostrowsky4 present-
ed a detailed analysis of the experimental conditions under
which AM steps could be observed. To achieve modulation
of Io they selected illumination of the Josephson junction by
a modulated laser beam as the most promising technique.
However, to the best of our knowledge, no experimental
results have yet been published, except a trial experiment
performed on an optically induced weak link.

As far as the theory of AM steps is concerned, there exist
analog simulations2 and numerical solutions" based on the
simple resistively shunted junction (RSJ) model. In both
cases a series of current steps in the dc I-V curve corre-
sponding to integral multiples of the modulation frequency
( V = nbtp /2e ) have been predicted. The importance of
numerical results is not to be denied, but analytical solu-
tions are also desirable, since they provide a deeper physical
insight into the process.

In this paper we present an analytical solution of the
resistively shunted-junction-model equation for a junction
irradiated by a sinusoidally modulated laser beam, and we
discuss the results both in the "low"- and "high"-voltage
regimes. We develop a treatment similar to that given by
Stancampiano for Josephson oscillators. The approach
given in Ref. 7 perfectly fits our problem, because it com-

bines the Josephson current and the rf drive into a single
term, an amplitude-modulated version of the Josephson
current. On the other hand, we show that, in the case of a
weak perturbation, the effect of AM may be expressed by a
formula identical to that for rf frequency modulation of the
supercurrent.

We assume that the modulation frequency cu is smaller
than the effective quasiparticle recombination rate Y,ff .
Also, the light intensity is small enough for the linear re-
gime of the Owen and Scalapino or Parker theory to apply.
The validity of this approach has been checked numerically
by Faris, Chi, Cronemeyer, and Loy, 3 but a detailed discus-
sion can be found in Refs. 4 and 5.

Under the above restrictions, the modulated light causes a
similar modulation of the supercurrent. Thus, the super-
current amplitude can be written in a standard form

Ip(t ) = Ip(1 —a ) —Ipa sin(cu t )

where a is the effective modulation amplitude. Introducing
the modulation depth parameter m, as m = a/(1 —a ), we
obtain

Ip(t) = (Ip) [1—m sin(Q) t)]
where (Ip) =Ip/(1+m) is the time average of the pair
current amplitude, and represents the zero-order AM
current step. Note that its dependence is completely dif-
ferent from the case of phase modulation. However, our
assumption of a weak perturbation leads to rn && 1 and to
(Ip) = Ip. Therefore, for the sake of simplicity, we drop
the average (( ) ) in further considerations.

The RSJ model equation with modulation of the critical
current included [Eq. (2)] has the form

Id = Ip[1 —m sin(tp t) ] sing+ (tt/2eRJ) (dy/dt ), (3)

where Id, is the drive current, @ is the phase difference
across the junction, and RJ represents the shunt resistance.
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id, [——1 —m sin(Q T)] sin@+& (4)

For convenience in later calculations, we divide both sides
of (4) by the term (1 —msinQ T) and take into account
that m (& 1, to give

id, [1+m sin(Q T)]=sin@+&[1+m sin(Q T)]
Observe that the term m sin(Q T) which multiplies @ is a
purely sinusoidal modulation (it multiplies the voltage), and
it cannot lead to any locking phenomenon required to pro-
duce a constant-voltage step. ' Thus, we can ignore this
term in further considerations and write Eq. (5) as

@+[sin@ —mid, sin(fI T)] =id, (6)

Equation (6) has the same form as Eq. (A4) in Ref. 7.
Therefore, the amplitude modulation leads to the same
locking effects as the phase modulation, and on the dc I- V
curve we expect current steps at voltages corresponding to
ntcu /2e (n = I, 2, 3, . . .). This result is in exact agree-
ment with the earlier numerical simulations.

Now we calculate the amplitude of the first AM step. For
this purpose we may follow the calculations presented in
Ref. 7, noting that in our case the term mi ~, plays the role
of the incident radiation amplitude (i„r in Ref. 7), and 0
corresponds to O,f.

Before proceeding further, we remark that Eq. (4) can
also be written in the following form:

id, @=sing——(m/2) [cos(@—0 T) —cos(g+ 0 T) ]

(7)
and be solved without the weak-modulation assumption
(m «&I). In the high-voltage regime, around the induced
step the cosine function of a phase difference n, defined as7

n = @(T) —II T, is the only slowly varying function of
time on the right-hand side of Eq. (7). Thus, we can aver-
age this equation over such a time interval that the fast os-
cillating terms will be eliminated (the slowly varying en-
velope approximation). The resultant equation, which
describes the induced AM step, becomes

Introducing the usual normalized units i d = Id, /Io,
P=d@/dT, T =co„t, co,„=2eIpRJ/t, and 0 =cu /co, „we
can rewrite (3) as

the normalized current through the Josephson channel. '
The calculated dependence of A ~ as a function of v~, is
shown in Fig. 1 .

Equation (10) shows (see also Fig. 1) that, as opposed to
the case of microwave-induced Shapiro steps, ' the amplitude
of the first AM step is a monotonic function of the funda-
mental component of the Josephson voltage, and is propor-
tional to the modulation depth. This analytical result is in
very good quantitative agreement with the published numer-
ical findings. We observe that, as plotted in Fig. 1, the
dependence of A ~ on vq, can be divided into two distinctive
(high- and low-voltage) regions. In the high-voltage limit
the curve saturates (A t 1), and as a result, Eq. (10) sim-
plifies (in regular units) to

I) = Ipm

Note that the same result can be obtained directly from Eq.
(8). Thus, in this case it is not necessary to assume that
m &( 1, and the correct result should be written in the
form I, = (Io) m, the same as obtained by Vanneste et al. 4

for a constant-voltage-biased model.
The restriction that co v, ff &( 1 makes the high-voltage

regime difficult to realize experimentally (for details see
Ref. 4) and for a gap-suppression type of AM experiments
only the low-voltage limit seems feasible. In this case A ~ is
the linear function of vd, (A ~

= 2ud, ), and Eq. (10) predicts
current step height given by

I~ ——2m (tao /2e ) (I/RJ )

I~ is now independent of the value of the junction critical
current and is proportional to the ratio of the step voltage to
the junction resistance. Thus, low-resistance junctions (e.g. ,
superconducting-normal-superconducting junctions) are pre-
ferred. Another interesting feature of Eq. (12) is that it
coincides with the result obtained for weak, low-frequency
phase modulation (see, e.g. , Ref. 10). It means that, within
the RSJ model, in the low-voltage regime, both amplitude
and phase modulation lead to quantitatively the same step
structure on the junction I- V characteristics.

Finally, we want to stress that we have chosen the model
of a periodic gap suppression for the amplitude modulation
of the supercurrent because of the extensive literature on

n —(m/2) cosn=id, 0— (8)

Using suitable transformations it can be put into the same
form as the basic RSJ equation.

Under the weak-modulation approximation, even in the
low-voltage regime, the shape of the dc I - V curve in the
neighborhood of an AM step has the same shape as the RSJ
model I Vcurve and the full am-plitude of the step (evaluat-
ed at ud, ——0 ) is given by the maximum difference
between the free-running and pulled Josephson frequency
multiplied by twice the dynamic conductance of the I - V
curve. 7 Thus, the normalized amplitude i ~ of the first AM
step can be written as
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where At =2vd, (Id& 'Udz) is the first Fourier coefficient of

where id, =ud, +1. Equation (9) can also be written more
compactly as
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FIG. 1. Calculated dependence of A ~ as a function of v~, (or,
equivalently, B~ ) .
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this subject and ongoing efforts to perform the experiment.
However, our calculations are valid irrespective of the par-
ticular method of creating the modulated critical current
[Eq. (2)]. Recent progress in fabrication of tunnel junctions
with artificial, active barriers, and especially photosensitive
barriers, makes it possible to modulate Io via changing the
potential height of the barrier, " as opposed to changing the
superconductive properties of electodes. In the former case,
the junction response is free from the heating effect and is
mainly limited by the relaxation time of the photoexcited

carriers, which can be less than one picosecond with the
proper choice of materials.
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