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Grain consolidation and electrical conductivity in porous media
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A simple geometrical model is proposed for diagenesis. Diagenesis is the process by which granu-
lar systems evolve geologically from unconsolidated, high-porosity packings toward more consoli-
dated, less porous, materials. We find that the relation between the electrical conductivity cr and the
porosity P can be approximated by a nontrivial power law over a wide range of porosity for both or-
dered and disordered lattice configurations. The most realistic model is generated from a dense
disordered packing. This leads to a problem involving both short-range structural disorder and
correlated percolation. In comparison with experiment, our calculations (on both ordered and disor-
dered systems) are shown to reproduce the qualitative trends found in recent data on the conductivi-
ty of systems comprised of fused glass beads.

I. INTRODUCTION

One of the most basic and useful empirical rules to
emerge from the study of sedimentary materials is
Archie's law, ' which describes the electrical conductivity
o. of a fluid-saturated system:

Here the porosity P is the volume fraction of the pore-
space network, of is the fluid conductivity (the comple-
mentary grain space is insulating), and m is an exponent
that depends on the characteristics of the system. Equa-
tion (1) should be viewed as a relation satisfied by a family
of porous systems with a range of porosities and a com-
mon geophysical history, rather than as a constraint on the
behavior of any one isolated material. (Indeed, for a sin-
gle system, the only measurable quantities are o and tb,

and Eq. (1) reduces to the definition m —= [ln(cr )—1n(of )]/in(tb). )
While it is obvious that o. should be directly proportion-

al to of, the intriguing aspects of Eq. (1) are that (1) the
exponent m is noninteger, and (2) it predicts that a slight
amount of conductivity persists down to zero porosity,
rather than having o. vanish at a finite percolation thresh-
old. While the second point has received considerable dis-
cussion, in our opinion this feature of Archie's law
must be interpreted with care. The electrical conductivity
of very low porosity rocks (P(0.04) is frequently con-
trolled by secondary porosity, i.e., complexes of cracks and
fractures that were not present in the original pore sys-
tem. Low-porosity systems with uniform evolutionary
histories have been produced synthetically by sintering
and hot pressing, and the connected paths in these sys-
tems have been observed to vanish when the porosity
reaches 2—4%. (Materials that are cemented rather than
compacted may well percolate at lower porosities, though
this is difficult to test in a controlled environment. )
Whether the conductivity threshold of sedimentary rocks
occurs at precisely zero porosity or at a slightly higher
value, there is no question that, as a class of disordered
systems, they remain conducting down to much lower

porosities than would be expected based on percolation-
theory estimates.

In the present paper a model is developed that can be
used to represent granular systems with a wide range of
porosities and a wide variety of ordered and disordered
structures. In each case, the system initially consists of a
tightly packed aggregate of hard spherical grains of uni-
form radius. As the system moves towards lower porosi-
ty, the grains are gradually distorted until, at the end of
the process, they become a set of space-filling polyhedra.
This evolution represents in a simple and reasonable way
the diagenetic processes of cementation and compaction
by which high-porosity granular sediments are
transformed into less porous materials. ' ' While our
model does not remain conducting to the limit $~0 (the
threshold is at /=0. 03), its attractive features are that (1)
it is based on a realistic picture of the consolidation pro-
cess by which sedimentary materials evolve toward lower
porosities, (2) it shows how nontrivial power-law relations
between o and P can be understood in terms of the way
that different parts of the pore space are affected by con-
solidation, and (3) it makes clear that behavior consistent
with Eq. (1) can be exhibited by both ordered and disor
dered systems.

Recent authors ' ' have devoted considerable effort to
the explanation of Archie's law. The common features of
their work are, first, that they employ simplified models
that treat either the grain or pore space (but not both) in a
way that guarantees conductivity down to /=0 and,
second, that they focus on the disorder inherent in most
porous systems. ' By contrast, we Inodel the pore and
grain spaces on an equal footing. The pore space is divid-
ed into relatively open regions (nodes) connected by rela-
tively narrow regions (throats). Most of the porosity is
concentrated in the nodes, while the throats dominate the
electrical conductivity. We argue that Archie's law can be
understood in terms of the natural evolution of these two
segments of the pore space. Having said this, it should be
emphasized that there are important links between our
work and those of previous authors. This is particularly
true in the case of Ref. 5, where a model based on a sim-
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pie cubic array of tubes is used to study the electrical con-
ductivity and permeability of porous media. The tube's
diameters are reduced by a Monte Carlo algorithm to pro-
duce a skewed distribution of pore cross sections. Wong
et al. emphasize that, for each P, there are large tubes
that control the mean porosity and smaller, more probable
tubes that control the transport processes. Variations in
the difference between these two measures of the pore
space is shown to produce a power-law relation between o
and P with an exponent m that depends on the degree of
skewness in the pore-diameter distribution. From the ear-
lier literature, perhaps the most relevant paper is Owen's
work on electrical tortuosity' which applies a procedure
similar to ours to a regular lattice of abstractly shaped
pores and obtains behavior consistent with Eq. (1).

II. ORDERED CUBIC PACKINGS

To illustrate our ideas, let us begin with the simple ex-
ample of spherical grains densely packed on a simple cu-
bic (sc) lattice. The porosity of this system is
/=1 —m/6=0. 48. Keeping the lattice constant a fixed,
we allow the grain radius to increase from its initial value
of R =1 (see Fig. 1). In the region where the spheres
overlap, the grains are truncated in such a way that the
intergrain contacts evolve from points (for R = 1) to cir-
cles on the faces of the Wigner-Seitz cell. Clearly, as R
increases, the grains become nonspherical, and the porosi-
ty decreases. An elementary calculation yields the rela-
tion as follows

For sc, 1&R & V2 (a =2):

P(R) =1——— (R —1)+——(R —1) +—(R —1) . (2)
6 2 4 3

The geometry of this model remains relatively simple un-

til R =v 2, which corresponds to a porosity of 0.0349. At
this point the contact circles touch the edges of the
Wigner-Seitz cell and the pore space becomes disconnect-
ed. The system has reached a percolation threshold. Its
pore space is divided into disjoint regions and the conduc-
tivity and permeability of the pore fluid vanish. What is
interesting about this model is that its porosity spans a
range of more than an order of magnitude between the
original close-packed configuration (P,~) and the percola-
tion limit (P, ). Within this range the model retains the
essential features of many granular porous systems: (1)
the pore and grain spaces form interconnecting chan-
nels, ' (2) individual grains are identifiable and are of

I

I

I

———+———
I

I

I

FIG. 1. (Upper) Wigner-Seitz cells for the simple cubic lattice
at three stages of grain consolidation: The initial configuration
of close-packed spheres, an intermediary stage, and the percola-
tion threshold. The contacts are indicated on all of the visible
cell faces but the grain within the cell is not shown. {Lower)
Cross sections of the narrowest part of the throat at the same
three stages of consolidation.

+, 6(v3R —2)[(v3R —2) + —,'(v 3R —2) ] . (3)

For fcc, 1 &R & 2/v 3 (a =2v 2):

/=1 — — (R —1)+ (R —1)'
3 2 2 2

(R —1)
3 2

(4)

In Eq. (3), 8(x) denotes the unit step function: B(x)=1
for x )0 and 6(x)=0 for x &0. In the fcc case, all the
faces of the Wigner-Seitz cell are equivalent and the
derivation of Eq. (4) is no more difficult than that of Eq.
(2). By contrast, in the bcc case, the growing sphere first
breaks through the hexagonal faces of the Wigner-Seitz
cell and then, at R=2/M3, breaks through the square
faces.

comparable size, ' and (3) the grains are joined at contacts
that extend over a finite area. In Table I we show that
similar results are obtained if this grain-growing algo-
rithm is applied to sphere packs that are originally in
body-centered-cubic (bcc) or face-centered-cubic (fcc) con-
figurations. The equations corresponding to (2) for these
systems are the following.

For bcc, 1 & R & v'3/2 (a =4/&3):

P= 1 —~3~ —3~3~
(R —1)

8 8

(R —1) + (R —1)
8

+
8

TABLE I. Porosity limits for the grain-consolidation model. {—indicates that a value is intentional-

ly omitted. )

Initial distribution
of grain centers CP

Simple cubic
Body-centered cubic
Face-centered cubic
Monte Carlo distribution'
Dense random packing

'Reference 19. '

Reference 26.

0.476
0.320
0.260

0.364

0.0349
0.0055
0.0359

0.032+0.004
0.030+0.004"
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Before considering the application of our model to
more realistic initial arrangements, let us estimate, quali-
tatively, the behavior of the electrical resistivity. We can
picture the conducting paths through the pore space as a
series connection of low-resistance regions (the nodes) and
high-resistance regions (the throats). The porosity depen-
dence of the conductivity will then be dominated by the
variation of the minimum cross-sectional area 2;„ofa
typical throat (see Fig. 1). In the case of the simple cubic
packing, for example, we find the following.

For sc:
o.-/I;„=4—m.R +(2R)

&& sin '[(I—R ) '/2] 4(R 2 I )1/2

(5)

The corresponding expressions for the body- and face-
centered packings are the following.
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For fcc:

—(R' —1)'"+-,' e(v 3R —2)

R sin 'I[1—4/(3R )]' I

[R —(4/3)]'v'3

(6)

FICz. 2. Estimated formation factor (electrical resistivity} of
the simple cubic (sc), face-centered cubic (fcc), and body-
centered cubic (bcc) lattices. The vertical axis represents the ra-
tio of the bulk resistivity to the fluid resistivity (of/o. ). A free
scaling parameter in the computations was used to adjust the
curves vertically to fit a set of measurements from fused glass
beads. The circles, squares, and triangles represent measure-
ments from three batches of beads with diameters in the ranges
44—53 pm (circles), 88—106 pm (squares), and 176—210 pm
(triangles) (Ref. 5). (Inset) The behavior of M(R) [Eq. (8)] is
shown for a simple cubic lattice.

2

,„=v3 — +3R sin '[(1—R )' ]

—3(R —1)'

tion M (R ) as follows:

d o./dR dP/dR
(8)

In Fig. 2 we plot this estimated resistivity versus the
porosity for the three ordered lattice configurations. (The
constant of proportionality between o. and 2;„fixes the
vertical position of the curve and is an adjustable parame-
ter. Note, though, that the curve must pass through the
origin [i.e., the point (1.0,1.0)] of Fig. 2 with a slope of 1.5
(see Ref 2).) As. P decreases from P,z, all three curves ex-
hibit behavior consistent with Eq. (1) over an appreciable
concentration range. The values of m are approximately
1.80 for the simple cubic lattice, 1.35 for the body-
centered cubic and 1.90 for the face-centered cubic. The
slope of the body-centered system is noticeably lower than
that of the simple or face-centered systems, which is con-
sistent with this system having by far the lowest percola-
tion threshold (P, =0.0055). At lower porosities, all three
curves rise more rapidly as P —+P, and the throat cross
sections are being closed off.

It may seem surprising that the relati. very simple func-
tions defined by Eqs. (5)—(7), when plotted against their
counterparts in Eqs. (2)—(4) yield the curves shown in
Fig. 2. To see what is happening let us consider the sim-
ple cubic case in more detail. Suppose we define the func-

If M(R) =m (a constant), then we would have true
power-law behavior between o and P. In the present case,
M(R) is essentially (but not strictly) constant over a fairly
wide range of porosities (see the inset in Fig. 2), and we
have behavior that is a good approximation to a true
power law within this range. [We emphasize that
Archie's law is simply an empirical statement of the fact
that rocks in a given family will satisfy Eq. (1) (approxi-
mately) over a given porosity range. ]

Also shown in Fig. 2 are measured resistivities for a se-
quence of materials comprised of spherical glass beads
that were sintered to obtain successively lower porosities.
Note that the experimental results also show a crossover
to more rapid variation as the porosity is decreased below
/=0. 10. The extremely high level of agreement between
the experimental data and the present calculations for the
simple and face-centered systems is, no doubt, fortuitous.
Nevertheless, we believe that the model we have described
captures an essential feature of porous granular materials:
The lengths that characterize the largest regions of the pore
space (the nodes) determine the porosity while those that
characterize smallest regions (the throats) determine the
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conductiuity. These two lengths vary differently as the
system evolves toward lower porosity and thus the rela-
tion between cr and P is nontrivial. (This point is also
made in Ref. 5; it is gratifying to see the same ideas
emerge from what might appear to be two very different
models. )

III. DENSE RANDOM PACKING

A. Geometrical considerations

The calculations described above will now be extended
to systems with irregularly spaced grains. To model the
disordered geometry of a sedimentary composite, we
choose to use the Bernal distribution, ' ' i.e., the coordi-
nates of a dense random packing of identical spheres, for
the locations of the particle centers. As before, the radii
of the particles are allowed to increase in unison and the
material s porosity and resistivity are computed as a func-
tion of the radius.

It is useful to compare our computations with those re-

cently described by Elam et al. ,
' where a similar sphere-

growing algorithm was applied, but random numbers were
used to generate a Poisson distribution of grain-center
coordinates. Beginning with R =0, the sphere radii were
increased and the system eventually reached a percolation
threshold at P, =0.032+0.004. The central issue in Ref.
19 was to confirm the universality of the critical ex-
ponents v and )33 by studying the percolation transition in
a structurally disordered system. By contrast, our em-
phasis is on making a realistic model of the behavior of a
sedimentary material over a wide range of porosities. The
Poisson distribution employed in Ref. 19 is not suitable
for this purpose because it does not correspond to a situa-
tion in which the original grain-size distribution is at all
uniform. ' Indeed, in the Poisson model neighboring
spheres begin to overlap as soon as R & 0. awhile some of
our results are surprisingly similar to those obtained in
Ref. 19, it will be seen that there are important differences
in the pore-space geometry generated by the Poisson and
Bernal distributions.

Bernal coordinates are difficult to generate on a com-
puter, so we used a set of 7934 coordinates measured by
Finney from a randomized mass of steel balls. Finney's
measurement techniques are described by Bernal et al. '

and the coordinates' statistical properties are analyzed by
Alben et al. Most of our computations were performed
on the central 5453 spheres to avoid edge effects. In Fig.
3 four stages of the grain-evolution process are shown as
the radius varies from 1.0 to 1.270 and the porosity ranges
from 0.364 to 0.030. In many respects these illustrations
are similar in character to several types of sedimentary
rocks (Fig. 4).

A particularly attractive feature of the Poisson distribu-
tion employed in Ref. 19 is the fact that it leads to a sim-
ple analytical function relating the porosity to the grain
radius. Unfortunately, there is no corresponding function
available in the case of the Bernal packing. Therefore we
used a Monte Carlo sampling technique to measure this
relationship. One million points were placed at random
within the sample space and, for each of these points, the

(c) (d)

FIG. 3. Computer-synthesized cross sections of a sample of
material produced by consolidating a Bernal distribution of
spherical grains. The thin lines along the grain-to-grain con-
tacts have been included for clarity and do not represent porosi-
ty. The illustrated stages are (a) /=0. 364, the initial configura-
tion, (b) P =0.200, (c) P =0.100, where the first occluded
volumes have begun to develop, and (d) /=0. 030, near the per-
colation threshold.

FIG. 4. Heavily cemented Devonian sandstone from Illinois
observed (a) with cathodoluminescence to show the original
rounded sand grains and (b) with ordinary light to show the an-

gular forms of the grains after cementing. A few small dark
pores are visible in (b). [Photos by R. F. Sippel, reproduced
courtesy of the American Association of Petroleum Geologists
(Ref. 23)].

distance l to the nearest particle center was computed. If
the distribution of these distances, f ( l), is normalized to
unity,

J f (l)d/ = I, (9a)

the porosity-versus-radius relationship is
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FIG. 5. (a) Typical pore throat (cross-hatched area) produced
by three neighboring spheres. In our network analysis the
throat is identified with the Voronoi edge (indicated here as a
circled sixfold star) running normal to the paper, equidistant
from the centers of the three spheres. (b) A distorted pore
throat associated with an obtuse triangle of grain centers. Note
that the Voronoi edge lies outside the triangle. This case is rare
when the grains are arranged in a Bernal distribution.

P(R)= f f(l)dl . (9b)

Equation (9b) replaces Eqs. (2)—(4) in the case of ordered
packings.

In order to study either electrical conductivity or fluid
permeability, it is essential to keep track of the connected
paths through the model. To do this, we have followed
Kerstein's technique of approximating the continuum
problem by a related network problem on the edges and
vertices of the Voronoi polyhedra defined by the particle
centers. These polyhedra are the analogs of the Wigner-
Seitz cells in an ordered packing. Their vertices are
equidistant from the four nearest particle centers and may
be viewed as the centers of the pore-space nodes described
earlier. The edges of the Voronoi polyhedra are equidis-
tant from three particle centers and define the flow paths
between the nodes.

Figure 5(a) shows three particles defining a Voronoi
edge (which runs normal to the page). This view is taken
in the plane of the three particle centers, so it shows the
narrowest part of the flow path, i.e., the throat. In Ref.
19 an edge was treated as being "present" if it passed
through the pore space when viewed in this plane. We
prefer to consider the edge to be present if the triangle
among the three particle centers contains a nonzero
amount of pore space. This differs from the definition
used in Ref. 19 only in the unusual case of obtuse trian-
gles [Fig. 5(b)].

With this definition, our system reached a percolation
threshold at R =1.266 in the X direction and E.=1.273 in
the Y and Z directions which correspond, respectively, to
porosities of P, =0.032 and 0.029. (Recall that our calcu-
lations are based on a single finite-size system. ) These
values are remarkably similar to those obtained in the
simple and face-centered cubic systems and to those re-
ported in Ref. 19 for the Poisson-generated systems (Table
I).

B. Conductivity calculation

Having constructed the model, we next consider the
behavior of the electrical conductivity as a function of P.
To do this, we make the same assumption as before,
namely, that the network's conductivity is controlled by

the size of the narrowest parts of the Aow channels. For
each channel, the throat size can be approximated by the
area of the pore space lying in the triangle defined by the
three particle centers, as shown by the cross hatching in
Fig 5.(a). For various values of R, we computed the sizes
of all of the throats and solved the resulting resister net-
work by simple numerical relaxation. Figure 6 shows
the computed resistivities, plotted as a function of porosi-
ty. This is very similar to the results from the regular lat-
tices shown in Fig.. 2. In the disordered medium, the ex-
ponent I is equal to approximately 1.80 at high porosities
and increases at lower porosities.

Two slight refinements were made on this result. First,
the bond conductivities were recalculated by taking the
throat area divided by the length of the Voronoi edge.
This had very little effect on the results (Fig. 6). Second,
we tried to adju'st the conductivities to compensate for the
funnellike shape of the material's pores. Based on the
geometry shown in Fig. 7, a throat with a minimum area
equal to m.ro was defined to have an area equal to

A (x) =vr[R +ro —(R —x )' j (10)

on the plane normal to the Voronoi edge at a distance x
from the narrowest constriction. The bond's conductivity
was then estimated as the harmonic mean:
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FIG. 6. Estimated formation factor (electrical resistivity) of a
disordered aggregate of particles with Bernal-distributed centers.
The three curves are computed using different approximations
for the conductivity of the individual branches of the pore net-
work (as described in the text). The vertical axis represents the
ratio of the bulk resistivity to the fluid resistivity and the sym-
bols represent measurements from three batches of fused glass
beads (Ref. 5). A fr'ee scaling parameter in the computations
has been used to adjust the vertical position of the curves to fit
the measurements.
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FIG. 7. Funnel-shaped geometry used to approximate the
three-dimensional shape of a throat (with minimum cross-
sectional area equal to pro) between two pores.

obond

2 2

2Rrp + I'p2

+ z tan '[(2R + ro) lro]'
(2Rro+ r o )

~

(12)

In the limit of very wide channels this equation predicts
that the conductivity is, indeed, proportional to the
minimum throat area. However, as the channel size (and
the material's porosity) decreases, the effective length over
which the minimum area is dominant also decreases, and
the channel conductivity crosses over the the three-
quarters power of the minimum throat area in the limit-
ing case of very narrow channels. This crossover causes
some additional curvature in the resistivity plot (Fig. 6)
but does not change the curve's essential character.

It should be emphasized that the Bernal-generated
model preserves the pore-threat character of the network.
Over 97% of the first-neighbor center-to-center distances
in the Bernal distribution are between 2R and 2W2R in
length. This guarantees that a great majority of the trian-
gles formed by the centers of three neighboring spheres
are acute triangles. Thus, the path followed by the electri-
cal current along the edges of the Voronoi polyhedra al-
most always lies in well-defined, narrow regions of the
kind pictured in Fig. 5(a). By contrast, the Voronoi po-
lyhedra associated with a Poisson distribution of grain
centers would lead to a substantial fraction of node-node
links governed by obtuse triangles of the kind shown in
Fig. 5(b). In this case the arguments we have used to esti-
mate the conductivity are no longer valid and the calcula-
tion of o. would be considerably more difficult.

C. Bond statistics

The statistical properties of the bond network in
Bernal-generated model deserve further discussion. The

1 1 ~ 1
dxo„,„d 2R —& A(x)

These equations can be combined and integrated to give
the following form:
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FIG. 8. Bonds on the Voronoi lattice have been grouped into
percentiles based on their order of becoming "absent" (i.e., re-
duced to zero area in the case of pore throats). This plot shows
the probability of a bond being in the nth percentile, given that
particular one of its neighboring bonds is also in the nth percen-
tile. The three curves represent (1) the Bernal throat data, (2)
random bond weights, and (3) random weights which have been
averaged with the neighboring bonds' weights.

percentage of "present" bonds at the percolation threshold
was surprisingly high —0.541 for flow in the X direction
and 0.523 for flow in the Y or Z directions. By compar-
ison, the diamond lattice has a bond percolation threshold
of 0.388 (Ref. 9) and has exactly the same coordination
value, 4.0, as the random Voronoi lattice. To convince
ourselves that the topological disorder in the present
model was not responsible for this discrepancy, we tried
assigning random numbers (rather than throat areas) to
the bonds of the Voronoi lattice. The bonds were then re-
moved in order of the assigned numbers and the system
was found to percolate at thresholds ranging from 0.383
to 0.411 in six test cases. These values are sufficiently
close to the diamond lattice figure that we have concluded
that the high bond percolation thresholds in the original
problem were due primarily to correlations among the
throat sizes rather than the randomness of the lattice.

Studying this phenomenon further, we created a system
with correlated bond values by taking the previous case
and averaging each bond's random number with the num-
bers on all of the adjacent bonds (first neighbors). This
caused the percolation threshold to decrease rather than
increase. In six test cases, the thresholds ranged from
0.241 to 0.286. Finally, we artificially redefined the origi-
nal problem so that the largest throats would disappear
first and the smallest ones would remain to the end. This
inverted order gave percolation thresholds of 0.320 in the
X and Y directions and 0.321 in the Z direction. These
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values, too, are significantly less than in the uncorrelated
case.

There seems to be very little published theory to explain
this sort of phenomena. Some insight can be gained from
Fig. 8, which shows the probability of a bond being in the
nth percentile (based on the order of becoming absent),
given that a particular one of its immediate neighbors is
also in the nth percentile. For the case of randomly as-
signed bond values, this function is approximately con-
stant at 0.01 (as it should be). When the bond values are
averaged with their first neighbors, the function increases
slightly in the center and rises very substantially at both
ends. The original data has similar peaks at both ends,
but has much larger values in the central portion. More
importantly, the curve is very asymmetrical. Apparently
there is a higher degree of autocorrelation among the
more persistent bonds (i.e., the larger throats) than among
the others. Physically, this may be due to the presence of
clumps of high porosity (such as the larger Bernal holes' )

in the midst of a relatively homogeneous material of
slightly lower porosity. The inverted case (which has a re-
duced percolation threshold) would represent dense
clumps within a homogeneous material of higher porosity.
Empirical studies of reservoir rocks indicate that, when
samples with the same total porosity are compared, those
with isolated dense or open regions are found to have sub-

stantially different recovery efficiencies. This may be re-
lated to the differences we observe in the percolation
threshold for these cases.

IV. CONCLUSIONS

A simple and realistic geometrical model for the conso-
lidation process in sedimentary systems has been
developed. This model follows the evolution of the grains
from being initially spherical in shape to being more like
polyhedra as the material consolidates. Electrical conduc-
tivities calculated using this model are consistent with
Archie's law over a wide porosity range and are in good
agreement with experimental data on fused glass beads.
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