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Critical current of thin superconducting wire with side branches
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When a transport current. is injected into a thin superconducting wire with dangling superconducting side
branches periodically attached to it, distance L apart, and the side branches are very much longer than the
temperature-dependent coherence length, then the critical-current density is, according to the Ginzburg-
Landau theory, larger than that of a wire without side branches, approaching the latter for L/g ~ and

becoming very much larger than the latter for L/g « l.

Great interest in superconductive micr onetworks has
emerged' '0 recently because of their potential application to
percolation problems and practical circuits. Network equa-
tions, similar to Kirchhoff's laws, have been developed, and
the mathematically manageable forms are expressed in
terms of the linearized Ginzburg-Landau (GL) equations. 2 3

All of the hitherto published results, with the exception of
Ref. 4, are applicable to second-order phase-transition re-
gions because of linearization. It is found, in general, that
the magnetic phase boundary between the superconductive
(S) and normal (W) states is shifted to higher temperatures
for closed structures with dangling side branches (without
currents) compared to those without side branches. This is
even true when the system is nonuniform. ' A closed struc-
ture is a circuit which contains at least one loop for which
fluxoid quantization has to be taken into account. Thus,
phase coherence is enhanced near a second-order NS phase
boundary.

However, when a transport current is applied to a wire
with dangling side branches as shown in Fig. 1(a), the
linearized GL equations do not apply (as is the case for a
bare wire) and fluxoid quantization places no constraints on
the system. One could argue that the presence of long side
branches will enhance the modulus of the normalized order
parameter f (x) within a coherence length g(t) near a node
and therefore decrease the free energy relative to that of the
bare wire. With that information alone, one would conjec-
ture that a wire with side branches is likely to have a critical
current which exceeds that of the bare wire. This conjec-
ture is supported indirectly by the above-mentioned shift of
the second-order phase boundary to higher temperatures.
However, there is also a term involving the gradient of the
order parameter to be considered which arises from the con-
dition that the complex current must be conserved [the sum
of the quantities P'(i '7+2rrA/&bc)P entering a node must
be zero]. The latter will increase the free energy and com-
pete with the above-mentioned decrease in free energy.
Thus, it is not obvious whether or not dangling side
branches will appreciably enhance the critical current.

When the thickness of the wires is neglected, the open
structure becomes quasi-one-dimensional. In that case,
when the nonlinear GL equations are combined, the dif-
ferential equation for f is

d f'/dx + (1 f' I /f )f=0——

where
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FIG. 1. Shown are (a) thin wire with dangling side branches of
length Lb, (b} schematic of the order parameter along the branches
1'-1-2, and (c) critical-current density of a wire with long side
branches normalized by that of a bare wire (Ice ——2/427) which
can be carried by the above structure as a function of L/g(t).

I = mgJ/teF =4rrl J/c J2H,

is the normalized, dimensionless current density and J the
current density in cgs Gaussian units. The curvilinear coor-
dinate x is normalized by g(t) in Eq. (1). For a long bare
wire, one may assume that f does not depend on x, hencef"= 0, and I =f (1 f') ' ' whic—h has a maximum at
f'=~. Thus, 1,=2/427, a weil-known result. With side
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branches, j'becomes a function of x. Then the first integral
of Eq. (1) is

2f (df/dx) = (fo f )[f (2 fo f ) 2I /fo ] (2)

where fo is the value of f (x) at some value x =xp, where
dj'/dx = 0 [extremum of f (x) ]. With the definition
j'(x) = j'oz+tz(x), Eq. (2) becomes

0.5

0.4

with

2(dt/dx) = (t R—i)(t' —Rz) (3) 0.3

R t z = (1—3j'p/2) + [(1—fp/2) —2I /f p ]' (4) 0.2
When Eq. (3) is integrated, an incomplete el]iptic integral of
the first kind results whose solutions are inverse Jacobian
elliptic functions which depend on R] and R2. The value of
f (x) at a node n, f„, is then obtained in terms of fo and I
for a fixed value of the nodal distance L normalized by
g(t). Apart from the fact that fo can be interpreted as a
minimum or maximum value of a periodic function, there
are a number. of different solutions of t(x) possible. The
function t(x) can be proportional to cn(uIm) or sn(u m),
or sn(u Im)/cn(u lm) = sc(u Im) or sc(u Im)dn(u m),
where u is the normalized distance between nodes and m is
the parameter, both of which depend on R~ and R2. %e
found numerically, as explained below, that the type of
solution which leads to the largest current, is obtained when
R 2 is the complex conjugate of R ~ and is of the form
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FIG. 2. Normalized current density as a function of the
minimum order parameter fo for nodal spacings L/g(t) = 1. Solu-
tions of f for j'p values near unity are of the sc(u Im) type and for
fp near zero are of the sn(u Im) type. Near and at the current max-
imum I'is of the sc(u Im)dn(u Im) type [Eq. (5)].

jnz =fo' + IR t I sc'(u I m) dn'(u I m) (5)

where u = L ( IR t I/8) 'i', m = [1—Re( —R t)/IR t I ]/2, and
fo is a minimum. With L fixed, Eq. (5) and the corre-
sponding other types of solutions are surfaces in the
(j'p, f„,I) space.

Complex current conservation requires' that at an arbi-
trary node n, the following condition must be satisfied:

X(i By„/Bx+2mA qr„/4p) =0 (6a)

where the sum is over all branches connected directly to
node n and p„=f„exp(.—i @„)is the complex order param-
eter at this node (same material assumed throughout).
From the real and imaginary parts of (6a) one finds that

(dd „/dx+2nd/d o) = gq„=0,
g(df„/dx) =0 (6c)

where q„ is the superfluid velocity, and the derivative of j;
with respect to x, is taken radially outward from the node.
Equation (6b) is satisfied when the current in Eq. (1) is
treated as a parameter. Equation (6c) at node n is

I df„/dx I
= 2I df„/dx I „„+t. When the branch length

L& ~ then f 1 [see Fig. 1(b)] and the latter equation
expressed in terms of Eq. (2) becomes

I =f„[3f„6f„+4fp(2 —fp ) —1]/[8—(1—f„/f p )] . (7)

This is a surface in the (fp,f„,I) space similar to Eq. (5).
The intersection of the two surfaces satisfies Eqs. (1) and

(6a). Therefore, Eqs. (5) and (7) lead to solutions of fp
and j'„ in terms of L and I. For numerical convenience, L

and fo (minimum value of f) were used as input parame-
ters, and f„and I were obtained.

Figure 1(c) shows the results of the largest (critical)
current as a function of the nodal spacing L. For L && 1,
the current density I approaches the value of the bare wire
and for L (( 1, the value of I becomes very large. Figure
2 shows I as a function of j'o for L =1 for three different
types of solutions. Solutions of f(x) for fp values ap-
proaching zero are of the sn(x) type, while for j'p near unity
f(x) is of the sc(x) type. For values of fp in the inter-
mediate range f(x) is of the sc(x)dn(x) type. Solutions
with fo values between the maximum of I and jo= 1 are
stable, lowest-energy-type solutions. Solutions of one type
change smoothly into another as I is changed.

A thin superconductive wire with long superconductive
side branches has critical-current densities the values of
which are larger than those of the bare mire. It is conjec-
tured that a wire with finite length branches will have
critical-current densities the values of which are between the
above results and those of the bare wire. An essential part
of the present solution is Eq. (6a), a condition which is
stronger than ordinary current conservation. The latter is
satisfied by Eq. (6b), but Eq. (6c) is an additional con-
straint, which the authors believe has not been tested expli-
citly by experiments. Critical-current measurements with
and without side branches would constitute such a test.
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