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Dynamic correlations in a charged lattice gas
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The many-particle hopping problem in a one-component lattice gas of charged particles is investi-

gated. A method is pointed out which allows the simultaneous treatment of correlations induced by
the lattice and by the Coulomb interaction. Results are obtained for the concentration and tempera-
ture dependence of the tracer correlation factor and the quasielastic width of the incoherent scatter-
ing function. In addition, we discuss the long-wavelength charge fluctuation spectrum and possible
anisotropy effects in layered systems.

I. INTRODUCTION

Atomic diffusion processes in solids have motivated the
study of the dynamic properties of stochastic lattice-gas
models. In recent years attention has been focused on
nondilute lattice gases. In the simplest case where explicit
interactions are di,sregarded, one only requires that occu-
pied sites are inaccessible by other particles. A hard-core
repulsion is taken into account in this way. Models of
this type have now been studied in great detail. Accurate
information on the tracer-diffusion constant and on the
finite-wave-vector response of a tracer atom are available
both from simulation techniques' and from analytic ap-
proximations. Some of the collective properties of
such models, ' including nonequilibrium properties, '

have been worked out exactly.
In actual materials like adsorbed monolayers, " inter-

calation compounds' ' or superionic conductors, ' ' one
usually observes pronounced static correlations between
the diffusing atoms. This indicates that interatomic in-
teractions should also play a major role in the hopping
process. Many attempts have therefore been undertaken
to understand transport and dynamic properties of in-
teracting lattice gases. '

Our present aim is to investigate a lattice gas of
charged particles as a model for diffusion in ionic conduc-
tors. Concerning the static properties, our system behaves
as a one-component plasma on a lattice. The many-
particle hopping process is determined from a master
equation which describes particle hops from occupied
sites to neighboring vacant sites with a rate depending on
the local electric field in the instantaneous configuration.
Dynamic correlation functions such as the incoherent and
coherent scattering function are analyzed by means of the
Mori-Zwanzig projector method. To evaluate the corre-
sponding memory functions we use mode-coupling theory.
This method has proved very successful in the microscop-
ic theory of neutral and charged liquids and will be
adapted here in a simplified version to our diffusive sys-
tem.

In this paper we extend an earlier treatment, ' limited
to moderate interaction strength, by taking into account
the short-range correlations between particles. This is
achieved by starting from a suitable set of dynamic vari-
ables, including occupation numbers of pairs of neighbor-
ing atoms. In this way the effect of site blocking is treat-

ed explicitly. The long-range correlations, on the other
hand, are described within a mode-coupling approxima-
tion for the remaining memory function. The problem
here has some resemblance to the theory of fluids in the
presence of hard-core interactions, where close collisions
and long-range effects are treated separately.

After discussing the model and its static properties, the
tracer motion will be analyzed in the way described above.
Density fluctuations will, be considered only briefly.
Finally, we comment on effects typical of the long-range
Coulomb interaction in a confined geometry, relevant for
layered materials.

II. MASTER EQUATION

We consider a regular lattice of equivalent positions l,
which are partly occupied by identical particles. The stat-
ic properties of the system are determined by a lattice-gas
Hamiltonian written in terms of the set of occupation
numbers 11=Int j,

1H(n)= —, g vl rnlnl —pgnl .
1,1' 1

(2.l)

V1 1 denotes the pair interaction, and p is the chemical
potential which determines the average occupation
(nl) =c.

Now we allow the system to evolve in time through a
many-particle jump-diffusion process. Since we are in-
terested in both collective and single-particle motions
(tracer diffusion), we introduce pseudospin variables crl

(Ref. 29) which distinguish three states of a site I,
r

1 for a normal particle at 1,
0.

1
——0 for a vacancy,

—1 for a tracer particle .
(2.2)

nl ——ol is the total occupation and pl ——(ol —orl)/2 the
tracer occupation, with the properties

2
ll 1

= 711 ~ P1 1P1 =P1
(2.3)

PlPr Pl~1, l'~ +Pl = I
1

The last relations hold because we consider only a sin-
gle tracer atom. Let P(tJ, t) denote the time-dependent
probability for the configurations cr=IolI. Assuming
only hops between nearest neighbors, we set up the follow-
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ing master equation:

dP(o, t) = —, g [w1+s1(o )P(o, t) —w11+s(o )P(cr, t)] .
1,5

(2.4)

The right-hand side involves a summation over all bonds
between nearest neighbors 1 and 1+5. cr is the configura-
tion which results from o by interchanging the occupa-
tion at 1 and 1+5, i.e., o1+s=o1 and cr1——o1+s. The corre-
sponding transition rate is denoted by w~ ~+~

——w~+~ ~.

Let f(cr, t ) denote the average of some function f(o ) at
time t for a given initial configuration o at time t=0,

F1,1+s(n) ——X'(V1 1
—V1+. 1)n1

ft

(2.12)

In the 1' summation the sites 1 and 1+5 are excluded.
Now we write

For an interacting lattice gas it is well known that dif-
ferent choices of the transition rates compatible with de-
tailed balance are possible. ' Our main subject here is a
system with long-range interactions. In that case it is
natural to assume that the rate for a jump along the bond
(1,1+5) will be determined by an effective barrier which
differs from the bare barrier V0 through the local force
field (see Fig. 1),

f(cr, t) = g f(o')P(cr', t
~

o.) . (2.5) w11+s(n) =an1(1 —n1+s)exp[13F1 1+s(n)/2]

Here, P(o, t
~

o ) is the transition probability which satis-
fies (2.4) with P(o',0~o)=5 . Hence, f(o,O)=f(tr).
From (2.4) we obtain

df(o, t) = —,

gnaw,

,+s(a')[f(o ') —f( o')] P( o', t ~o) .

+an1+s(1 —n1)exp[ —pF11+s(n)/2], (2.13)

which shows explicitly the blocking of an occupied site
and the effective barriers for the two possible jump direc-
tions. We remark that (2.13) is equivalent to the sym-
metric expression

(2.6)
w11+s(n) =w11+s(n)expI p[H(n) —H(n)]/2I . (2.14)

Defining the operator L by

Lf(o)= —,
' g w11+s(o)[f(o)—f(o)],

1,5

we note that repeated differentiation of (2.6) leads to

(2.7)

III. STATIC APPROXIMATION

The aim of this section is to obtain the static properties
of a charged lattice gas, where the particles interact via an
unscreened Coulomb potential,

f(cr, t)=e 'f(o) . (2.8)

As an application of (2.8) let us calculate the time deriva-
tive of the tracer occupation. Setting f=pt we obtain

dp)
=Lpga

= —y wl, l+s(o)(pl pl+s)—
5

(2.9)

This expression has the form of a continuity equation on a
lattice, where w11+s(cr)(p1 —p1+s) represents the tracer
current along the bond (1,1+5). An analogous result
holds for the total occupation n~.

Finally, we must specify the transition rates. Since we
assume the jump dynamics to be the same for all particles,
the transition rates depend only on the total occupation n,
i.e., w11+s =w1 1+s(n). Detailed balance requires that

w1.1+s(n)e =w1,1+s(»e (2.10)

For the noninteracting case, where V~ ~
=—0, we assume

that

[d"f(o,t)/dt "], 0 L "f(o) . ——
Therefore the time evolution of f(o ) is formally given by

2

il —1'i
(3.1)

I
\

/
/

In the following we are only interested in the disordered
regime, i.e., in temperatures above the critical temperature
for possible ordering transitions. In addition, we limit
ourselves to a simple-cubic lattice with spacing a and den-
sity p=c/a . It is understood that for our Coulomb
problem a homogeneous background with charge density
—ep is added which ensures overall charge neutrality.

First, we investigate the pair-correlation function

(n1no ) /c for 1&0,
g(l)= 0 forl 0 (3.2)

w„+s(n) =a(n, —n, +,),0 2 (2.11)

which allows a jump only if n1~n1+s ais a bare .hop-
ping rate. Phenomenologically one may assume a tem-
perature dependence of the Arrhenius form
a-exp( —PVO) with some bare potential barrier Vo.

FIG. 1. Illustration of the local barrier Vo+F/2 for a hop
from an occupied site 1 to a vacant site 2 in the presence of
another particle at site 3.
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and the static structure factor 10

S(q) =1+cg [g(1)—1]e
I

(3.3)
s(q)

9

8-

g(l)=0 for ~1~ &R,
c(1)=—PVi for ~1~ &R,

(3.4)

(3.5)

The direct correlation function c(1) and the pair-
correlation function g(1) are related by the Ornstein-
Zernike relation,

g(1)—1 =c(1)+cg c(1—1')[g(1')—1] .
)I

(3.6)

I the simplest case the cutoff radius R satisfies
0 & R & a, in agreement with the condition g( ) = . y

n e

using (3.3) and (3.5), this leads to

For this purpose i is con't '
onvenient to start from standard

integra equa ions1 t' for the structure of inhomogeneous
l' 'd d adapt them to our discrete system. n t isliqui s an a
way the g pair-ch A + ' - orrelation function of the superionic

follo
-A I has been studied recently on the basis o

the hypernetted-chain approximation. Here we o ow
Ref. 26 and employ the simpler mean-spherical approxi-
mation (MSA), defined by

7-

6-

5-

3-

2-

1

0.5'/Q TI;la

S(q)= 1 —c c(0)+[c(5)+pVs]ge' '

0

FIG. 2. Static structure factor for a half-filled lattice as a
function of wave vector q=g(1, 1,1) for different temperatures.
The dashed curve corresponds to the infinite-temperature imit,
where S(q) =1—c.

S(q) = [ 1 —c [c(0)—PV(q)/a ] I

where

(3.7)
—P V(q)/a

V(q) =a g (e /
~

1
~

)e
1~0

(3.&) (3.12)

In the long-wavelength limit q~0, we have V q
=4~e /q . Therefore the perfect screening condition

S(q)=q /qD (3.9)

—QS(q)=1 —c,
2V

(3.10)

holds, where qD
—— ~e c—(4 pc/a )' is the inverse Debye

length. The quantity c(0) in expression (3.7) is deter-
mined from (3.4), which can also be written as

—g S(q)cos(q 5)= —c . (3.13)

A more complicated static quant y,it which is of central
interest in a lattice-gas problem, is the average transition

( + )—:( ) which determines the meanrate mI I+~ =—w
~ ~ f a particle according toresidence time r o
' =6 ( w ) /2c ). From (2.13) and the detailed balance

condition (2.10) we find

where the two quantities c (0) and c(5) are determmed by
(3.10) together with

( M ) =2ct(ni(I ni+s)exp(P—Fi ]+s/2)) . (3.14)

where K is the total number of particles.
Numerical results for the static structure factor in the

case of a half-filled lattice (c =0.5) are presented in Fig.
2. Note that the system becomes unstable at the critical
wave vector q =(m./a)(l, l, l). The corresponding order-C

in temperature is estimated to be T,=11V~.
At lower concentration c, the pair corre. a i

nearest neighbors g(5) vanishes as the interaction /3Vs
d rt in value. This is seen, for examp e, in ig.

3, where we have plotted the so-called vacancy avai a i i y
factor

V= 1 —cg(5) = (ni(1 ni+s) ) /c . — (3.11)

Now a rescaled MSA must be used with a radius of the
correlation hole satisfying 8 )a. For example, at R =a
the static structure factor takes the form

n)bLet us define a conditional average of a function y

O
U

~ 0.5
U
U
U

O
C
U
O
U

0
0.5

FICx. 3. Vacancy availability factor V= 1 —cgt,'5) as a func-
tion of concentration for different temperatures.
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( ni(1 —ni+s)f(n) )
( ni(1 —ni+s) )

(3.15)
Here,

Q; .(q) = —(p(q)
~
Lp(q) ), (4.4)

W= ((exp(13Fi i~s/2) ))

we can write (3.14) in the conventional form,

(3.16)

which selects configurations n with ni ——1 and ni+s ——0.
Introducing the so-called effective frequency factor2'

and M;„,(q, z) is the corresponding memory function.
To calculate 0;„,(q) we substitute (2.13) into (2.9),

which yields

I.p(q) = —a g (1—e ' i' )pi(1 n—i~s)
1,5

( w ) /2c =cz VW', (3.17) && exp( f3Fi i+s/2)e (4.5)

where Vis given by (3.11).
For a charged lattice gas with interaction (3.1), the

average (3.16) involves many-particle correlations of infin-
ite order. One may argue, however, that the contribution
to the local field F~ ~+~ from the more distant shells has a
Gaussian distribution, which suggests a cumulant expan-
sion of (3.16). For a qualitative discussion, however, we
completely neglect the fluctuations of the local field about
it mean ((F))—:((Fi i+s)), so that

IV=exp(/3((F )) /2) . (3.18)

( ni ni ni )=c g(li —12)g(li —13)g(12—13) . (3.20)

IV. INCOHERENT STRUCTURE FACTOR

The motion of a test particle, e.g., a tracer atom, is
described by the incoherent structure factor

S;..(q, t)=(p(q) ~p(q, t))
. defined in terms of the tracer density

(4.1)

(4.2)

Since (nini+sFi i+s) =0 by symmetry considerations,
knowledge of the pair correlation g(1) is sufficient to cal-
culate ((F)). In this way we have obtained numerical re-
sults for the average transition rate (w), which will be
used in later sections. Some preliminary results are shown
explicitly in Ref. 26. Later, we will also use more general
averages of the form (f(n)exp(/3Fi i+s/2)). By similar.
arguments, we write

(f(n)exp(PFi i+s/2)

=(f(n) )exp[f3( f(n)Fi i+s)/2( f(n) )] . (3.19)

Higher-order correlations appearing in the exponent on
the right-hand side of (3.19) are treated within the Kirk-
wood superposition approximation, e.g.,

The average in (4.4) is performed by observing that

(pif(n) ) = (nif(n) ) /N

for some function f(n). Thus we obtain

0;„,(q) = g(1 —e'q' ) .
2c

(4.6)

f(q, z) = I+M;„,(q,z)/0;„,(q) . (4.7)

Its long-wavelength and zero-frequency limit represents
the conventional tracer correlation factor f„which is in-
troduced to write the tracer diffusion constant in the form

D, —= lim lim 0;„,(q)f(q, iso)/q—
cu~O q~o

=Do VIVf~ (4.8)

Here, Do ——aa is the diffusion constant for infinite dilu-
tion, and expression (3.17) has been used for (w ).

Now the problem remains to calculate f(q, z). One way

to proceed is to use the formal expression for Mi„,(q, z) in
terms of higher-order correlation functions. In a simple
factorization approximation, one can then reexpress

M;„,(q,z) by S;„,(q, t), and by the coherent structure fac-
tor

S„h(q,t) =(tt(q)
~
ti(q, t))/&

defined in terms of the density fluctuations

(4.9)

At this stage let us remark that in a mean-field approxi-
mation, where the memory function is neglected, the in-
coherent structure factor has the same form as for
independent-particle hopping with an average jurnp rate
(w ) /2c. In general, however, the tracer atom performs a
correlated random walk because of the presence of other
particles. This fact is accounted for by a wave-vector-
and frequency-dependent correlation factor,

n(q) = g (ni —c)e
l

(4.10)

S;„,(q, z) =f dt e "S;„,(q, t)

=[z+0;„;(q)+M;„,(q, z) j (4 3)

In (4.1) the conventional scalar product notation
(f ~ g )—:(f*g ) has been used. The detailed-balance con-
dition (2.10) implies that the time-evolution operator L,
defined by (2.7), is Hermitian. This allows us to discuss
(4.1) in terms of the Mori-Zwanzig projector" method in
its standard form.

We start from the Laplace transform

This is a type of mode-coupling theory which was fol-
lowed in Ref. 27. In the present context it is limited to a
moderate interaction strength because it disregards corre-
lations in the occupation of sites which are close to each
other. The most important correlations in that respect are
those between nearest neighbors. In order to take them
into account, it is natural to start from an extended set of

. variables which consists of p~ and all nearest-neighbor
pairs p& n~+~ or, equivalently, from
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and

Ap(q) =—p(q)

As(q) =+pi(ni+s —cg)e "'.
1

(4.11)

(4.12)

f(q,z) = [z1+Q(q)+M(q, z) ]

The elements of the 0 matrix,

0;k = —(A;(q)
l
LAk(q)) =Ok, ,

(4.15)

A, (q)=(X, )
' g [1—cos(q 5)]As(q), (4.13)

Equation (4.12) contains a term proportional to Ap(q)
with g:—g(5), so that (Ap(q)

l
As(q)) =0.

The corresponding memory matrix now involves
higher-order correlation functions of quantities, where
nearest-neighbor pairs are projected out. A factorization
in momentum space then disregards correlations between
second or further distant neighbors only and should there-
fore be more accurate than the simple decoupling men-
tioned above. The procedure can be tested in the nonin-
teracting case. It reproduces the exact correlation factor
f, at c = 1 to within about 3%.

The method described so far can be simplified consider-
ably if we select certain symmetry directions for the wave
vector q. Let us limit ourselves to the [1,1,1] direction.
Then, as shown below, the following linear combinations
of pair variables are sufficient:

are readily calculated by means of (2.7). First, we obtain
App=Q;„, (q), which is given by (4.6). The other matrix
elements are obtained in a straightforward way from the
quantities I ps= —(Ap

l
LAs) and I s s = —(As

l
LAs ),

which are given in the Appendix.
Now we turn to the memory matrix in (4.15). Because

of our enlarged set of variables, a rather simple approxi-
mation for M(z) seems appropriate. The leading ele-
ment is

M (z)= —(QLAp
l
(z QL—Q) 'l QLA ),

where

Q=l —g l
A, )(A,

l
.

(4.16)

In the expression (4.5) for Lp(q) =LA p, the factor
p~(1 —n~+s) suggests a linearization of the local field
about its conditional average ((F)) [see Eq. (3.18)],

A2(q)=(X2) ' '/sin(q 5)As(q) . (4.14)

With X, and X2 given by (A2) and (A3), the variables
A;(q), i =0,1,2, defined by (4.11), (4.13), and (4.14), form
an orthonormal set. The Laplace transforms f(q, z )

=P;k(q, z) of the correlation functions (A;(q)
l Ak(q, t))

are now written as

exp(PF~ ~ +s/2)=[1 +13(F~ ~+s —((F)))l2]

Xexp(P((F))/2) . (4.17)

Neglecting products of occupational fluctuations on three
different sites, we obtain

LAp a exp(P((F)) l2) g (I —e 'q')[p&(1 —n&+&)(I —P((F))/2)+p, (1—c)/3F& &+s/2]e
1,5

(4.18)

The first term is proportional to the expression for the
current density in the absence of Coulomb interactions. It
may therefore be regarded as a lattice contribution, as op-
posed to the second term in (4.18), which is a pure
Coulomb contribution. Obviously, the lattice contribution
can be written as a linear combination of the variables

A;(q). Let us substitute (2.12) into the Coulomb contribu-
tion in (4.18) and separate out all terms which contain
nearest-neighbor pairs of the form p1 n„1+~. It is easy to
see that for wave vectors q parallel to the [111]direction
these terms can again be written as a linear combination
of A;(q). Therefore, for ql i[111],all the nearest-neighbor
terms are projected out when Q operates on LA p.

Introducing Fourier components according to (4.2) and
(4.10), we arrive at

a =a(1—c )exp(P((F )) /2), (4.20)

and A denotes the volume of the system. The coupling
constants V&(q) are given by

Vz(q)=(a P/2) g'(I —e ' ')(V~ —V~+s)e
1,5

(4.21)

where 1=0 and nearest-neighbor sites 1=5' are omitted in
the 1 summation.

Since (4.19) does not involve nearest-neighbor pairs, we
use, for the memory function, a factorization in momen-
tum space of the type

1
QLAp= —a P V~(q)Qp(q —p)n(p) .

p

Here we have used the abbreviation

(4.19)
( Qp(q —p)n(p)

l

e~'~'
l Qp(q —I ')n(p') )

=%5~ ~S;„,(q —p, t)S„h(p, t) .

Thus we finally obtain

(4.22)
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M;„,(q,z) =Mpp(q, z)—

00

Mpp(q, z)= —a p dte "f [V~(q)] S;„,(q —p, t)S„h(p, t),0 (2~)
(4.23)

where p=c/a is the particle density.
A memory function of the form (4.23) is also obtained in a continuum theory, e.g., in the Smoluchowski treatment of

self-diffusion in an overdamped one-component plasma. From there, it is known that the long-range correlations are
described in a proper way by (4.23). On the other hand, in our treatment the short-range correlations are taken into ac-
count explicitly through the Q matrix. Therefore we argue that the other elements of the memory matrix besides

Mpp(q, z) are of minor importance and can be neglected. Now solving (4.15) for Ppp(q, z) =S;„,(q,z), we obtain an ex-
pression of the form (4.3), where M;„,(q,z) is identified as

l
Qp) l

(z+Q&2)+
I Qp21 ( +Qii) 2 Re(Qp]Qi2Q2p)

(4.24)
(z+Q~~)(z+Q22) —

l
Q»

l

'

I et us first consider the limit q~0. From (A4) —(A7) it

follows that, to order q,
Qp2 I'

M; (qz) Mpp(qz)— z+ 022
(4.25)

20,'c 2
S;„,(q,z) = z+Dp(1 —c) 1 — qz+ 10—3c

This gives

(4.26)

For vanishing Coulomb interaction, the structure factor to
order q is then obtained as

presence of long-range static correlations. The qualitative
features of these findings are in agreement with Monte
Carlo data by Murch and Thorn, ' and by Kutner, Binder,
and Kehr, for lattice gases with nearest-neighbor repul-
sion.

A special consequence of the long-range Coulomb in-
teraction is seen for very low concentration c. In that
case the memory function (4.24) is dominated by the first
term Mpp(q, z). For sufficiently low c, only small mo-
menta

l p l

contribute significantly to the integral (4.23).
Therefore, as q~0, the integrand can be replaced by its
form in the continuum limit. Then V&(q)
=P(q p)4ne /p and S(p) =(1+qD/p ) '. This leads to
the analytical result

f, (c)= 1 —2c /( 10—3c), (4.27) f, =1—(2—~&)(&4~/6)e'p'"(k, Z.)-'/'

S„„(q,t) =S(q)exp[ —Q„h(q)t] (4.28)

which agrees with the Monte Carlo data' within, typical-
ly, 10%%uo.

In the presence of Coulomb interactions we are faced

with the problem of determining S;„,(q, z) are self-
consistently from (4.3) and (4.24). We do this approxi-
mately by integrating (4.23) with the input

0 346&1/2(f3V )3/2 (4.30)

Thus a c' dependence of the diffusion constant is ob-
tained, which is known from Debye-Hiickel theory for a
charged fluid.

Next, we turn to the incoherent structure factor at fin-

ite wave vectors q. The spectral shape Re[S;„,(q, —iso)]
turns out to be almost Lorentzian as long as the interac-
tion remains small. On the other hand, for strong interac-
tions there is a significant frequency dependence of the

S;„,(q, t) =exp[ —f,Q;„,(q)t], (4.29)

where Q„„(q)=Q;„,(q)/S(q); see Eq. (5.5). Equations
(4.28) and (4.29) are essentially mean-field expressions.
Equation (4.29), however, involves the correct tracer-
diffusion constant. Self-consistency with respect to f, is
achieved by numerically iterating (4.3), (4.24), and (4.23).
The static correlations which enter the Q matrix are cal-
culated as indicated in Sec. III.

Figure 4 shows the correlation factor f, obtained in this

way as a function of concentration for different coupling
strength V(a ) /k~ t, where V(a )

—= Vs e /a In——the.
infinite-temperature limit, f, (c) is given by (4.27). As the
ordering transition at c=0.5 is approached, the correla-
tion factor shows a pronounced minimum. Consecutive
tracer hops therefore show an increased backward correla-
tion. This is to be expected because ions surrounding the
tracer ion form a cage which becomes more rigid in the

1.0
ft

0.9

0.8

0.7

0.5

04-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
C

FIG. 4. Tracer correlation factor as a function of concentra-
tion for different temperatures.
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correlation factor f(q, —ice) . This causes deviations of
the spectral shape from a single Lorentzian, which, how-
ever, remain rather small for frequencies of the order of
the half-width, i.e., for co-y(q).

The half-width y(q) of the quasielastic spectrum is
shown in Fig. 5. Its q dependence deviates from the
mean-field prediction )/MF(q) =Q;«(q) given by (4.6),
especially for strong interactions. This is due to the cou-
pling, expressed by (4.23), of the tracer motion to density
fluctuations, which become slow near p =q, as the transi-
tion is approached. Within mean-field theory the half-

- width of the incoherent scattering function is totally
determined by the tracer-diffusion constant. If this pa-
rameter is taken from experiment, one should obtain a
width f,yMF(q). The plots in Fig. 5 show that this quan-
tity still does not follow the actual width y(q).

V. COHERENT STRUCTURE FACTOR
AND CONDUCTIVITY

Since in our model the background lattice remains rig-
id, the coherent structure factor defined by (4.9) is identi-
cal to the charge-charge dynamic structure factor. In the
following we will discuss this quantity only briefly. Its
Laplace transform is written in the general form

Here the configurations n with n~ ——n~+~ and n~+5 ——n~

are defined in accord with (2.10), which shows that (5.3)
vanishes. Therefore we are left with the terms

& n 1 I jl,1+s &
= —

& n i+ s I ji, i+ s &
= & tu & /2 .

This yields

Q„h(q) =
& w &g(1 —e'q' )/2cS(q) .

(5.4)

(5.5)

In a mean-field treatment, neglecting the memory func-
tlon M h(q, z), we have

S, h(q, z)=S(q)[z+A„h(q)]

S„h(q,z)=S{q)[z+4mo(z)] (5.6)

holds between the charge-charge structure factor and the
dynamic conductivity o(z). Upon comparing (5.6) with
(5.1), we can write

in agreement with (4.28). It shows the usual de Gennes
narrowing, as the static structure factor diverges; see Fig.
2.

Corrections to mean-field theory are only discussed in
the long-wavelength limit, where the general relation

S„h(q,z) =S(q)[z+0, h(q)+M„h(q, z)] (5.1) 4ncr(z) = lim [Q, h(q)+M„h(q, z)] .
q —+0

(5.7)

where

A„h(q)= —&n(q)
I
Ln(q)&/XS(q) . {5.2)

The first term determines the infinite-frequency limit
cr( ac ). Substituting (3.9) into (5.5), we obtain

+Peq(n)~1, 1+5(»(%—4+s) 1

(5.3)

10-
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MF
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/ /

/
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. V[a)
kaT

0
0 0.5Tt){a 7(:ia 0 0.5Tl;la Tc/a 0 0.5TI:la

FICx. 5. Quasielastic width y(q) of the incoherent scattering
function for wave vectors q =g(1,1,1), c=0.5, and for three dif-
ferent temperatures. The width y(q) is normalized by (w ) /2.
For comparison, we also show the width yMF(q) in mean-field
theory and the quantity yF(q) =f,) MF(q), which has the correct
curvature at q=0.

The numerator in (5.2) involves averages &n~
I j~+s&,

where j~)+s ——w~ ~+s(n& —n~+s) is the total current along
the bond (l,1+5). For 1' differing from both I and 1+5,
we write explicitly, in terms of the equilibrium distribu-
tion P,q(n) ~ exp[ —pH(n)],

& n).
I j& &+s & = —,

' g n) [P,q(n)to~ )+s(n)(n) n~+s)—

o.(ao)=e P&w &/2 . (5.8)

&& exp(PF) )+s/2)e (5.10)

It is clear that a two-mode contribution to M, h arises
from terms n~n~+~. It turns out, however, that this con-
tribution vanishes in the limit q~O. This shows that an
improved theory in the spirit of Sec. IV would be much
more complicated because it would have to include vari-
ables consisting of products of three occupation numbers.
Therefore, after linearizing the exponential in (5.10) with
the aid of (4.17), we use a simple factorization method
limited to a moderate interaction strength. Following
Ref. 26 we obtain the memory function as a sum of two-
and three-mode terms, where only the latter survive in the
limit q —+0. The result obtained for M„h(q —+O,z) differs
from Ref. 26 by an additional factor exp(p«F») & 1,
which brings the charge correlation factor

The memory function M„h, which determines the
frequency-dependent part of o(z), is given by

M„h(q, z)—:—&QLn(q)
I
(z —QLQ) '

I
QLn(q) &/XS(q),

(5.9)

where

Q=1 —[ I
n(q)&&n(q)

I
]/Ns(q) .

Let us examine the expression

Ln{q)= —a g (1—e 'q'
)n&(1 —n~+s)

1,5
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f, =cr(0)/o( ao ) closer to unity, e.g. , f, -0.9 for
V(a)/k11T-5. This indicates that for a Coulomb sys-
tem the corrections to the mean-field expression (4.28) for
S„h(q, t) are substantially smaller than in a model based
on nearest-neighbor repulsion only.

The frequency dependence of the real part Re[a( i—cp)]
turns out to be rather weak. It increases monotonously
with frequency cp and approaches the constant o(oo).
This behavior is typical of pure hopping models. The
first relaxation step observed in the dynamic conductivity
of the fast ionic conductor RbAg&I& may be interpreted in
this way. The fact that o(z) varies only slightly with z
on a scale given by the mean residence time ~ ' has impli-
cations with respect to the shape of the long-wavelength
charge-fluctuation spectrum. From (5.8) we estimate
4mo(0) &(2'/3)w 'cPVs. It follows that, at least for
2c/3Vs & 1, one obtains the solution z= —4~cr(0) for the
denominator of (5.6) to be zero, because then o.(0)=o(0)
for z & 4vrcr(0). This leads to a charge-relaxation spectrum
with a quasielastic width 4vrcr(0), which is also known
from the theory of molten salts.

static structure factor from the linearized Debye-Huckel
equations,

bP(r)= —4me 5(r)+p g 5(z —nd)[g„(x,y) —1]
n= —oo

(6.5)

and

g„(x,y )=1—PP(x,y, nd ) . (6.6)

=q[q+qDs(q)l ' (6.7)

where

d is the interlayer distance, P is the screened potential due
to a point charge at the origin in the n =0 layer, and g„ is
the pair correlation in the nth layer. One obtains

$(q)—:1+p I dre 'q' g 5(z —nd)[g„(x,y) —1]

VI. REMARKS ON T%'0-DIMENSIONAL
AND QUASI-TWO-DIMENSIONAL SYSTEMS

sinh(dq )
s q

cosh(dq ) —cos(dq, )
(6.8)

In certain superionic materials, for example, 13-alumina,
the ionic motion is confined to two-dimensional layers.
Let us therefore ask how the effects of Coulomb interac-
tions discussed before are modified in that case.

We examine first the long-wavelength behavior of the
coherent structure factor for a single layer perpendicular
to the z axis. Within mean-field theory, where memory
effects are neglected, we define an effective diffusion con-
stant D =a ( w ) /2c in terms of the average rate ( w ) for
hops within the layer. Analogous to the preceding sec-
tion, we obtain

S„h(q—+O,z) =S(q)[z+Dq /S(q)] (6.1)

S(q) =q(q+qD)

where

(6.2)

qD ——2me Pp . (6.3)

p is the number of particles per unit area. According to
(6.1) and (6.2), the long-wavelength charge-fluctuations
are now characterized by a pole with a linear dispersion

z = —DqDq (6.4)

in the limits q~0, in contrast to z= —4mcr(0) for three
dimensions. We remark that the present situation may be
regarded as the overdamped analog of the dispersion
co~]-q' for classical plasma oscillations in two dimen-
sions. '

In a treatment of layered materials the coupling be-
tween parallel layers must be taken into account. For a
discussion of the resulting anisotropy effects, we take the

where q=(q„+ q~
)' . For a two-dimensional system the

static structure factor S(q) is linear in q in the limit
q~O. ' For qualitative purposes we treat the layer as a
continuum and apply Debye-Huckel theory, which leads
to

The limits dq »1 and d
~ q ~

&&1 in (6.7) correspond to
the two- and three-dimensional results (6.2) and (3.9),
respectively.

Substituting (6.7) into (6.1), the dispersion of charge
fluctuations satisfies

z = Dq[q+qDs(q)—] . (6.9)

We now consider the case dq « 1, where the charge fluc-
tuations in different layers are strongly coupled. At q, =0
we obtain z= 2DqDld= —4mo, wher—e cr=.(pld)e 13D 1s
the-conductivity parallel to the layers. For nonzero q„

2
dz= —Dq 1+ qD

1 —cos(dqz )
(6.10)

Thus a diffusive behavior is obtained, as regards the q
dependence of (6.10). As q is increased such that dq »1,
the two-dimensional solution (6.4) is recovered from (6.9).
Let us remark here that the foregoing discussion resem-
bles the theory of plasma oscillations in semiconductor su-
perlattices.

Finally, we are interested in the correlation factor f, for
tracer diffusion in a plane layer. An effect typical of the
Coulomb interaction is expected for low concentrations,
where the two-dimensional version of the memory func-
tion (4.23) gives the dominant contribution. The corre-
sponding integral over momenta p~ and p~ is split into
two parts, p &pp a11d p &pp such that qD «pp «m. /a.
In the limit c~O the second part, p ~pa, becomes in-
dependent of c. The first part, p ~po, is evaluated with
the aid of the two-dimensional Fourier transform
V(p) =2me /p of the Coulomb potential e /

~

r
~

at z =0,
and by using (6.1) together with (6.2). In this way it is
found that 1 f, oc c lnc, in contrast to 1 —f, cc c'~ in the-
three-dimensional case.
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VII. SUMMARY AND CONCLUSIONS

The main concern of this paper was to formulate a
master-equation description for many-particle hopping in
a one-component Coulomb lattice gas and to develop an
approximation scheme which takes into account the corre-
lations arising from both the lattice and the Coulomb in-
teractions.

Our method is based on an extended set of dynamic
variables which includes nearest-neighbor pairs, and a
mode-coupling approximation for the remaining memory
function. A systematic extension by including further
neighbors is possible in principle, but is too involved from
a practical point of view. Some drawback lies in the com-
plicated static correlations which arise in the present for-
mulation. Uncertainties in their computation, however,
should not affect our main conclusions.

We have obtained results for the tracer correlation fac-
tor f, and the incoherent structure factor. In the dilute
regime c~0 the long-range part of the Coulomb interac-
tion gives rise to the behavior 1 f, ~ c '~—or 1 f, cx c ln—c
for three- and two-dimensional systems, respectively. As
c~ 1, on the other hand, correlations in the tracer motion

are mainly due to site blocking. In the half-filled case
1c = —, , the tendency of the system to undergo a transition

with a [111] superstructure manifests itself in a pro-
nounced decrease of f, and a line narrowing in the in-
coherent scattering spectrum. The last observation arises
from the coupling of the tracer motion to density fluctua-
tions.

The dynamic conductivity obtained from the long-
wavelength limit of the coherent structure factor depends
only weakly on frequency in the regime of moderate cou-
pling strength. Its temperature and concentration depen-
dences are therefore largely determined by the average
transition rate (w ). Finally, within mean-field theory we
have discussed anisotropy effects in the long-wavelength
charge-fluctuation spectrum which should arise in layered
materials.
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APPENDIX

First, we give the normalization constants in (4.13) and (4.14). Let us define

7+ for 5=5',
X„=(W,

~
W, ) = .X for 5=5',

for 515' .
(A 1)

Here, 7+ ——cg(1 —cg), 'X =c (g —g ), and Xz ——c (gj —g ). Furthermore, g=g(5), g =(n „non„)/c, and
gz ——(n~

non�„)

/c, where we have used an obvious notation. From (Al) we obtain

X~(q) = g [1—cos(q 5)][1—cos(q. 5')]Xs s
5,5'

=(X+++ ) g [1—cos(q 5)] +X~ g g [1—cos(q 5)][1—cos(q 5)]
5 5 O'J 5

(A2)

X2(q) = g sin(q. 5) si (qn5')g ss=. (g+ —g ) g [sin(q. 5)]
5,5' 5

For the quantities I os———( A o ~

I.A s ) and I s s = —( As ~

I.As ), we find

I os I so (1 e )C2/c+ g (1—e ' '
)C&/c —g(l —e ' '

)((to )g/2),
5j,5 5'

I s,s= SCi+2C2 Do g e'q' c —cg(I s—o+I os) (cg) I oo ~

5~,5

(A3)

(A4)

(A5)

I as= 4D2 D3e ' '
D) g—e"—

5~, 5
c —cg(l so+ I os) —(cg) I oo (A6)

I s s =[2D5+2D7 —(e'q' +e 'q' )D6 —2cos(q 5g)D4]/c —cg(l"so+I os ) —(cg) I"oo . (A7)
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t„(n)=ann(1 —n„)exp[PEo „(n)/2], (A8)

which is the rate for a hop from 1=0 in the positive x
direction. From (3.14) we have (tu) =2(t„). C; and D;
essentially represent averages of t„(n) with respect to con-

figurations where the occupation of certain sites near the
origin 1=0 is fixed,

The last relation holds for 5&5' and 5& is perpendicular to
both 5 and 5'.

In order to define the coefficients C; and D;, we intro-
duce

(A10)

C, =(nytx(n)), C~ ——(n „t„(n)),
D =(n„n„„t„(n)), D, =(n„n„„t,(n)),
D2 —(n n „t„(n)), D3 ——(, n „n2„t„(n)), (All)

D4 ——(n„n„+,t„(n)), D5=(n„n, t„( n)), (A12)

D6 ——(n„nq„t„(n)), D7=(n~n „t„(n)) . (A13)

The averages (A9)—(A13) have the general form

(f(n)exp[13+o „(n)/2] ) and are approximated by means of
(3.19).
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