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We discuss the ground-state phase diagram of the molecular-crystal model for electron-phonon
interactions in the presence of on-site ( U) and nearest-neighbor ( V) election-electron interactions in
the half-filled-band sector. The system is analyzed as a function of the phonon frequency (~),

. electron-phonon coupling constant (A.), and U and V in the physically relevant case (U, V) 0). We
discuss various limiting cases with perturbation theory, as well as intermediate-coupling cases using
a numerical simulation technique. In particular, we study in detail the limit co—+ oo, which corre-
sponds 'to the extended Hubbard model. The phase diagram is divided into regions of long-range
charge-density-wave (CDW) order, algebraic spin-density-wave (SDW) order, and coexisting algebra-
ic singlet superconducting and CDW order. The transition between CDW and SDW phases is con-
tinuous for small U and first order for large U. For the physical parameter range ( U, V) 0), there
is no regime where superconductivity dominates. Modification of this picture for the non-half-
filled-band sector is indicated.

I. INTRODUCTION

This is the third of a series of papers in which we dis-
cuss the global phase diagram of one-dimensional
electron-phonon systems. Such systems have been of
great interest in recent years in connection with properties
of quasi-one-dimensional organic charge-transfer com-
pounds. ' A large amount of theoretical effort has been
devoted to understanding the competing instabilities in
the one-dimensional electron gas, and for the case of
nonretarded interactions a coherent picture has emerged.
The phase diagram is well understood in the weak-
coupling regime from renormalization-group calcula-
tions, ' and in the strong-coupling regime from strong-
coupling expansions. The intermediate-coupling region is,
however, difficult to study theoretically. In addition, the
theoretical analysis becomes much more difficult in the
presence of retardation (finite phonon frequency) and only
recently has progress been made in this direction. In the
first two papers of this series ' (hereafter referred to as I
and II) we studied the global phase diagram of two one-
dimensional electron-phonon systems in the absence of
Coulomb interactions: the Su-Schrieffer-Heeger (SSH)
model, which considers longitudinal phonons that modi-.
fy the electronic transfer term, and the molecular-crystal
model (Holstein model ) in which an intramolecular vibra-
tion mode couples to the local electron density. In the
present and a forthcoming paper, we consider the models
in -the presence of electron-electron interactions. In a real
quasi-one-dimensional system, usually couplings to vari-
ous modes of both types of vibrational degrees of freedom
will exist. We have not considered both types of cou-
plings simultaneously, although this has been recently
done within the mean-field approximation by Kivelson.

In this paper we consider the molecular-crystal model
in the presence of an on-site and a nearest-neighbor repul-
sion Uand V,
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as a function of co=V'K/M, A, , U, and V. t =1 defines
the units of energy. We restrict ourselves to the half-
filled-band sector. The model equation (1) was studied in
paper II in the absence of Coulomb interactions in the
half-filled-band sector, and for U= op in the quarter-
filled-band sector. There it was found that the phase dia-
gram in the half-filled-band case is extremely simple: the
model has charge-density-wave (CDW) long-range order
for arbitrary X and co ( oo, and coexisting algebraic CDW
and singlet superconducting (SS) order in the case co= oo.
In the presence of U and V, the model can also develop
algebraic correlations for spin-density-wave (SDW), SS,
and TS (triplet superconducting) order. Although in the
literature the model in the nonretarded limit is usually
discussed for both signs of the interactions U and V, we
will here limit ourselves mostly to U, V&0, which is the
physical parameter range. A competing attractive on-site
interaction will arise from the coupling to the phonon de-
grees of freedom, and no mechanism for an attractive
nearest-neighbor interaction exists in the model equation
(1). Such an effective attraction would arise from a cou-
pling to nearest-neighbor phonons, but will not be con-
sidered here. For the parameter range of interest, the only
phases that appear are CDW, SDW, and SS, and nowhere
does SS dominate. Thus, our conclusions partly disagree
with those of a recent paper by Guinea. ' In future work
we will consider the non-half-filled-band sectors and
longer-range electron-phonon couplings, which give the
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possibility of dominance of superconducting correlations.
We will first discuss the model in several limiting cases

where rigorous theoretical statements can be made:
nonretarded regime (co~ co ), strong-coupling regime

. (A, »V'Kt), and adiabatic regime (co—&0). We then study
the model in a nonperturbative way using a Monte Carlo
simulation technique. " The simulations confirm the
theoretical picture obtained from the perturbative analysis
and provide quantitative information on the properties of
the system in intermediate-coupling regimes. In the limit
of large co, the model reduces to an extended Hubbard
model, and we also study this model directly by numerical
simulations.

In Sec. II we discuss the properties of the model in the
limit of nonretarded interactions (co~ oo). In Sec. III we
review results on the static limit (co—+0) within the mean-
field approximation, and in Sec. IV we discuss the
strong-coupling regime. In Sec. V we present results of
numerical simulations in a low-frequency and a high-
frequency regime. In Sec. VI we present results of simula-
tions of the extended Hubbard model, and conclude with
some discussion in Sec. VII. Some of the results presented
in this paper were reported briefly elsewhere. ' '

II. co~op REGIME

In the limit of large co, the phonons can be integrated
out, yielding an effective on-site electron-electron attrac-
tion —A, /K. This has been discussed in detail in paper
II. The Hamiltonian then becomes

H= tg(c; —c;+, +H. c.)+U,tran;, n;,

+ Vgn;n;+(,

= Ueff/2

Ug)/2

FIG. 1. Schematic phase diagram of the extended Hubbard
model in the half-filled-band sector. The bold line denotes a
discontinuous transition.

energy of those configurations, one finds the transition to
occur at V=U, tt/2. For V& U,rr/2 the ground state is

doubly degenerate with a CDW of period 2. For
V Q U ff /2 the system is described by a Heisenberg model
with coupling J,rr t /( U, rr

—V——), so that the ground state
has algebraic SDW order. However, the transition line
V= U/2 in Fig. I is only asymptotically correct in weak

and strong coupling. For intermediate couplings we find

that it deviates towards larger V, so that the SDW region

is slightly enlarged, as will be shown in Sec. VE.

It is interesting to discuss the order of the transition
from the CDW to the SDW state. In the weak-coupling

regime, the transition predicted by g-ology is continuous
(infinite order). However, in the limit t && U, ff V it is
clear that the transition is discontinuous (first order).
Consider the system close to the transition for V & Ue ff/2,
i.e., in the CDW state. The low-lying excitations are
"droplets" of the SDW phase with energy

U,rr
——U —A, /K . e(n)= V—n(U, rr —2V) (4)

The properties of this extended Hubbard Hamiltonian

have been discussed extensively in the literature. For
small U,rr and V, we can use the results from the weak-

coupling renormalization-group calculations ("g-ology"
phase diagram), ' which predict a (continuous) transition

between a regime of algebraic SDW order for U,ff ~2V,
to long-range CDW order for U,ff &2V. For negative

U,ff the system can have algebraic singlet or triplet super-

conducting pairing only- for V&0. The g-ology phase di-

agram in the half-filled-band case is shown in Fig. 1, in

terms of the real-space parameters U,ff and V. In the

physical parameter range (U, V&0) the system can only

have CDW long-range order, SDW algebraic order, or
CDW and SS coexisting algebraic order (for U,rr &0,
V=O).

The features shown in Fig. 1 actually persist in strong

coupling also. For large and negative U,ff, a strong-

coupling expansion yields coexisting SS and CD%' insta-

bilities for V=0 and dominance of one or the other for
V&0 and V&0, respectively. For large and positive
U ff and V it is clear that the ground state consists of ei-

ther pairs occupying alternating lattice sites or all singly

occupied sites, as shown in Fig. 2. From considering the

for a droplet of size n. V is the surface energy, which is

the dominant term for small n. If we now let V become
smaller than the critical value, there will be a critical
droplet size

&cnt =
U,ff —2V

+ — o +- o + — o + — o + — o +—

(cj

FIG. 2. Extended Hubbard model in the strong-coupling re-

gime. (a) CDW ground state, for V& Udf/2. (b) SDW ground

state (schematic), for V~ Udq/2. (c) Droplet of SDW phase in

CDW background.



J. E. HIRSCH 31

such that droplets with n & n„;, are energetically favored
and the system will tunnel to the other phase by nu-
cleation. This will happen if the hopping amplitude t,
which plays the role of temperature, is nonzero. This
clearly describes a first-order transition. For a finite value
of the hopping t, the droplet energy is lowered by the
kinetic-energy term, since a droplet of size n can occupy
n +1 sites, as shown in Fig. 2. The kinetic-energy lower-
ing is proportional to t, and is presumably only weakly
dependent on the size of the droplet, so that we can think
of it as a surface term. It plays a role analogous to the en-
tropy of the droplet boundary in a classical model. The
energy of a droplet is then

(a) V) —,
' (U —A, /K), (10)

and it has only singly occupied sites if

up to chemical potential terms. The presence of the elec-
trons shifts the equilibrium position of the oscillator to—qo/2 or —qo, with

q, =X/x,
depending on whether the site is singly or doubly occu-
pied. The starting point of the expansion depends on the
relative magnitude of the parameters. As discussed in
Sec. II, the ground state for t =0 is a CDW state for

e( n ) = V ct —n( —U,rr —2 V), (6) (b) V( —,(U A, /K—) .

with c a constant. For V—t the two surface contributions
cancel and it becomes advantageous to nucleate many
droplets of arbitrary size, as Vis reduced below U,ff/2, so
that the transition becomes continuous. '

For ~ & ~ the effective interaction between the elec-
trons becomes retarded. From the arguments given in pa-
per II, we believe that the system for Udf &0, V=O will
move from the coexistence line towards the CDW region
in Fig. 1 for any cu & op. Recently, Caron and Borboun-
nais' showed this to be the case for cu &t within a two-
cutoff renormalization-group scheme. ' However, that
scheme predicts that the system remains on the coex-
istence line if cu ~ t, which is in disagreement with Monte
Carlo simulations as well as with results from the strong-
coupling expansion.

III. a) —+0 LIMIT

In the co —+0 limit one considers the static phonon con-
figuration that minimizes the total ground-state energy.
For U, V =0 the problem can, of course, be solved exact-
ly, and one finds a CDW state for any A, & 0. For U, V&0
no exact solution exists, but the problem has been studied
within the mean-field approximation. ' Mean-field theory
gives a discontinuous transition at

U —A, /K=2V

between a CDW and a SDW state. Note that this agrees
with the results in the large-cu limit for V~ 0, except that
here the transition is predicted to be always discontinuous.
However, this is probably an artifact of the mean-field ap-
proximation. The main difference with the regime co~ ao
is that here the case U —X /K) (0, V=O has long-range
CDW order instead of coexisting CDW and SS order. As
mentioned before, we believe the same qualitative
behavior obtained for co=0 should hold for any co & oo.

IV. STRONG-COUPLING REGIME

We consider here an expansion in the hopping matrix
element t for arbitrary phonon frequency co. The Hamil-
tonian for one site is

2

IIJ — + , K[q& + (A/K)(n—j,+ nj, , )]2m

—(A, /K —U)nj, n/, ,

In case (a) the ground state is highly degenerate if
V=O, since the Ã/2 pairs can be distributed arbitrarily
over X sites. In that case, the expansion discussed in pa-
per II is applicable and one obtains

ff — r g ( ll ' b ' + ] +H. c. ) + Vg n; n; + ] (12)

with

4t qg (2g) +"
1

4' „„, n!n'! n+n'+4g '

I —U4' K

(14)

(15)

For any co & ~, one has V & 2t, so that the ground state is
a CDW state, as discussed in paper II for U =0. In the
presence of a small V~ 0, its effect to lowest order is to
shift V~V+4V, so that the CDW state is even more
enhanced. We conclude then that, for A, /E —U&&t, the
ground state is a CDW state for arbitrary values of co and
V&0.

For case (b) the strong-coupling expansion parallels the
calculation by Beni, Pincus, and Kanamori. ' The ground
state has only singly occupied sites, and in second order
one generates an isotropic spin-spin interaction,

H, ff —2J ff g S' S'+] (16)
l

with S; the usual spin- —, operators, and Jdf of the same
form as t in Eq. (11),but with

= I
U — —V4' K

Thus, the effect of V is only to enhance the exchange cou-
pling J,ff, but it does not change the behavior of the spin
correlation functions. In the limit co~co, Eqs. (13) and
(17) yield

2

U —A, /K —V

where b; is a small-polaron operator that creates a pair of
electrons and shifts the equilibrium position of the oscilla-
tor from 0 to —qo. The parameters are given by

2t qs~ (
1)„+„(2g)"+"

1

nn n!n'! n+n'+4g '
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FIG. 5. Zero-frequency SDW susceptibility for various
values of U, co =0.1.

FIG. 3. Schematic phase diagram of the molecular crystal
model. For co& oo the ground state is either CDW or SDW.
For co= oo the ground state is SDW or coexisting SS and CDW.

as one would expect. As co decreases, Jd~ becomes small-
er, as is seen from Eq. (13). The size of J,rf determines
for which temperatures one is approaching the low-
temperature regime of the Hamiltonian (16). In summary,
we find that within strong coupling we obtain a CDW
state for case (a) [Eq. (10)] and a SDW state for case (b)
[Eq. (11)] for arbitrary m & co. Since this is the same re-
sult obtained from the mean-field approximation in the
co=0 limit, we conclude that for any co & oo the behavior
of the system is qualitatively similar.

In Fig. 3 we show the schematic phase diagram that
emerges from the preceding considerations. The vertical
plane separating the two phases obeys the equation
U —A, /K=0 for all co. The only qualitative effect of co is
to yield coexisting SS and CDW algebraic phases at
co= oo if V=O. For V& 0, the phase diagram is the same
if we replace 1, /E by A, /K+2V, except that even for
co = oo there is long-range CDW order in that case.

and V. The technique has been discussed in detail else-
where, " and numerical results for the case U= V=O were
presented in paper II. Here we are mainly interested in
the effect of U and V on the CDW and SDW correlations.
Most simulations were carried out on lattices of spatial
size 24 with "time slice" 6&=0.25, and electron-phonon
coupling constant A, =0.636. Our purpose is to verify that
the simple picture that emerges from the theoretical con-
siderations in limiting cases also holds qualitatively for in-
termediate parameter regimes, and also to check its quan-
titative accuracy.

Typical simulations involved 10000—25 000 sweeps
through the lattice, attempting to update the phonon field
three times at each point. We usually started the lattice in
a dimerized configuration. Because the system takes a
very long time to equilibrate, we repeated the simulations
several times with different initial dimerization, until it
appeared that there was no significant drift in the re-
sults. '

We first consider a case of small ionic frequency,
co=V'K/M =0.1. Figure 4 shows the decay of the lattice
staggered correlation function,

V. NUMERICAL SIMULATIONS FOR FINITE a)

In this section we discuss results of numerical simula-
tions of the molecular-crystal model in the presence of U

V =U/2

(a)
1.0

(b)

4-
U=2,

Dpi~& ~~: -i—:l
U=I

V=2

0
f—f—f f—f

V=2,V=I
f

V=0

t f—f—f—:
l2

De(g

f ~ f I f—a

-f f I

V=2

0

s f r l

I I f~~
3

FIG. 4. Decay of scattered correlation functions vs distance
for various values of U and co=0. 1. Here and in the following
figures, A, =0.636, E =0.25, and t =1. {a}Lattice-displacement
correlation function. {b) Electron-density correlation function.

FIG. 6. Lattice dimerization vs U, co=0. 1. The dashed line
is the cu =0 result for U, V=O.
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FIG. 7. Lattice dimerization vs U, co = 1.
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and the electron-d-density staggered correlation function

0

The spin susceptibility is very small for
there is CDW ion -ran e oris ong-range order, and increases dramatical-

n g- ge order disappears. Figures 4 and 5
strongly suggest that there is no coexistence of CDWence o W and

Figure 6 shows the lattice dimerization

(22)

(20)

versus I for the case X=0.636 K =0 2S
The tern

S, t =1, and V=O.
e temperature was taken to be T=0.055

fluctuations are
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are predominantly quantum rather than
thermal. Note the somewhat reduced ion -ran

e long-range order clearly persists for U=1
and vanishes for U =2.

Figure 5 shows the zero-fre u
SDW

- requency Fourier-transformed
susceptibility, defined by

X [nJ+I,(0)—n (0)])

versus U for the cases V=O and V=U/2. F
ere e imerization vanishes agrees with the re-

diction of mean-field theory, U, =A, /% =1.6
the numerical results show that the di-

merization increases slowly with Uwi, while mean-field
eory would predict no change in that case.
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FIG. 8. Zero-frequency SDW b' '
susceptibility, co = 1.

FIG. 10. Absolute value of CD&
U=2 4

CD& order parameter vs V for
, 4, and 6 for a 32 X 32 lattice, P= 8.
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1m1

FIG. 11. CDW structure factor (solid line) and SDW suscep-
tibility (dashed line) vs lattice size for U =2 and several values
of V.

150

(b) U=G. O,V=3.1G25

co~0 limit, when the long-range CDW disappears, the
phonons have essentially no effect and the SDW response
is essentially given by its value in the Hubbard model for
U=2.

In Fig. 9 we show results for the dimerization versus V
for U =2, 4, and 8 in the case aI = 1. Note how the transi-
tion becomes sharper as U increases, and is clearly discon-
tinuous for U =8. The transition there occurs at
V, -3.32+0.05, slightly larger than the expected mean-
field value V= —,

'
( U —A, /K) =3.19. The results for

U=8 were obtained by starting the simulations in a
"mixed phase, " with one-half of the lattice in the CDW
phase and one-half in the SDW phase. If the simulations
were started in one of the ordered phases, the system

i00—

50—

Q I I I I I I I I I I I I I I I I I I I I I I I ~ I I I I I

-0.8 0.0 0.8 0.4 0.6 0.8 1.0
Iml

FIG. 13. Histograms of the absolute value of the CDW order
parameter for U =6 and two values of V on a 32&& 32 lattice.

V=2.0
0

V=2. I V=2.i5
remained in it even away from the transition point due to
metastability. However, comparison of the energies for
the system in both phases allowed an accurate determina-
tion of the transition point. Figure 9 shows that the tran-
sition goes from continuous to discontinuous as U is in-
creased, in accordance with the discussion in Sec. II.

V=2. tI 5 V=2.2

VI. NUMERICAL SIMULATIONS
FOR THE EXTENDED HUBBARD. MODEL

0
I I

8 16
I

32

Oared «0 «~~
I I I

8 16 32 8 16 32
LATTICE SIZE

In this section we discuss results of simulations of the
extended Hubbard model, which corresponds to the
large-e limit of the molecular-crystal model. Figure 10
shows results for the average CDW order parameter

FIG. 12. CDW structure factor (solid line) and SDW suscep-
tibility (dashed line) vs lattice size for U =4 and several values
of V.

m =—g( —1)'n1
(23)

for various values of U. Just as in the case of finite ai, the
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(d)U=4. 0,V=2.2

100— 100—
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V

50— 50—
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Q
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FIG. 14. Histograms of the absolute value of the CDW order parameter for U =4 and several values of V on a 32&(32 lattice.

transition becomes sharper as U is increased; it can also
be seen that the transition occurs at a slightly larger value
of V than the theoretical prediction V= U/2.

In order to determine the transition point accurately,
we studied the equal-time CDW structure factor

S(q)= —ge ' ' (n;n, ),iq(R —R )

E&J

and the zero-frequency SDW susceptibility

(24)

1X(q)= —J dr+([n;, (r) —n;, (r)][nj,(0)—nj, (0)]),
l,J

(25)

for different lattice sizes and temperatures. If we scale
the spatial size N and the inverse temperature P by the
same factor, S(q=m. ) will diverge linearly with X if we
are in the CD& phase, and X(q =m ) will diverge linearly
in the SDW phase. Figures 11 and 12 show results for

U=2 and U=4. These indicate clearly that the transi-
tion point is shifted from V= U/2 to larger values of V.
From these and other simulations we estimate the transi-
tion points to be V=1.15 for U=2, V=1.675 for U=3,
V=2. 163 for U=4, V=3.158 for U=6, and V=4. 131
for U=8.

To determine the character of the transition, we have
studied hysteresis cycles and histograms of the order pa-
rameter. In cycles where we first increase and then de-
crease the value of V, we clearly see increasing hysteresis
as U is increased, ' indicating that the transition is turn-
ing first order. They do not, however, provide a precise
quantitative criterion on the character of the transition
since the presence or absence of hysteresis is strongly
dependent on the speed with which we sweep through the
transition.

Figure 13 shows histograms of the absolute value of the
CDW order parameter for U=6. The two coexisting
peaks clearly indicate that the transition is strongly first
order here. Figure 14 shows histograms for U=4 and
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FIG. 15. Histograms of the CDW order parameter for U =3
and several values of V on a 32 X32 lattice.

FIG. 16. Histograms of the CD& order parameter for U =2
and several values of Von a 32 X 32 lattice.
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FIG. 17. Phase boundary between CDW and SDW regions.
The solid line denotes U=2V; the dotted line denotes predic-
tions of strong-coupling perturbation theory. The dashed and

solid lines connecting the Monte Carlo points indicate continu-

ous and first-order transitions, respectively.

V=2. 1, 2.1625, 2.175, and 2.2. Note that the transition is
still extremely sharp, and we still see some coexistence of
the two phases. In Fig. 15 we show results for U=3.
The peaks here are broader, but there is still some indica-
tion of coexistence of the two phases for V=1.675. Fi-
nally, for U =2 (Fig. 16) we see a broad peak that shifts
continuously as V is increased. We conclude from these
and other simulations that the transition becomes discon-
tinuous around U =3, or slightly below, and becomes rap-
idly strongly first order as U is increased.

The transition line obtained from our simulations is
shown in Fig. 17. For finite co we expect a similar shift
from the U,ff ——2V line towards the CDW phase, as was
found in Fig. 9. It is easy to understand this shift due to
the larger entropy of the SDW phase: For t =0 there are
only two degenerate CDW ground states, but (~~&) degen-1V

crate SDW states. From. strong-coupling perturbation
theory, we obtained the phase boundary shown as the dot-
ted line in Fig. 16.'

tions dominate. In fact, SS correlations only decay alge-
braically if co= (x), with the same power as CDW correla-
tions if U&A, /Rand V=0.

(b) There is a transition between CDW and SDW re-
gions at U- U, =2V+A, /K. The transition actually
occurs at U= U, for weak and strong coupling, but devi-
ates slightly towards smaller U for intermediate cou-
pling s.

(c) The phonon frequency plays a relatively minor role,
unlike the case of the SSH model. It does not modify the
qualitative features of the phase diagram, except in the
limiting case co= co. Its main effect is to. reduce the size
of both SDW and CDW correlations with respect to the
co =0 limit.

(d) The transition between CDW and SDW phases can
be continuous or discontinuous; in particular, it becomes
discontinuous for large values of U. For the extended
Hubbard model, the crossover occurs around U-3.

It is clear that the parameter regime discussed in these
pages is particularly unfavorable for superconducting
correlations. It is easy to see that a non-half-filled-band
case would allow the possibility of dominant SS correla-
tions in certain regions of parameter space. We have re-
cently studied this question in a related model involving
excitonic instead of vibronic degrees of freedom. ' In ad-
dition, one can show that coupling to nearest-neighbor
phonon degrees of freedom would enhance SS correla-
tions.

In summary, from the analytical and numerical results
discussed here, we have obtained a coherent picture of the
global phase diagram of the molecular-crystal model in
the presence of short-range electron-electron interactions.
We have also obtained new information on the phase dia-
gram of the extended Hubbard model. We believe our re-
sults should be useful to interpret properties of various
quasi-one-dimensional materials that can be described ap-
proximately by the model discussed here.
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