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Solitons of the square-rectangular martensitic transformation
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The static solitons of the square-rectangular martensitic transformation are obtained with the use

of higher-order elasticity theory; both first-order (rectangular-rectangular and square-rectangular

solitons) and second-order (rectangular-rectangular only) phase transitions are treated. The shear
and dilatational strains vanish in all cases. The deviatoric strains are calculated exactly, and the dis-

placement vectors are obtained as power series, using the full (nonlinear) Lagrangian strain tensor.
In the first-order case, the width of the rectangular-rectangular soliton diverges as the transition

temperature is approached from below; the soliton splits gradually into two square-rectangular soli-

tons, both of finite width, whose separation diverges at the transition temperature.

INTRODUCTION

The martensitic transformation and the related phe-
nomena of shape memory, pseudoelasticity, and ferroelas-
ticity are of considerable technological importance; the
proceedings' of a recent conference are a good introduc-
tion to the literature. Until recently, theories of an impor-
tant class of such transformations, the cubic-tetragonal
transformation (examples: Nb3Sn, V3Si, In- Tl alloys),
have been dominated by dislocation models. The soliton
model of Barsch and Krumhansl, which provides a
dislocation-free explanation of the observed twinned re-
gions in such materials in terms of higher-order elasticity
theory, is therefore of much interest.

The present paper is concerned with the martensitic
transformation in two dimensions, the high-temperature
and low-temperature phases having square and rectangu-
lar symmetry (point groups 4mm and 2mm), respectively.
The phase transition is the two-dimensional analog of the
cubic-tetragonal transition of the preceding paragraph; it
is studied using higher-order elasticity theory, as in Refs.
2 and 3. Both first-order and second-order phase transi-
tions are treated. Attention is restricted to the static soli-
tons linking (a) a square region and a rectangular region
and (b) two rectangular regions of different orientations

The equation of motion of the displacement vector is
obtained using higher-order elasticity theory and the full,
nonlinear Lagrangian strain tensor. Exact solutions are
obtained for the strains describing both rectangular-
rectangular and square-rectangular solitons. The displace-
ments are also obtained without the common approxima-
tion of linearizing the strain tensor; more precisely, power
series for the displacements are obtained.

The rectangular-rectangular solitons for both first-order
and second-order square-rectangular phase transitions are
obtained analytically, at all temperatures below the transi-
tion, using the equation of motion of the preceding para-
graph; both the strains and the displacements are ob-
tained. Like the special-case tetragonal-tetragonal solu-
tions found by Barsch and Krumhansl, these solutions
have shear and dilatational strains identically zero. As

described in the abstract, interesting and unusual behavior
is found in the first-order case as the transition is ap-
proached from below. This behavior has been found pre-
viously by Lajzerowicz in a study of domain walls in fer-
roelectrics; in fact, the solutions obtained below for the
strains [Eqs. (20) and (22)] are, apart from differences in
notation, identical to those obtained by Lajzerowicz for
the ferroelectric order parameter.

The square-rectangular soliton (both its strains and dis-
placement vector) is found analytically in the first-order
case (it does not occur in the second-order case). Again
the shear and dilatational strains are identically zero.

Some of the results obtained in the first-order case
parallel those obtained by Falk who studied the corre-
sponding one-dimensional model; the origin of the paral-
lelism is the assumption that the strain in the two-
dimensional problem considered here is a function of a
single variable [see Eq. (11) below]. For both kinds of sol-
itons, the boundaries are lines parallel to the [11]and [11]
directions.

II. ELASTIC ENERGY DENSITY

3 912 I21 (4)

Here the g;J. are the components of the Lagrangian strain
tensor (repeated-index convention here and in the follow-
ing)

The starting point for a descriptioo of the square-
rectangular martensitic transformation is the following
Landau-theory expression for the elastic energy density:

=A)e)+D((Vet) +Ae2+Be2+Ce2+D(Ve2)

+A3e3+D3(Ve3) (1)

where e1, e2, and e3 are the dilatational, deviatoric, and
shear strains, respectively:

5984 1985 The American Physical Society



31 SOLITONS OF THE SQUARE-RECTANGULAR MARTENSITIC. . . 5985

I
QIJ 2 ( / J+uJ 1+uk, l k J) (5)

where the u; are the components of the displacement vec-
tor relative to the reference state (the square state) which
has all strains (e1, e2, and e3) equal to zero. As usual,

u; J ——Bu;/Bxi ——Bju;. The strains in the rectangular state
are twofold degenerate: e& ——0, e2 ——+e2p, e3 ——0 with e2p

a constant. In the square state, the xi and xq axes are
mirror lines and the x3 axis is a fourfold axis.

In a more complete treatment, many other terms would
be included in Eq. (1). First of all, however, although e1
is an invariant, there can be no term linear in e1 (as dis-
cussed in Ref. 5). Omitted from Eq. (1) are terms such as

B1e1e2, C1e1(Ve2), etc. , which couple e, and its deriva-
tives to e2 and its derivatives; these terms are necessary
for a discussion of the volume (here area) change at a
first-order martensitic transformation but are neglected
here, as in previous work, first because the volume
change is usually small, and second in order to avoid un-

necessary complications. Also omitted from Eq. (1) are
terms coupling the deviatoric strain e2 and its derivatives
to the shear strain e3 and its derivatives. This is done
again for simplicity but for another reason as well; with
such terms, a strain e2 might induce a shear e3, but it
might not be obvious whether the shear was an essential
part of the transformation or merely a consequence of the
coupling terms. Terms coupling e& and its derivatives to
e3 and its derivatives are superfluous (and therefore omit-
ted). Finally, terms of eighth and higher order in e2 are
omitted, again to avoid unnecessary complications. Equa-
tion (1) contains only those terms necessary for a qualita-
tive understanding of the phase transitions.

The order parameter of the transition is the displace-
ment u though of course only derivatives of u appear in

the elastic energy density. The strains e], e2, and e3 are
not independent variables and it is therefore not legiti-
mate, even in the static case, to minimize the elastic ener-

BM BM
ppuI =BJ.

Bug J ul Jk

For M as given by Eq. (1), Eq. (7) yields

(7)

gy with respect to variations in e &, e2, and e3. The solu-
tions obtained below have vanishing dilatational (e1) and
shear (e3) strains but it is not obvious from Eq. (1) that
such solutions are possible; in fact, shearless solutions are
possible for only a few orientations of the domain walls
relative to the axes.

As is customary in a Landau theory, it is assumed that
the coefficient 2 in Eq. (1) has the temperature-d'ependent
form 3 =Ap(T —Tp), with Tp some reference tempera-
ture, and that Ap and the remaining seven Landau coeffi-
cients are independent of temperature; for stability, the
coefficients A1, D1, D, A3, and D3 must be positive.
With regard to the other coefficients (B and C), two cases
must be distinguished, B )0 (in which case C can be tak-
en as zero), and B (0 (in which case C must be )0);
these cases yield second-order and first-order phase transi-
tions, respectively. The eight Landau coefficients A] to
D3 are various combinations of second-, fourth-, and
sixth-order elastic constants.

The above expression [Eq. (1)] for the elastic energy
density is not the two-dimensional form of the expression
given by Barsch and Krumhansl; the important differ-
ence is that the high-temperature state here has square
symmetry and therefore it is necessary to include the term
Ce2 in order to describe a first-order transition. In the
cubic-tetragonal case, there is a third-order invariant
and the Landau expansion can be terminated in fourth or-
der.

As in Ref. 2, the Lagrangian density is (i = 1,2)
~ ~

2 ppug u1 —M

where pp is the mass density, and the equation of motion
1S

ppu'1 =B1t(I+u1 1)G1[e1]+(1+u1 1)G2[e2]+u1 2G3[e3] I +82I u, 2G1[e1]—u, 262[e2]+ (1+u1 1)G3[e ] I (8a)

Po"2 ~ Iu2, 1G [e ]+u2, 1G2[e2]+(1+u2,2)G3[e ]I+82[(I+u22)G, [e, ]—(1+u22)G2[e2]+u2, G3[e3]I (8b)

where the functionals Gi, 62, and 63 are

G1[e1]=( 2D1V e +122 e—1)/1~2,

G2[e2]=( —2DV e2+2Ae2+4Be2+6Cez)/W2,

G3[e3]= D3V e3 +A3e3—

(9a)

(9b)

(9c)

e&
——0,

2DV' e2 ——2Aeq+4Be2+6Cep,

e3 ——0.

(10a)

(10b)

(10c)

The full (nonlinear) Lagrangian strain tensor of Eq. (5)
was used in the derivation of these results.

For static solitons, Eqs. (8) are satisfied if

These are to be viewed as trial "solutions, " subject to veri-
fication; again, the order parameter is the displacement
vector u, and Eqs. (10) are not necessarily mutually
compatible —in fact, they are self-contradictory in general.
The procedure in the following is to assume e3 ——0, solve
Eq. (10b) subject to the restrictions e1 ——0 and e2 a func-
tion of the single variable x' given by

x'=x1cosg+x2sing, (11)

where p is to be determined (x' is the coordinate normal
to the interface), calculate the displacement vector u, and
then verify that the shear indeed vanishes everywhere, ' it
turns out that this is true if

P=m/4, 3'/4, 5'/4, or 7'/4 . (12)



5986 A. E. JACOBS

(13a)

(1) (1)
&2, 2 ——&1,1 ~ (13b)

(1) (1)+1 2+Q2 1 =0,
l

(13c)

gII+g2~=—&2e~ ——0, g» —g» ——~2e2, and
g 12=83 —0, all three to first order in e20, it is the last
equation which gives the requirement P =(m /4)mod(m/2).
Expanding u I and u2 in powers of e2p (it appears that the
expansion parameter is really e»/W2), one determines the
higher-order functions from the equations

Equation (12) holds for both the square-rectangular and
rectangular-rectangular solitons; perhaps there is a sym-
metry argument for this result. Of course the above pro-
cedure proves only that dilatationless and shearless solu-
tions are possible and that they are at least metastable
against development of a dilatation or a shear; whether
these solutions yield the absolute minimum of the elastic
energy is a difficult question whose answer would seem to
require a full solution of Eqs. (8).

The vanishing of the dilatational strain el in both the
square and rectangular states means that the transition is
area-preserving. The area is also preserved in the presence
of solitons (since e& vanishes in the neighborhood of the
solitons as well as in the asymptotic regions).

The displacement field is found as follows from the
solution e2(x') of Eq. (10b). By integration, functions
uI" and u2", each proportional to the strain e2p in the
rectangular state, are found which satisfy

(2) 1 2 (3)
J 2~2 +J

(4) 1 4 (5)
J 4 2p Qp j 0

(15)

III. SOLITONS

In this section the solitons linking (a) a square region
and a rectangular region and (b) two rectangular regions
are obtained. Both kinds of solitons have positive ener-
gies. The extension of the results to describe chains of
square-rectangular or rectangular-rectangular solitons ap-
pears straightforward.

For the case of a second-order square-rectangular tran-
sition (B &0), the Landau coefficient C is chosen equal to
zero; Eq. (10b) then reduces to the form familiar from the
theories of superconductivity, magnetism, ete. The square
state (eq ——0) is stable for A &0; the rectangular state,
with strain e2 ——+e20 where

e» —
( ——,

' W/B)'", (16)

is stable for A &0. There is no square-rectangular soli-
ton. The rectangular-rectangular soliton has the familiar
form (A &0)

etc. Finally, the assumption e3 ——0 is verified order by or-
der. In this way, solutions for the displacement field are
obtained which are consistent with both the full (non-
linear) Lagrangian strain tensor and the equation of
motion.

(1) 1 2 1 2
Q1 1=01 1

—
2 &1,1 (14a) e2(x ') =e»tanh(~x') (17)

(1) 1 2 1
&2,2 &2,2 2 1,2 p ~2,2 (14b)

which guarantee that g ~ I+g2z =&2e
&
——0 and

g» —q» ——W2e2 to all orders in e2p', these equations
might serve for numerical work as well. One finds easily
(i =1,2;j=1,2)

where ~=[—A/(2D)]'~; the width parameter (~ ') of
the soliton diverges as 3~0, familiar behavior for a
second-order transition. The well-known periodic solu-
tion is also easily obtained. As noted above, shearless
solutions can be obtained only for P=vr/4modvr/2. For
P=m. /4, the displacement vector is [x'=(x&+x2)/v 2]

u(x~, x2) =(1,—1)e»v 'in[cosh(vx')] —(1,1)e2p(a'M2) '[vx' —tanh(sex')]

—(1,1)e2p(~2& 2) '[~x' —tanh(~x') ——,tanh (~x')j+O(e2p/Ic) . (18)

The constants of integration have been chosen so that the displacement vanishes at the origin (and therefore along the en-
tire line x, +xz ——0 which is the center of the domain wall). Plots of unstrained and strained regions are given in Fig. 1;
the domain wall is a twin boundary [see the discussion following Eq. (25) below].

The case of a first-order square-rectangular transition (B &0) is more interesting. The square state (ez ——0) is stable for
A & B /4C and the rectangular state, with e2 ——+e2p, where

e»= I[ B+(B 3/IC) ~ —]/3Cj— (19)

is stable for A &B /4C. The square state is metastable for 0& 3 &8 /4C and the rectangular state is metastable forB /4C & A &B /3C. The differential equation for e2 has been studied thoroughly by Falk; attention here is restricted
to the case of a single domain wall.

The square-rectangular soliton exists only for the temperature defined by A =B /4C (at which temperature the square
and rectangular states have the same energy). For the case of square and rectangular regions in the limits x'~ —ao and+ oo, respectively, the strain is
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e2O
u(x„x~)=(1,—1) ln

K

cosh(lrx') + [cosh (Irx') +a]'
1+(1+~)'"

2
e20—(1,1) ~x'—�~v

' 1/2 ' 1/2

tanh(ax ')

4
—(1,1) a.x'—2&, (2a —1) 1+a

2&v 2 2a u

' 1/2 ' 1/2
aarctanh tanh(lcx ')

1+0'

(1+a) sinh(2ax') ezo
~ +

4cr cosh (Irx') +a (25)

u, (x»x2)=f, (x~+x2) fo(xl+x2) &

u2(x&, x2)= f, (x~+x2) f—o(xl+x2) &

where f, and f, are respectively even and odd functions
of their arguments. Hence the components of u at the
points (x~,x2) and ( —xz, —x~), which are twin related
with respect to the line x1+x2 ——0, satisfy

I.O— l

0.6—

N 0
N

0.2—

-0.2

-0.6

—I.O
I

-6
I

0
x'

ego K'

0 0.23 I l.635
b 0.209 I. I 73
c 0.20 I I.020
d 0.200 l.002
e 0.200 I.OOO

I I

2 4

2
6.I6
5 I.2—
50 I

500I

6

FICi. 3. Plots of the strain e2 (normalized to the value e2p) vs

x'=(x&+xz)/V 2. A possible set of Landau parameters yield-

ing the values of ego K and a given is A =0, 0.16, 0.196, 0.1996,
0.19996 for curves a —e, and B = —10, C=125, D =0.2.

Figure 2 shows a rectangular-rectangular soliton at
temperatures well below (part c) and just below (part b)
the square-rectangular transition; in the latter, there is a
reasonably sized square region between the two rectangu-
lar regions. Part a shows a square-rectangular soliton at
the transition temperature.

The components of the displacement vectors for the
rectangular-rectangular solitons in both cases [B ~0, Eq.
(18) and 8 &0, Eq. (25)] have the form

u i( —x2, —x~ ) = —u2(x&, x2),

u2( x29 x] ) — u](x]yx2)
(27)

therefore the line x1+x2 ——0 is a twin boundary for both
rectangular-rectangular solitons.

The other three possibilities for P obviously also give
twin boundaries. Consequently in the asymptotic region
(well away from any boundary) there are four possible
orientations of the rectangles.

IV. DISCUSSION

Barsch and Krumhansl have shown (for the cubic-
tetragonal transition) that higher-order elasticity theory
provides a simple explanation of the twinned regions
which are experimentally observed and which play such
an important role in the explanation of the phenomena of
shape memory, pseudoelasticity, and ferroelasticity; one
expects soliton models such as theirs to be important in
the future development of these fields. The soliton model
appears to provide such a natural explanation of the
twinned regions that the burden of proof may now lie
with the dislocation model.

There remain, however, many important questions. In
the theory of the cubic-tetragonal martensitic transforma-
tion a few of these are (1) the structure of the cubic-
tetragonal soliton (at the transition temperature), (2) the
structure of the tetragonal-tetragonal soliton for arbitrary
temperatures below the transition (the Barsch-Krumhansl
solution applies at only one temperature) and whether the
soliton splits into two cubic-tetragonal solitons as the
transition temperature is approached, and (3) the more
macroscopic question of how the various tetragonal re-
gions join wit/ each other and with untransformed cubic
material. It should be pointed out that the existence of
solitons connecting regions which are asymptotically
homogeneously strained is not obvious. Finally, there is
the question of whether the soliton models provided by
higher-order elasticity theory have applicability to other
martensitic transformations.

The present paper has provided support for the soliton
model by explicit solution of a simple model at all tern-
peratures. In the process, the phenomenon of soliton
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splitting (which occurs also in the theory of ferroelec-
trics") was found in the case of a first-order phase transi-
tion; the splitting here is only superficially similar to that
in the theory of polyacetylene. On the technical side, it
has been shown that the nonlinearity of the Lagrangian
strain tensor need not prevent a complete calculation of
the strains and the displacement. Whether these results
will prove useful in the theory of the cubic-tetragonal and
other martensitic transformations remains to be seen.
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