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Partial-differential approximants are used to study the critical behavior of the susceptibility,

P(x,y), of the Klauder and double-Gaussian scalar spin, or 0 (1) models on a square lattice using

two-variable series to order x ' where x ~ J/k& T while y serves to interpolate analytically from the

Gaussian or free-field model at y =0 to the standard spin- 2 Ising model at y =1. The pure Ising

critical point at y = 1 appears to be the only non-Gaussian multisingularity in the range 0 &y & 1. It
'

is concluded that the exponent 0 characterizing the leading irrelevant corrections to scaling lies in

the range 8=1.35+0.25. This supports the validity of Nienhuis s conjecture 0= —, but it is argued

that, contrary to normal expectations, this (rational) value entails only logarithmic corrections to

pure Ising critical behavior. The existence of strong crossover effects for 0. 1 &y &0.6 and the ap-

pearance of an effective exponent, y,~q
—1.9 to 2.0, is discussed and related to work on the ky

model.

I. INTRODUCTION

where

t=(T T, )/T, — (1.2)

is the reduced temperature. The leading critical exponent

y, and the correction exponents 0,0', . . . , are expected to
be universal, while the amplitudes C and a, are expected
to depend smoothly on any subsidiary parameters which
may change T„but do not affect the nature of the transi-
tion. The general structure of (1.1) is predicted by
renormalization-group theory, which also identifies two
distinct sources of correction terms. First, the full scaling
fields are nonlinear functions of observable fields like t,
and their expansion normally yields integral powers of t.
Second, irreleuant operators at the pertinent fixed point
give rise to independent, and, in general, nonanalytic, con-
tributions represented by powers of t with nonintegral ex-
ponents 0, 0', etc.

For Ising-like, i.e., scalar spin or O(1) critical systems
in d =3 spatial dimensions, the existence of strong lead-
ing nonanalytic corrections described by 0=0.5 is quite
well established. The first evidence came from
renormalization-group e =4—d expansions extrapolated
to d =3 (e= 1) which can be done with reasonable confi-
dence. Then came field-theoretic perturbation calcula-
tions performed in d =3 dimensions for a ky Lagrang-
ian. ' A careful analysis of long series for the Ising
model of general spin S on a body-centered-cubic lattice

When a critical point is approached, there are always
corrections to the leading power-law singularities of vari-
ous thermodynamic quantities. For instance, the suscepti-
bility X(T) of a ferromagnet near its critical temperature
T, is typically expected to be of the form

X=Ct (I +a&t+a2t + . . +act +as+, t +'+a2et

+. . . a t +a t ++. )

has been presented by Zinn-Justin: By assuming that y
and 0 are independent of S (a very plausible but arguable
hypothesis), the series analyses could be appropriately
"biased. " Values of 0 in good accord with the field-
theoretic approaches were obtained.

Finally, Chen, Fisher, and Nickel' have reported an
unbiased analysis of double series to order x ', with
x cc J/k+T, for the susceptibility, X(x,y), of the Klauder
and double-Gussian models on a bcc lattice. These
continuous-spin models, ' which are explained in detail in
Sec. II, interpolate analytically from the pure Gaussian
model, or free-field lattice theory, at y =0 to the standard
spin- —,

'
Ising model (the pure Ising model) at y = 1. Chen

et al. analyzed the susceptibility X(x,y) with the aid of
partial differen-tial approxi-mant (PDA) techniques, "'
which utilize the full two-variable nature of the power
series in an essential way. In particular, the method can
address the question of the number of distinct universality
classes arising in a model. Moreover, PDAs can accom-
modate nonlinear scaling fields naturally, thereby focus-
ing directly on corrections arising from irrelevant opera-
tors. The analysis of Chen et al. ' indicated that, within
the Klauder (Kl) and double-Cxaussian (DG) models, the
critical behavior is always Ising-like for 0 &y & 1. For the
correction exponent they obtained the estimate
0=0.54+0.05. This value agrees well with the results of
Zinn-Justin for the spin-S Ising model and with the e ex-
pansion and field-theoretic estimates. ' The theoretical
situation in d =3 dimensions is, thus, in a rather satisfac-
tory state.

Paradoxically, the situation in d =2 dimensions has
been much less clear despite the availability of many exact
results for the pure spin- —,

' Ising model. ' ' According-
ly, in this paper we address the question of corrections to
scaling in two-dimensional Ising-like systems by studying
the Klauder and double-Gaussian models on a square lat-
tice where again, thanks to Nickel„' the series are known
to order x '.
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Before outlining our work and its conclusions, it is ap-
propriate to review what may be said about the problem
on the basis of the current literature. One must note,
first, that exact calculations for the magnetic susceptibili-
ty, Xt(T), of the pure, square lattice. Ising model near cri-
ticality' have, so far, revealed only analytic corrections to
the leading .power law. As discussed by Aharony and
Fisher, ' it seems that these can be fully and consistently
accounted for in terms of nonlinear sc'aling fields involv-
ing only t and the (reduced) magnetic field h =H/keT.
Nonlinear fields in the d =2 Ising model should also
yield' an additive singularity to Xt(T) of the form
t ln

~

t
~

[beyond terms shown in (1.7)], but this lies at a
higher order than is available in the present exact calcula-
tions. ' However, no evidence has been seen in any of the
exact expressions for corrections to leading behavior that
can be identified with irrelevant operators with nonin
tegral exponents, 0,.

In view of these results one may ask: "Can a nonin-
tegral correction exponent, 0, arise in two-dimensional
ferromagnetic systems, like the Kl and DG models, which
differ from the pure Ising model but which otherwise
should be in the same universality class?" This might be
possible if the corresponding correction amplitudes, a„
happened to vanish identically in the case of a pure Ising
model. This would imply that the Onsager critical point
embodied some special symmetry or lay on some special
manifold in the space of all scalar spin Hamiltonians —a
circumstance which should not be so surprising in view of
the exact solvability of the pure Ising models. If the pure
Ising limit is special in this way, however, we can still ask
for the exponent 8 characterizing the leading nonanalytic
corrections to scaling in scalar spin models which deviate
from the limit. Presumably such corrections should also
arise and be detectable in real physical systems in the
Ising-like universality class.

At present no firm answers to this question have been
advanced. However, by an ingenious series of rnappings,
not all of which are exact, Nienhuis' has transformed the
q-state Potts model in two dimensions into a Gaussian
model with spatially staggered fields. On setting q =2 to
recapture the Ising model, he was led to conclude that
8=—', describes one of the correction exponents in Ising-
like models. In order to reconcile this result with the
known behavior of the Ising model, which, as we have
mentioned, appears not to display any such corrections,
Nienhuis argued that the corresponding operator might be
associated only with derivatives with respect to q; if so,
the irrelevant variable describing an exponent with this
value of 8 might well not be observable in models which
belong to the Ising (q =2) universality class.

Recently, by postulating conformal covariance and uni-

tarity at criticality, Friedan, Qui, and Shenker' have
found sets of critical exponents for infinitely many d =2
models; their analysis exhibits no scaling operator with
exponent 0= —', in the Ising-like case. However, one may
presume that if there were natural operators within the
full Ising-like universality class that violated unitarity (as
may antiferromagnetic spin-spin couplings) or conformal
covariance (although at present this seems less likely),
then such operators would not show up in the analysis of

Friedan, Qui, and Shenker. Indeed, there is an intriguing
hint of the value 8= —, in the work of Andrews, Baxter,
and Forrester. They have solved exactly two infinite se-
quences of two-dimensional solid-on-solid —like lattice
models. As Huse ' has pointed out, the exponents of one
of their sequences agree with all those found by Friedan
et al. the other sequence is not included in their results.
Further, for a class of multicritical points describing n

phase coexistence their solutions yield ' a correction ex-
ponent

8„=(n +2)/(n +1) . (1.3)

This formula applies, strictly, only for n ) 3, but if one
sets n =2 (in accord with two-phase coexistence below a
normal Ising critical point) one finds 82 ———, in conformity
with Nienhuis's conclusion for 8!

Despite the elusive nature of the singular corrections in
exact work pertaining to the pure Ising model, there is
some evidence which suggests 0=—", in studies of various
two-dimensional systems expected to be in the Ising
universality class. In the first instance one may extrapo-
late the renormalization-group e expansions to d =2
(e=2): This is a rather uncertain procedure, but it yields
8=1.4. The perturbative calculations for Acp field theory
in two dimensions by Baker, Nickel, and Meiron gave
0=1.4+0.8, which was refined by Le Guillou and Zinn-
Justin to 0= 1.3+0.2, in remarkable agreement, consider-
ing the technical difficulties, with Nienhuis s (later) work.
Moreover, a recent study by Adler and Enting of long
series for the spontaneous magnetization and low-

temperature susceptibility of the spin-1 Ising model on a
square lattice and for the hard square-lattice gas suggests
1&0&1.3. However, one might, looking at their best
series data, conclude 0=1.18, but, as must be stressed, it
is extremely difficult in any single-variable analysis in
which T, is not known exactly to disentangle reliably the
effects of irrelevant operators from those due to the non-
linear scaling fields (which give rise to 8,tt=i). Priv-
man has analyzed finite-size data due to Debierre and
Turban for hard "triangles" (on a hexagonal lattice) and
found evidence for 8=1.13 to 1.15, but with uncertainties
of +0.20: Again, we take this as no more than indicative
of some nontrivial corrections in Ising-like systems
characterized by 0 in, say, the range 1.1 to 1.5.

As we explain below, our own PDA study of the
square-lattice Klauder and double-Gaussian model also
suggests results fully consistent with Nienhuis s conjecture
8=—', . More concretely, we conclude that in the (x,y)
plane specifying the Kl and DG models, the pure Ising
critical point is the only non-Gaussian multisingularity,
and further that the Ising limit, y = 1, represents a scaling
axis. We then find, with a high degree of confidence,
that there are corrections characterized by

0=1.35+0.25 . (1.4)

However, we go on, in Sec. V, to show that it is possible
to understand the meaning of a nonintegral correction ex-
ponent 8, despite the absence of appropriate nonintegral
powers of t in the correction-to-scaling factors, provided 0
is a rational fraction. Of course, 8=m /n with m =4 and
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n =3, is fully consistent with (1.4) and identical with
Nienhuis's value! Our arguments invoke Wegner's power-
ful analysis of corrections to scaling in renormalization-
group flows and suggest that 0 controls the appearance of
logarithmic terms in the correction factors for models in
the Ising universality class when d =2.

Our study also addresses another theoretical issue. It is
commonly held that the kgb lattice model is always in the
same universality class as the pure Ising model, but this
view has been challenged, particularly by Baker and
Johnson. In recent work these authors studied the A,y
lattice model in two dimensions for a particular "border"
value, A, =A,~, of the coupling constant, using single-
variable series. The value A,~ had been identified in previ-
ous analytical work by Baker as apparently playing a
special role in the correspondence between continuum and
lattice field theories. On the basis of their single-variable
analysis Baker and Johnson concluded that the A,y
models encompass a new, non-Ising universality class
with a susceptibility exponent @=2.0. (For comparison,
recall that y= 1 —, for the Ising model. ) Now we find, in
Sec. II, that single-variable studies of the double-Gaussian
and Klauder models also suggest an effective exponent,
y, tt, in the range 1.9 to 2.0 for y=0. 5 and 0.3 for the two
models, respectively. However, our PDA study indicates,
and we believe quite convincingly, that the true critical
behavior of both models is Ising-like for all O~y (1, so
that the observation of y,tt=2. 0 for intermediate values of
y merely represents a nonasymptotic value resulting from
crossover effects. Because of the quantitative similarities
of the DG and Kl models to the A,y model, it seems like-
ly to us that these conclusions apply equally to that
model. We present some evidence, however, that the
strong crossover effects seen in the Kl, DG, and A,y
models result from the presence of a tricritical manifold
which, in the full space of scalar spin Hamiltonians, lies
"close" to the models studied.

To conclude this Introduction we outline the plan of
the paper. The Klauder and double-Gaussian models are
defined in Sec. II and various relationships between them
are discussed; in particular, the perturbation theory for
both models around the Ising and Gaussian limits is
developed: the first-order results are identical at the Ising
limit. The construction of appropriate partial-differential
approximants for two-variable series expansions for both
models is described in Sec. III, specifically as regards the
imposition of constraints along the Gaussian and Ising
axes, y =0 and y = 1. The results of our PDA analysis
are discussed in Sec. IV where the evidence for our vari-
ous conclusions is marshalled. In Sec. V, as mentioned,
we discuss the special features of renormalization-group
flows that arise when L9 is rational. Finally, in Sec. VI we
present some evidence to support of the association of the
"border" models with incipient tricriticality. Our con-
clusions are summarized briefly in Sec. VII.

II. THE DOUBLE-GAUSSIAN
AND KLAUDER MODELS

The partition functions of both the double-Gaussian'
and Klauder models are computed by integrating over

continuous-spin variables s; in ( —~, oo ) to obtain

Zx( T;y) = y gds; W/(s;;y)exp( —A /kt) T), (2.1)

where the subscript X stands for DG (double Gaussian) or
Kl (Klauder). The Hamiltonian is given in both cases by

cFL = —g Jt~stsi
(i,j)

(2.2)

where the sum runs over all pairs of sites ( i,j) on the
given lattice, and J,J is the coupling between spins s; and
sJ at spatial separation R,J. In later sections, we will deal
specifically with a square lattice with pairwise coupling
J;~ between only nearest-neighbor sites; but most of the
formulas in this section hold equally in the general case.
The single-site spin weight functions tVx(s;y) are dif-
ferent for the two models: Specifically, we have'

—(s —)/y ) /2g+ —(s+~y ) /2g) (2.3)

WK)~b ~s
~

e

where for convenience here and later w'e have set

(2.4)

g—:1 —y and b—:1/2(1 —y) . (2.5)

Both weight functions clearly interpolate analytically be-
tween a pure Gaussian form at y =0, which specifies a
free-field lattice model, to a standard spin- —,

'
Ising form

(sum of two delta functions at s =+1) at y = 1.
For computational purposes it is useful to know the cu-

mulants, p~(y), of the weight functions. These are de-
fined, as usual, through the partition function for a single
spin in a field: Specifically, we have

Z~(h;y)—:f ds e"'W~( ;s)y

=exp g p„(y)h "/n!
n=0

(2.6)

(2.8)

Now it can be shown quite easily ' that the partition
function of the double-Gaussian model factorizes exactly
into the partition function of a simple Gaussian model
with reduced couplings

K,z
——K~y —5,& /g where K,i Jz /kz T (J;;—=0),——

and a spin- —, Ising model with longer-range (reduced) in-
teractions I;J=JJ /kz T, a so-called "range" model. Ex-
plicitly, one finds

By symmetry all the odd-order cumulants vanish. The
weight functions (2.3) and (2.4) have been constructed to
satisfy

)M, (y) =)(t 2"'(y) = 1, (2.7)
a property which can be checked straightforwardly. Since
pz is equal to (s )z, the mean-square value of a nonin-
teracting (T = &n) spin, and since this in turn determines
the mean-field critical temperature T, (y), the normaliza-
tion (2.7) ensures that the mean-field critical temperatures
are independent of y and equal for both models: Explicit-
ly, we have
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ZDo(K) =ZG(K')Zrt (L),
where the Fourier transform,

L(q) =pe "L;r,

(2.10)

(2.11)

for the normalized single-spin partition functions [see
(2.6)]. This is proved in Appendix A.

Now, if we also use the equivalence of the DG model to
a Gaussian plus a range model we have, to leading .order
in g,

of the new interactions is given in terms of K(q) (defined
similarly) by

L(q)=yK(q)/[1 —gK(q)] . (2.12)

Note that in the Ising limit, g=0, the range model
reduces simply to the original pure Ising model (y =1)
with Hamiltonian A r given by (2.2) with s;=+1, while
the Gaussian model becomes trivial since s;=0 is en-
forced by (2.9).

It follows from this transformation that the double-
Gaussian model exhibits two distinct transition loci. At
fixed, positive y the transition associated with the range
model occurs at a higher temperature than that arising
from the Gaussian partition function. Indeed, the DG
model ceases to be defined below the Gaussian transition
since the partition function, ZG, then diverges. The asso-
ciated region of stability is given by

gK(0) =(1 y) T, /T —(1 . (2.13)

(See Fig. 2, below, which shows the stability boundary and
the coincident critical loci of the DG and range models. }

The factorization (2.10) allows one to define an analytic
continuation of the double-Gaussian model, including its
cor'relation functions, beyond the two physical boundaries
at y =0 and y =1. However, the range model itself be-
comes undefined if the denominator in (2.12) changes
sign. For nearest-neighbor interactions on a bipartite lat-
tice [for which minqK(q) = —K(0)] this yields a comple-
mentary boundary lying in the region for y ) 1 and speci-
fied by

)g i
K(0)=(y —1)T,/T=l . (2.14)

No corresponding factorization property or analytic
continuation has (as yet) been found for the Klauder
model, but, like the DG model, it also is defined only in
the region (2.13). Nonetheless an unexpected exact rela-
tionship between the two models emerges on considering
small deviations around the Ising limit, y =1. The essen-
tial result is that to linear orde~ &n g=1 —y the thermo-
dynamic properties of both models even in the presence of
a nonzero magnetic field are identical provided one adopts
the correspondence

G= —J g s;sr+&)(Is; j),
&ij &

where from (2.12) one finds, with K =J/krr T,

(2.18)

B)/krr T=B, 4NK +=2K g s;s +K g s;s, (2.19)
&~j&2 &~j&3

in which (ij )k denotes pairs of kth-nearest-neighbor sites
(as measured geometrically by

~
R;r ~

). The coefficients 4,
2, and 1 in this result represent the number of distinct
two-step lattice walks from the origin, 0, back to 0, from
0 to the next-nearest site, and from 0 to the next-
nearest-neighbor (nnn) site, respectively. Thus, to first or-
der in g both the DG and Kl models are equivalent to a
spin- —, Ising model with only first-, second-, and third-
neighbor interactions. (Note that this result holds, modu-
lo some small differences in geometry, for any space lat-
tice. )

The full susceptibility of the double-Gaussian model
can be expressed as the sum of terms arising from the
simple Gaussian and range factors in (2.10). One
finds3 '33

+ Xgy

1 —gK(0) [1—gK(0) ]
(2.20)

where Xz is the susceptibility of the range model. On
treating the term gG ~ in (2.18) as a perturbation and us-
ing the correspondence (2.15), we find, to first order in g,

ZDo(1 —g) =Zm(1 —2g)

=e ~sgexPI —[~r(Is; j )+gG( Is; j )]/krr T j
Is, I

(2.17)

where N is the number of lattice sites while A r(Is; j)
denotes the original (y = 1, g =0) pure spin- —, Ising Ham-
iltonian with s; =+1 (all i) Th.e perturbation Hamiltoni-
an, B(Is; j ), arises from the range-model potentials as de-
fined through (2.12) and may, hence, be written explicitly
without much effort. If we specialize to a square lattice
and restrict the interactions to nearest-neighbor site pairs,
(ij ), with J;r =J we obtain

gn ——2g (2 15) XK)(2g) =XDG(g) +yr [1+g(8K—1)]+
+gg((sos &i) r —(sos ) r(&&) r) (2.21)

ZDo(h;1 —g) =(coshh)[1+ —,'gh(h —tanhh)+O(g )]
=Zr'ci(h '1 —2g) [I+«g') 1 (2.16)

This result can be established most conveniently by prov-
ing that all the cumulants p„(y) and p„'(y) of the
single-spin weight factors for the two models agree to
leading order under (2.15). This in turn follows from the
identity

where g&I is the susceptibility of an Ising Hamiltonian
with nearest-neighbor couplings yJ and the thermal aver-
ages are computed for the same Hamiltonian.

Finally, let us consider the approach of the DG and Kl
models to the Gaussian limit, y =0. By using the
equivalence to decoupled Gaussian and range models, we
fynd
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XDo(x,y)= —y, , +0(y ),1 2 I(x) 1—
1 —x (1—x')~

where, for use here and below, we have set

(2.22)

x=J(0)/kgT=T, /T . (2.23)

The transcendental function I (x) in (2.22) is defined by

I(x)=
d I(2m. ) 1 —xX(q)/K(0)

(2.24)

For nearest-neighbor interactions on a simple- or body-
centered-cubic lattice, this reduces to a Watson integral;
on a nearest-neighbor square lattice it can be expressed
directly in terms of the complete elliptic integral as
2K(2x)/m. , and in that case, one has

mI(x) = —in[8(1 —x)] as x 1 —. (2.25)

pq„+2 ——( —2)"y(n!+ . +n!y" '), (2.27)

in which the polynomial factor is symmetric under rever-
sal of its coefficients. Now to leading order in perturba-
tion theory about the Gaussian limit, y =0, the linear
term in y is required in each cumulant. If one accepts the
conjecture (2.27), one can thus establish

XKi(x,y) = +, +0(y ) .
1 y [I(x)—1] 2

(1 x) I(x)— (2.28)

In contrast to the limit y~1, we see, by comparing
with (2.22), that there is no simple relation between the Kl
and DG models when y~0. However, as regards the
dominant (1—x) correction to the Gaussian suscepti-
bility, XG ——(1—x) ', we see that the appropriate scaling
field around the Gaussian multicritical point is y for the
Kl model but y for the DG model. This suggests that
one make the general identification

2
yea =yDo (2.29)

in comparing properties of the two models. This relation
actually implies the Ising limit correspondence (2.15) (to
leading order). Furthermore, it also leads to the precise
equality of the fourth-order cumulants for the two
models since, in comparison with (2.26), one has

p4 (y) = —2y, p6 (y) =16y, p8 = —272y,

(2.30)

For the Klauder model, no corresponding equivalence
to simpler decoupled models is known, but Nickel has
observed a symmetry property in the dependence of the
cumulants on y. Explicitly, one finds the results

p4' ——( —2)y,

p6
' ——2( —2)'y (1+y),

(2.26)
p8' ——2( —2) y(3+ 1ly+3y ),
pi() ——8( —2) y(3+28y+28y +3y'),

which seem to follow the rule

Evidently the correspondence (2.29) is not exact (which it
clearly could not be); nevertheless, it embodies a most use-
ful approximate mapping between the two models and we
will adopt it in making comparisons.

As a last comment on the general nature of the two
models we may compare the DG model with A,y lattice
field theory, which corresponds to a spin weight factor of
the form

W& 4 cc exp( ——,u2s ——„u4s ),1 2 1 4

with A, ~ u4. One finds

u2 ~(1—2y)/(1 —y) and A, , u4~y'/(I —y)

(2.31)

(2.32)

although in the DG model there are, of course, also
higher-order terms varying as s which have amplitudes
uk ~ [y/(1 —y) ] . On the other hand, because of the
nonanalytic factor

i
s

~

in the Kl model weight factor
one cannot Inake such a small s comparison with the A,y
model. Indeed, we may attribute the different nature of
the leading corrections to XG in the DG and Kl models
(which, for d =2, diverge as bX-(I —x) ln(1 —x) and
( 1 —x ) [1+c /ln( 1 —x )], respectively; see (2.22) and
(2.28)) to this same difference. Other models with weight
factors analytic in x as s —+0 should yield similar results
to the DG model near the Gaussian limit.

A. Single-variable analysis

Before turning to the PDA study, it is appropriate to
examine the results of a single-variable analysis of X(x,y).
At a fixed value of y, the double power series for X
reduces to an expansion in the variable x, which can then
be studied by established techniques such as Dlog Pade
approximants and inhomogeneous differential approxi-
mants. The estimates for the exponents y and the criti-
cal points x, (y), resulting from such fixed-y scans taken
at intervals Ay =0.1, are summarized graphically in Fig.
1. Notice that, in conformity with the remarks at the end
of the preceding section, the estimates for the Kl and DG
models are plotted versus yKi and yDG, respectively. As
expected, the estimated critical points for the two models
are quite close to one another over the whole range of y.
Note that, since the series are long and fairly regular, the
dispersions in the estimates of x, (y) from approxirnant to
approximant are quite negligible on the scale of the graph.

The estimates for y must be regarded, at least in the
first instance, as effectiue exponents, y,tt(y), for two

III. SERIES ANALYSIS

Away from the Gaussian and Ising limits, no exact re-
sults are known for the critical behavior of the susceptibil-
ity, P(x,y), of the square-lattice Klauder and double-
Gaussian models. However, Nickel' has derived double
power series in the inverse temperature, x =4J/k&T, and
in the parameter y for both models. With the aid of prop-
er extrapolation techniques, one may hope to use these
series to learn about the critical and multicritical behavior
of the models. In this section and the next, we describe
our analysis using partial-differential approxim ants
(PDAs), "' which, as mentioned, capitalize on the two-
variable character of the series at hand.
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reasons: First, the Dlog Pade and inhomogeneous dif-
ferential approximants make no specific allowance for
singular correction factors and, second, one knows there
must be strong crossover effects in some range of y since
the exponent must cross over somehow, from yz ——1.75 at
y =1 to yG ——1 at y=0 (the latter value being off the
range of y shown on the plot). Such crossover behavior is
certainly visible in Fig. 1. It may strike the reader as
surprising that the variation of y,~~ is nonmonotonic in y,
both the Kl and DG data attaining a maximum value of
about 1.92 at which yK~ —0.3 and yo~-0. 5, respectively.
In fact, such nonmonotonic behavior has been seen in oth-
er contexts and can be calculated explicitly in @=4—d ex-
pansions: see, for example, the figures presented by Seglar
and Fisher where one observes nonmonotonic overshoots
of from 16% to 265%, as expressed by the fractions

represent the known limiting values. In the present case
the overshoot seen is about 23% in magnitude, which does
not, thus, seem excessive. It should also be noted that a
significant fraction of the approximants in the range
where y,rr is maximal are found to be defective (in the
sense of having spurious singularities in or close to the

FIG. 1. The results of single-variable Dlog Pade and inho-
mogeneous differential approximant analysis for y and x, are
shown for the Klauder and double-Gaussian models at intervals

Ay~~ ——AyD~ ——0. 1. The spread in the value of the effective ex-
ponent is obtained by taking the largest and smallest values of y
found from some 20 approximants, after eliminating outliers.
The results (dotted) for the A,cp model have been plotted so that
the values of x, agree with those for the DG model: the "bor-
der" model is located at ordinate 0.425.

physical range of x); this again suggests that a crossover
effect is being observed.

A parallel single-variable analysis may, of course, be
performed for the A,y lattice models (for which double
power series are not available). Indeed, Baker and
Johnson "have reported such a study for a special bor-
der case A, =Aq corresponding, in (2.31), to u2—=0. [For
the DG model one sees from (2.32) that the analogous
case would be yDo ———,'.] Baker and Johnson (BJ) find
values of y,~~ in the range 1.90 to 2.00 for the border
model: these correspond well with the maximal estimates
of y, rr we find for yDo-0. 5 and y~& —0.3. Furthermore,
using 21-term series (longer than employed by BJ) we
have also made a single-variable analysis of the A,y bor-
der model on the square lattice: our estimates for y,ff
agree well with the BJ values. On the basis of these
border-model results Baker and Johnson asserted, as men-
tioned in the Introduction, that the ky model in two di-
mensions admits a new, non-Ising-like universality class
characterized by yb=2 0(rath. er than yz ——1.75). We re-

gard this claim as dubious but postpone a detailed discus-
sion of the issues to Sec. VI. We stress here, however,
that we have also studied the series away from the border
value A~, obtaining estimates for x, (A, ) and y,ff(A), To
compare these results with those for the DG and Kl
models we identify values of k with corresponding values
of yDo by equating the estimates of x, found in the two
models. (Since x, can be determined with a precision of
better than 1 in 10 even when the y estimates are
disperse, this procedure entails negligible ambiguity. Note
also how closely the DG and Kl plots of x, track one
another in Fig. 1.) On this basis the border value, A,~, cor-
responds to yD~-0. 652 or yK~ -—yDG-0. 425 and the re-2

suits for y,ff vary as shown by the dotted lines in Fig. 1.
The close numerical resemblance to the double-Gaussian
and Klauder results is remarkablet Note that y,~~ drops
quite rapidly to around 1.75 when I, rises above A,b. On
the other hand, the maximum in y, rr is fairly broad and
the border value, A, ~, does not stand out in any noticeable
way. (However, the apparent convergence of the y esti-
mates is poorest for A, =k&, where, in a number of cases, it
is necessary to add the residues from split Dlog Pade
poles to obtain regular estimates for y. ) In summary,
when appropriately compared, the behavior of y,rr in the
A,qr model is not significantly different than in the DG
and K1 models.

B. Partial-differential approximants

Since single-variable techniques cannot probe effective-
ly the multicritical behavior of P(x,y), we turn to the
method of partial-differential approximants (PDAs). The
theory of partial-differential approximants and some of
their applications have been expounded in the htera-
ture. ' ' ' ' However, a brief recapitulation of their
definition and most relevant properties is appropriate
here.

A PDA provides a means of extrapolating the informa-
tion embodied in the coefficients f;; of a given double-
power-series expansion,
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f(x,y)=g f;; x'y',
f, l

(3.1)

F(x y) = [J/L'M N K]fi

when not all the coefficients are known. One may, in par-
ticular, hope to extract reliable estimates for the mul-
tisingular properties of the function f(x,y). A partial-
differential approximant

known behavior at the Gaussian limit y =0. [Here we fol-
low the earlier work of Chen, Fisher, and Nickel, ' who
studied the same problem for the (d = 3)-dimensional bcc
series. ] From (2.28) and the definition (3.4) we have

fKi(x, 0)=x/(1 —x) . (3.6)

In order that the approximant, F(x,0), share this exact
property and preserve the upper triangular character of
f (x,y), we choose the defining polynomials UJ, PL, QM,
and R N to be of the form'

satisfies the defining equation

BI' BI.
U, (x,y)+PL(x, y)F(x,y) =QM(x,y) +RN(x, y)

Bx By

(3.2)

UJ(x,y)=x yU(x, y),
PL(x,y) =p (x)+xyP(x, y),
QM(x, y) =x (1—x)p (x)+x yQ(x,y),
R N(x, y) =yR (x,y),

(3.7)

(3.8)

(3.9)

(3.10)
where UJ, PL, QM, and RN are polynomials in x and y,
of the form

UJ(x,y) = g u~z x~y~,
(j,j')HJ

(3.3)

specified by assigned label sets J, L, M, and N. When
they are unimportant we will omit the label set subscripts.
The polynomial coefficients ujj, pii, q, and r„„are
found by matching the coefficients of x "y on the left-
and right-hand sides of (3.2) for all (k, k') in a specified
matching set, K, when the known series for f (x,y) is sub-

stituted for F(x,y) This pr.ovides a set of linear algebraic
equations, the generating equations, for the polynomial
coefficients. Once the polynomials are known, the ap-
proximant F(x,y) can be constructed by integrating (3.2)
using appropriate boundary conditions [see Refs. 12 and
39(a)] specified on some boundary locus in the (x,y) plane
on which f (x,y) is known, or can be estimated reliably.
In both theory and practice the integration of (3.2) is best
accomplished by the method of characteristics. In the
present case we have x=4J/k&T and y is the crossover
parameter in the Kl and DG models.

Now for the Klauder model, rather than directly
analyzing the series for the full susceptibility, XKi(x,y), we
first study PDAs for the closely related function

fK1(x y) +Kl(x y) —1 (3.4)

The point of this is that the series expansion for fK& is
upper triangular (i.e., f;; =0 for all i &i'), and, in addi-
tion, has vanishing diagonal elements. It is then possible,
following arguments developed in Ref. 39(a), to choose
sets J, L, M, N, and K so as to ensure that the PDA satis-
fies F;; =0 for all i &i', i.e., is also upper triangular. On
the other hand, the first coefficient on the diagonal of the
expansion for X&i(x,y) is 1 and the desired vanishing of
all the other elements on the diagonal for F(x,y) cannot
be ensured readily.

For the double-Gaussian model we choose to study the
simple product

fDo(x,y) =xXDo(x,y), (3.5)

since this is again upper triangular, whereas XDz is not.
We now discuss the constraints that may be imposed on

the PDAs in order to ensure that they reproduce the

where U, P, Q, and R are upper triangular polynomials in
x and y, and p (x) is a polynomial in x alone. It is readi-
ly verified by substituting in (3.2), setting y =0, and using
the boundary condition F(x,0)/x —+ I as x ~0 that (3.6)
is reproduced.

One may, in addition, impose further constraints ob-
tained by taking first derivatives with respect to y at the
Gaussian limit. Thus from (2.28) we also obtain

~f~i —[I(x)—1]
&y, =, (1—x)'I(x) ' (3.11)

which diverges as x —+1. On substituting this result, (3.6),
and (3.7)—(3.10) in (3.2), and matching the leading,
1/(1 —x), and next-to-leading, 1/(1 —x) ln(1 —x), diver-
gences as x~1, one obtains

Q(1,0)=R(1,0)+p (1),
p (1)+R(1,0)=0.

(3.12)

(3.13)

These equations represent linear constraints on the poly-
nomial coefficients, and thus, in calculating approxi-
mants, they may be imposed by adjoining the correspond-
ing extra equations to the set of generating equations. (Of
course, the relative sizes of the label and matching sets
must be adjusted accordingly. )

For the double-Gaussian model, we choose UJ, PL,
QM, and RN so as to reproduce the correct behavior of
fDo(x,y) defined in (3.5), on and near the pure Gaussian
axis y =0. Now the leading deviation is of order y, and
thus we choose

U(x,y) =x y U(x,y),
P(x,y)=p (x)+xyp'(x)+x y P(x,y),

(3.14)

(3.15)

Q(x,y)=x(1 —x)[p (x)+xyp'(x)]+x'y Q(x,y), (3.16)

R (x,y) =yR (x,y) . (3.17)

Here p (x) and p'(x) are polynomials in x and, as with
the Klauder model, U, P, Q, and R are upper triangular
polynomials in x and y. Further, in order y, we can
match the leading, ln(1 —x)/(1 —x), and next-to-leading,
1/(1 —x), divergent amplitudes that follow from (2.18)
and (3.5). This results in the linear constraints
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2R(1,0)+p (1)=0,
n. Q(1,0)=p (1),

(3.18)

(3.19)

which can also be accommodated in constructing approxi-
m ants.

%'e have studied about 180 PDAs for the Klauder
model which incorporate the Gaussian axis constraints
(3.7)—(3.10); about half of these also satisfy the constraint
(3.12) or both (3.12) and (3.13). For the double-Gaussian
model, 120 PDAs. have been studied with the y =. 0 con-
straints (3.14)—(3.17) imposed, and in about a sixth of
these the 0 (y ) constraint (3.18) was also imposed.

Each approximant calculated corresponds to a distinct
choice of the polynomial label sets J, L, M, and N and/or
of the matching set, K. Important guidance in the op-
timal choice of label sets is provided by theorems on faith-
fulness [meaning that F(x,y) should reproduce all those
exact expansion coefficients of f (x,y) that are used in its
construction] and on Euler inuariance. This latter proper-
ty, the analog of the well-known feature for ordinary Pade
approximants, means that the approximant F(x,y) gen-
erated from f(x,y) by first making the Euler transforma-
tion x — =-x =Ax/(I+Bx) (for any 3&0 and 8) should,
on inverting the transformation, be identical with the
original approximant, F(x,y), computed directly Eu.ler
invariant approximanis should be more accurate and reli-
able since they are independent of the particular location
of the singularities of f(x,y) in the complex x plane.
Theorem 6.3 of Ref. 39(b) specifies precisely conditions
which ensure Euler invariance. To indicate these we de-
fine a label set J:—[(j,j')] to be flush right if each row in
the corresponding Cartesian array has a gapless sequence
of elements running downwards from (j,j') as (j—1,j'),
(j—2,j'), . . . , to (j;„(j'),j') where j is the same for all
rows and, hence, represents the largest power of x in
UJ(x,y); however, the lower limit j;„(j')may depend on
j' and may even exceed j, specifying an empty row. If, in
direct analogy to j, the largest powers of x in the flush-

right arrays L, M, and N are l, I, and n, respectively, a
necessary condition for Euler invariance (on x) is

which the vacancy was placed on the top rom. The limits
I, m, and n were selected in accordance with (3.20) or
with deviations of magnitude at most unity. However, the
label sets J were normally taken smaller than L, M, and
N, with j ranging between 0 and 3 for /=9 or 10. This
spoils precise Eulerian invariance [although a homogene
ous PDA with J—:g, i.e., U(x,y):—0 can be Euler invari-
ant]; it was judged, however, to be better to allow larger
arrays M and N, in particular, since these determine the
flow patterns of the trajectories of characteristics of (3.2)
and thence, as we will explain, the critical locus. - The po-
lynomial UJ(x,y), on the other hand, mainly determines
the "background" near criticality, ' which, for strongly
divergent functions like the ferromagnetic susceptibility,
should not normally be so important. [Note also the re-
sult of Ref. 39(b) about the covariance of the multicritical
estimates under the addition to X(x,y) of some lower-
order polynomial CH(x, y).]

Q (x,y) =R (x,y) =0, (3.22)

1.5

C. PDA flow patterns

As mentioned, the most appropriate method of solving.
the defining partial-differential equation (3.2) is by in-
tegration along the characteristics. These may be con-
structed by defining a timelike variable v and solving the
ordinary differential equations

GX QP=Q(x,y), =R(x,y) . (3.21)
CtV

A solution of these with given initial conditions specifies a
definite trajectory in the (x,y) plane. The set of all trajec-
tories defines a flow pattern which is characteristic of the
approximant in question. The flow pattern for a typical
approximant is illustrated in Fig. 2.

One easily sees that the trajectories do not meet or cross
except at the multisinguIar points of the approximant
which are determined by the fixed point equati-ons

j=I=rn —2=n . (3.20)
0

In addition, for upper triangular functions, J and L must
be contained in upper triangular arrays, while M and N
must be contained in upper triangular arrays which have
been diminished or augmented, respectively, by one diago-
nal: compare with (3.7)—(3.10), (3.14)—(3.17), and see
Theorem 6.3 of Ref. 39(b). The matching set K should be
upper triangular and flush left.

In our work we computed a selection of fully Eulerian
approximants of high order. In addition, however, we
studied near-Eulerian approximants which should also be
reasonably reliable. Specifically, we chose label sets J, L,
M, and N corresponding to full or almost full upper tri-
angular arrays (augmented or diminished by diagonals as
indicated above), with zero, one, or two missing elements
in the last column. A single such "vacancy" was usually
placed at the bottom of the last column (consistent with
Eulerian invariance), but some approximants were tried in

=0-

0.5

-0

0.5 1.0 x= 4J/kaT 2.5

FIG. 2. A characteristic flow pattern of PDA trajectories.
This example is for the Klauder model with the Gaussian fixed
point 6 at (x,y)=(1,0), imposed. The Ising-Hke multicritical
point C was located by the PDA through the intersection of the
R =0 and Q =0 loci (shown dotted). This flow pattern implies
that the critical behavior is Ising-like along the whole critical
line from 6 through C(excluding 6 itself).
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F(x,y)=t rZ(y t )+8 + (3.23)

where t and y denote the linear scaling fields which are
given by

i.e., by the joint zeros of Q and R. The loci of zeros are
shown by dotted curves in Fig. 2. Because the slope,
dy/dx, of a trajectory passes through zero and changes
sign when it crosses an R =0 locus, whereas the slope
passes through infinity (and changes sign) when a trajecto-
ry crosses a Q=O locus, the arrangement of zero loci
determines the overall topology of the flow pattern.
When, as in the example shown in Fig. 2, the Gaussian
multicritical point G is imposed, one multisingular point
lies precisely at G. Another is expected to represent a
multicritical point C of Ising-like character as gauged by,
say, an estimated exponent y close to yl =—1.75. In Fig. 2
this multisingularity occurs near the pure Ising line y =1
and has @=1.7427. The trajectory leading from G to C
must now be a line of singularities in the approximant
and, hence, it represents the expected critical locus, x, (y),
of, in this instance, the Klauder model. The flow pattern
of Fig. 2 implies that the critical behavior all along this
critical locus is Ising-like (except right at the Gaussian
point at y =0) with the same exponent y as at C. The
scaling behavior near C contrasts with the normal cross-
over or bicritical situation"' in that the crossover ex-
ponent, P, is negatE ue here 'and governs only corrections to
scaling. However, with P= —8 the analogous scaling
form' ' holds in that, close to C, the approximant veri-
fies

rately by direct Pade approximants or, even, merely by
summing the truncated series (since 2 '

& 10 ). For
most qualitative purposes, however, it is sufficient to
know only that Ii (x,y) and all its derivatives exist and de-
fine F on the boundary locus. Indeed, this is enough to
conclude, in general, ' that Z(z) has an expansion

Z(z)=Z, +Z,z+ . . (3.27)

From this it follows that 8 is the leading correction-to-
scaling exponent which enters asymptotic expressions as
in (1.1). Furthermore, this same exponent must, like y,
apply along all sections of a critical line which are
represented by trajectories flowing into C.

Now, when one computes a variety of approximants
(with differing polynomial shapes and orders) one finds
that not all approximants display flow patterns similar to
that in Fig. 2. Examples of other types found in our
study are sketched in Figs. 3 and 4. The flow patterns
shown in Fig. 3 are similar to that in Fig. 2 in that there
are no extra fixed points on the critical locus between G
and C. It follows, just as for Fig. 2, that the critical
behavior implied by these approximants is Ising-like all
along GC (for y &0). Once again, the scaling function
Z(z) describing the behavior near the critical locus can be
determined explicitly if boundary conditions are specified
on a locus that intersects the principal trajectory trans-
versely. The extra fixed point, D, is found on the Gauss-

t =(x, —x) —(y, —y)/e2, (3.24)
R=O R=O.

y=(y, —y) —e&(x, —x) . (3.25)

The appropriate slopes, e
&

and e2, of the t (or y =0) axis
and of the y (or t =0) axis, respectively, and the exponents
y and 0, are found by linearizing the PDA polynomials
about C: the required explicit formulas are given in Refs.
12 and 40. Thus for the approximant of Fig. 2 one ob-
tains 0=1.3729 and e~ —0.2598, e2-1.0858. Note that
e2 must also represent the slope of the critical lacus at C.

In order to determine the scaling function, Z(z) in
(3.23), the approximant F(x,y) must be evaluated by in-
tegration. When reexpressed using (3.21), the PDA-
defining equation (3.2) leads to an equation of motion for
F, namely' '

dF = U(x,y)+P(x,y)F, (3.26)
O'7

in which x =x (r) and y =y (r) are found by integrating
(3.21) along a particular trajectory (on which only
changes). In order to determine I' (x,y) in a region in the
(x,y) plane, one needs initial conditions for F(x,y) along
some boundary locus which cuts across those trajectories
which lead into (or out from) the region of interest. For
instance, for the trajectory flow pattern shown in Fig. 2,
any boundary locus that intersects the principal trajectory
(leading out from C—see the figure), even if far from the
multicritical region near C, suffices to determine F(x,y)
close to C and thereby the scaling function Z(z). ' In
practice, one might take a boundary locus at, say,
x =0.5—:—,xa on which f (x,y) can be calculated accu-

D

FIG. 3. Schematic examples of other flow patterns found in
some approximants. Like the pattern in Fig. 2, Ising-like criti-
cal behavior prevails between G and C. The dashed and dotted
curves are loci of Q =0 and R =0, respectively.
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0"

0"
1 D'

FIG. 4. Schematic flow patterns which display an extra fixed
point B in the vicinity of the critical locus. The loci BD in (a)
and (b) are, in general, singular, but as discussed in Appendix B,
the singularity may be removed in case (a) by choosing the boun-
dary locus to cut BD, along, say, a path parallel to the x axis.
In practice, the fixed point D in (b) is actually found very close
to 6, with xD &0.95: the separation has been increased in the
figure for clarity.

ian axis. It can reasonably be regarded as a defect' (hence
the chosen label) since it occurs in a region of the (x,y)
plane (x &xG) where one has excellent reasons to believe
(and might even be able to prove rigorously) that the
underlying function, f ( x,y) [or X(x,y)], is analytic in both
x and y. The analogous phenomenon of defectiue or
spurious poles is well known in applications of ordinary,
single-variable Pade-approximant techniques: the reasons
for its occurrence, however, are currently rather obscure
although some light has recently been cast on the problem
by Nuttall. ' For the reasons given we ascribe no physical
significance to D or to the associated exponents yD

[which vanishes identically as a result of the imposed
Gaussian value of I'(x,y) for y =0; see Appendix B] and
PD (which is found to range from +0.70 to —0.61).

In contrast to Figs. 2 and 3, the flow patterns in Fig. 4
exhibit an additional intermediate fixed point, labeled B,
on the trajectories linking G to C. This has the important
consequence of changing the critical behavior along the
locus GC; it is now Ising-like only from B up to (and
through) C, whereas it is Gaussian in character (with
y=yG=1) along BG. The new critical exponent yz ap-
propriate to B is typically in the range 1.1 to 2.0; see Figs.
5 and 6 below. (The significance of B is discussed further
in Sec. VI.) In the majority of cases, B is totally unstable,
with an ill-determined positive crossover exponent, Pz,
typically in the range 2.0 to 8.0. Roughly half of the ap-
proximants which display a fixed point of type B also ex-
hibit another fixed point in the physical region, x &x, (y):
most often there is just one extra fixed point, D, on the x
axis, as illustrated in Figs. 4(a) and 4(b). As we explain in
Appendix B, the segment DB will then, in general, also be
singular, although, as indicated above, we expect that such
an extra singular locus is quite spurious. In other cases,
as illustrated in Fig. 4(c), there is a further fixed point
near to but not in the physical domain.

All the flow patterns we have discussed exhibit hyper-
bolic flows around the Ising-like multicritical point C, i.e.,
8C & 0. Not surprisingly (in view of the fact that B, when
present, is quite far from C even though it is often close
to G), the value of 8c is relatively insensitive to the global
nature of the flows. Nevertheless, we have distinguished
between two types of approximants: type A denotes those
approximants with 8c & 0, in which there is no extra fixed
point on the critical trajectory GC (as illustrated in Figs. 2
and 3); type B denotes those approximants with 8c &0 in
which there is a multisingular point B on the locus GC as
in Fig. 4. For the Klauder model, 156 of the 179 PDAs
studied (i.e., 87%) display a stable Ising-like multicritical
point (with 8c&0); the remaining approxirnants either
display no Ising-like fixed point in the region y & 1.5 or
else, more rarely, have 8C &0 (i.e., Pz &0). Of the 156
with the expected, stable Ising-like multicritical point, 103
(i.e., two-thirds) are of type A. In the case of the double-
Gaussian model, 76 of the 120 PDAs studied have 8c & 0,
and of these 42 (i.e., 55%%uo) are of type A. The reason for
the more erratic behavior of the double-Gaussian model is
not obvious, but the issue is commented on further in Sec.
VI.

Besides PDAs in which the Gaussian axis constraints
were imposed, we also studied 100 or more for both
models in which a flow was instead imposed along the Is
ing axis (y =1). The reason for considering such approxi-
mants is the strong suspicion, explained in the following
section, that the true nonlinear Ising-like scaling axis coin-
cides with y =1. In practice, such a flow is most easily
imposed by transforming the series by a translation to
g= 1 —y and then choosing R(x,g) to have the form
gR(x, g). We expect' such a PDA to approximate an or-
dinary D log Pade approximant along the Ising axis.
Indeed, it reduces exactly to a Dlog Pade when the rela-
tion

1+I=k+1 (3.28)
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holds. In our studies, discrepancies as large as 2 or 3 be-
tween the left- and right-hand sides of this relation were
allowed, with k=19 or 20. We chose to study XK~(x,y)
rather than foal(x, y) as this choice yields better estimates
for y (see Sec. IV). As with the Gaussian-axis-constrained
PDAs, the majority of approximants display hyperbolic
flows around the Ising multicritical point (i.e., Oc ~0).
However, it should be mentioned that approximants of
this type often display spiral flows around a fixed point
near y =0, i.e., the eigenvalues of the linearized trajectory
equations around the. corresponding fixed point become
complex. Such behavior is, of course, quite unphysical
but it does not seem to have a significant effect on the es-
timates for the Ising-like multicritical parameters.

In the same spirit we also considered the imposition of
the exact Onsager value' of x~ ——xI-1.7627 and the ex-
act value of yc ——yi —=1.75 on approximants with Ising
axis flows. The 60 or so approximants calculated for each
model which were constrained in this way were rather
disappointing. Quite often they displayed a second, spuri-
ous, Ising-like fixed point close to y =1: anomalous flow
patterns, with correspondingly anomalous values of 8,
then resulted.

Finally, we constructed a few dozen approximants in
which almost all of the exactly known (or reasonably con-
jectured) properties of the susceptibility were imposed.
This included the imposition of flows along both the
Gaussian and the Ising axes and the requirements x~ ——xi
at y =1, and yc ——1.75. However, this class of approxi-
mants shared most of the defective properties of the xc-
and yc-constrained approximants without the Gaussian
axis constraints. Overall, it seems that the most regular
and physically reasonable flow patterns in the neighbor-
hood of C are generated by approximants subject to the
fewest constraints: The reason why this is so is not
presently understood, but various tests and lines of argu-
ment' suggest that it is associated with the negative value
of P or, in other words, with the fact that only corrections
to scaling are involved.

IV. ISING MULTICRITICALITY
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lations. ' '" Of course, all the computations with any
given approximant are performed "exactly" in a numeri-
cal sense so there is no stochastic aspect per se; but one
can only sample the population of all the possible approxi-
mants that one might, ideally, wish to examine. [Inciden-
tally, various precautions were taken, including the use of
quadruple precision, to test the oft-repeated inversions of
200)&200 or larger matrices and so ensure that roundoff
errors were insignificant at the relevant level of precision:
Because of the scatter in the estimates, even in favorable
cases, 1 part in 10 or 10 precision in the estimates of
multisingular positions, (x„y, ), and of about 1 part in 10
or 10 in exponent estimates, is quite adequate although
most of our results are significantly better. ]

We consider first those approximants in which a flow
was imposed only along the Gaussian axis. As commonly
observed in multiparameter analysis, there is a fairly pro-
nounced correlation between estimates for various pairs of
multicritical parameters. This is evident in Figs. 5 and 6,
which are correlation plots of the estimates of the suscep-
tibility exponent, y, versus the corresponding multisingu-
lar ordinate y for the Ising-like multicritical point C, and,
when it is present, for the multisingular point B. [It may

In the preceding section we described the construction
of partial-differential approximants and the interpretation
of the implied multicritical behavior. The estimates for
the significant multicritical parameters vary from one ap-
proximant to another. Of course, this feature also charac-
terizes ordinary, single-variable Pade and D log Pade
analysis. In that case, however, it is feasible to calculate
and display the entire Pade table in deriving overall esti-
mates and assigning reasonable confidence limits. Unfor-
tunately, the astronomical number of possible PDAs cal-
culable even for series half the length of those available
here, ' ' makes the analogous approach quite unworkable.
Instead, we rely on the judicious choice of approximants
using the invariance criteria explained [see also Refs. 39(b)
and 39(c)] and adopt a statistical outlook on the analysis
and evaluation of the data resulting from the PDA calcu-

1.0 g g g l s

0.5 1.0
I

1.5

FIG. 5. Correlation plot for the susceptibility exponent esti-
mates y versus the y coordinate of the corresponding estimated
multisingular point for the Klauder model. Data for both the
Ising-like fixed point C {circles) and the border fixed point B
{crosses) are included. The dashed lines recall the results of
single-variable analysis {see Fig. 1). The histogram demon-
strates the concentration of estimates for the ordinate of the
Ising-like fixed point close to y=1: A and B denote approxi-
mants with the flow pattern of Figs. 2 and 3 and, respectively,
with the flow patterns of Fig. 4, which exhibit the extra mul-
tisingularity, B.
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yz(DG)=1.03+0.05, it is natural to conjecture that the
exact location of the Ising lik-e multicritical point, C, for
both models lies on the pure Ising axis, i.e., yc ——1. Fur-
ther independent support for this conclusion follows from
theoretical conclusions concerning perturbations about the
Ising limit that are described in the next section.

If one accepts yc ——1, as we will henceforth, it follows
from the identity of the Kl and DG models to first order
in g =1—y (discussed in Sec. II) that the slope eq(Kl) of
the t=0 scaling axis should be exactly twice the corre-
sponding slope, ez(DG), for the double-Gaussian model.
Further, as explained, ez should then be the slope of the
critical locus, x, (y) at y =1. Figure 7 displays the ob-
served correlation between the e2 estimates and the ordi-
nate yc.. Although there is a paucity of DG approximants
with yc close to 1.00, the two plots agree closely in the vi-
cinity and we estimate

10 ' ', I w'~i
0 0.5

y~B
— 5

A
I ) ) I ) I )

) 0 „~ )5
~C

e2(K1)=2e2(DG)=1.091+0.003 . (4.2)

The estimates for the slopes, e&, of the other scaling
axis (the thermal axis, y =0) at C are relatively small and
of opposite signs in the two models if yc ——1 is accepted.
The data suggest

ei(K1)= —0.25+0. 15 and ei(DG) =0.05+0. 10 . (4.3)
FIG. 6. Correlation plot of y versus y as in Fig. 5, but for the

double-Gaussian model.

be mentioned that the correlation between the multisingu-
lar parameters xc and y& is so close since, essentially,
they lie on the critical locus x, (y), that no scatter from a
smooth curve is visible in a graphical plot like Fig. 1.]

For both Klauder and double-Gaussian models the gen-
eral trend of the combined C and B estimates for y in
Figs 5 and 6 tracks fairly closely the results of the single-
variable analysis displayed in Fig. 1. Owing to the crowd-
ing of the data points it is not possible to display all the C
estimates on the figures: Accordingly, the histograms in
the lower part of each figure show (for 0.7 (y & 1.3) the
numbers of approximants yielding a value of yc in a given
interval. The estimates deriving from type-8 approxi-
mants (with flow patterns like those in Fig. 4) have been
shaded. Apart, perhaps, from an anomalous concentra-
tion of type-8 approximants near yz ——1.2 in the double-
Gaussian model, the distributions obtained from type-3
and -B approximants do not differ significantly: neither
do the y estimates for which overall we would quote

yc(Kl) = 1.743+0.005, yc(DG) = 1.745+0.007 . (4.1)

Both estimates deviate systematically below the exact Is-
ing result yl ——1.750, but the accuracy is nevertheless
quite gratifying in view of the fact that the approximants
are quite unbiased as regards any Ising-like behavior.

It is also striking, especially for the Klauder model,
that the yc estimates cluster strongly around the pure Is-
ing value y =1. This is in contrast to the situation in

d =3 dimensions' where the PDAs locate a clear Ising-
like multicritical point in the vicinity of
y, (K1)=y, (DG)=0.81&1. Although direct averages of
the data for d =2 might suggest yz(KI) = 1.01+0.03 and

I I ) I I I I
+I I I I I l I I

1.4—
DG

).2—

+
DG~ ~ —).05
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I ) ) ) ) ) i ) ) I a:
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++ ~ ~ ~++ ~ ~ ~ ~

DG +'
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I ) I ) I ) I

x 1.2
C

FIG. 7. Correlation between the slope of the critical curve
and the ordinate at the multicritical point C. For the Klauder
model e2 and y~ denote e2(Kl) and y~(K1), respectively; for the
double-Gaussian model they denote 2e2(DG) and y&(DG). The
dots and crosses distinguish type- A and -B approximants,
respectively.

However, in view of the identity of the two models to first
order in g = 1 —y, we are strongly inclined to believe that
there are systematic effects [probably associated with the
choice (3.4)] which cause the Klauder estimate to be nega-
tive and unequal to the DG estimate. The latter slope
vanishes to within the available precision (which is,
perhaps, disappointingly low, but see below). Thus we ac-
tually believe that the thermal axis slope e&, should be
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identically zero in both models. As in the conclusion
ye=1, the theoretical analysis of perturbation theory
about the pure Ising model provides independent support
for this belief.

Finally, we consider the main object of our inquiry,
namely the correction-to-scaling exponent 0 at the Ising-
like multisingularity. It is clear from the plots versus yc
in Figs. 8 and 9 that there is considerable scatter in the 0
estimates for both models, although, as for the other mul-
ticritical parameters, the Klauder model displays more
uniform behavior. The weight of evidence, however,
clearly indicates 0& 1. This implies a singular correction
that is very small in numerical terms, less, indeed, than
the first analytic term: By contrast, we have 8=0.54 for
d =3 and the singular corrections dominate. The small
size of the correction in absolute terms would seem to be
the reason for the fairly broad scatter in the estimates of
yc and of the axis slope e~, as well as of 8 itself. If we
accept yc ——1 and include only approximants with yc(K1)
and yg(DG) in the range (0.85, 1.15), we would estimate
8(K1)=1.38+0.25 and 8(DG)=1.25+0.26.

On the other hand, if we accept yc ——1, it is appropriate
to examine approximants with a flow forced along the
pure Ising axis and the dispersions then diminish. Histo-
grams of the 8 estimates for such approximants (shaded)
and for the original Gaussian-flow approximants are
displayed in Fig. 10. For the former we find
8(K1)=1.27+0.27 and 8(DG)=1.30+0.38. While each
set of approximants almost surely suffers from certain
systematic errors, the collective evidence seems to point to
a value of 0 between 1.2 and 1.5: Our overall estimate is
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FIT+. 9. Plot of the correction exponent estimates for the
double-Cxaussian model as in Fig. 8, but with results for approx-
imants in which an Ising axis flow is imposed indicated on the

y =1 axis.

0=1.35+0.25 . (4.4)
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FICx. 8. Estimates for the Ising-like correction exponent, 0,
versus the multicritical ordinate, y~, for the Klauder model.
The dots and crosses denote type-2 and -B approximants,
respectively.

FIG. 10. Histograms of the correction exponent 8 at the
Ising multisingular point. The shading indicates PDAs with a
flow imposed along the pure Ising axis; the remaining approxi-
mants have only Craussian axis flows imposed and y~ restricted
to the range 0.85 to 1.15.
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Notice that Nienhuis s value 0= —, is clearly consistent
with our estimates!

While imposing a flow along the Ising axis does not af-
fect the estimates of the correction exponent 8 very much,
there is a more pronounced effect on the estimate of the
leading exponent y; this improves to y& ——1.7485+0.0015
for the Klauder model, and to 1.7495+0.0015 for the
double-Gaussian model, both very close to yl ——1.7500.
If, further, xc is constrained to the exact Onsager value, '

there is a further improvement to ) c—1.7499+0.0003 for
both models. Recall, however, that despite this improve-
ment in the estimates for y, anomalous flow patterns,
with correspondingly erratic estimates of 0, are charac-
teristic of this last class of approximants. Overall, howev-
er, we find that the estimates of 8C are not affected a
great deal by the global flow pattern so long as other fixed
points (even if spurious) are some distance away from the
multicritical point of interest, C.

V. SCALING AROUND THE ISING
MULTISINGULARITY

As demonstrated in the preceding section, our PDA
analysis of the Klauder and double-Gaussian models is
consistent with the following assertions: (i) the Ising-like
multicritical point in both (d =2)-dimensional models
coincides with the critical point of the pure Ising model
(in contrast to the situation for d =3); (ii) the pure Ising
axis y =1 is the principal (or thermal) linear scaling axis;
(iii) the (apparent) correction exponent 8 has the value —,,
in accord with Nienhuis's conjecture see (4.4). In this
section we discuss the implications of these three asser-
tions for the scaling behavior of the susceptibility in the
neighborhood of the multicritical point. In the light of
exact knowledge about the pure Ising model, we will un-

cover a paradoxical situation: a resolution is proposed
based on a detailed property of the nonlinear sca/ing
fields, ' which can be tested by means of further calcula-
tions for the Ising model.

with, here, 0= —, , provides a valid asymptotic description
of the singular behavior of the susceptibility. ' Note that
inclusion of the amplitude C allows one to require that
the scaling function Z (z) satisfies the normalization con-
dition Z (0)= 1.

If one neglects other irrelevant scaling fields the
.renormalization-group flow equations for t and g =—g may
be written'

alt+~1, 1~ ++1,2~g +~2, 2 g + (5.4)

=Kg+&'[ it '+&f,2tg+&$, 2 g'+ (5.5)

where I is the standard flow parameter that describes the
rescaling of spatial dimensions by the factor e . The coef-
ficients A,

&
=A, ,= 1/v and A, 2 are the renormalization-

group eigenvalues associated with t and g: For the two-
dimensional Ising model the correlation-length exponent
is simply' ' v= 1. The correction exponent is then given
generally by

8= —A, 2/A, i . (5.6)

By solving (5.4) and (5.5) iteratively, ' one constructs the
nonlinear scaling fields as forrnal power series in t and g
which satisfy the canonical flow equations

dg=X1t and =A2g, (5.7)

which have obvious solutions. When this procedure goes
smoothly, t and g appear as infinitely differentiable (i.e.,
C ) functions of t and g.

Without deriving and solving (5.7), however, certain
quite definite conclusions may be reached on the basis of
(5.3). First recall, as discussed in the Introduction, that
the exact work on the pure Ising model' ' ' reveals no
correction terms in the susceptibility X [see (1.1)] of the
form tj+'~ and t~+ (with j integral) which one would
expect on the basis of (5.3) with 8= —, if g contained addi-
tive terms like t, or t, or t, etc. Conversely, if one has

A. Scaling fields
g =g[1+o(g t)]' (5.8)

Consider first the /inear scaling fields introduced gen-
erally in (3.24) and (3.25). It follows from (i) and (ii) that
these must be

t = t —g /e z and g =g—:1 —y, (5.1)

where, in terms of T, t, the exact pure Ising critical
point, we have

t=xt —x with xr ——4J/kiiT, r . (5.2)

[The value of e2 is known numerically through (4.2) but
will play only an insignificant role. ] Now the nonlinear
scaling fields introduced originally by Wegner, say t(t,g)
and g(t, g), are defined in terms of the renormalization-
group flow equations for t and g (or for t and g). For
small t and g, i.e., near the multicritical point, the non-
linear fields reduce to t and g. In terms of them one may
anticipate that the standard scaling form

such terms would automatically vanish on the Ising axis
g =0 (y

—= 1). This relation means that the full nonlinear
scaling axis, g =0, coincides with the pure Ising axis.

One may, however, go further and examine the g
dependence of the susceptibility at the Ising limit. In par-
ticular, in Sec. II we saw how X(T,g) for both Kl and DG
models could be expressed to first order in g in terms
of even-order spin-correlation functions like
(s(0)s (R)s(R')s(R")) for the pure (g =0) Ising model.
By performing similar calculations to higher order in g
[which is particularly straightforward for the DG model
in view of (2.20)], higher-order derivatives (r)"X/
Bg")g o (k =1,2, . . .) can equally be expressed as spatial
sums over the pure Ising correlation functions. On the
other hand, the singular behavior of such derivatives can
also be obtained from the scaling form (5.3). Specifically,
the scaling function should have an expansion

x( T,y) =c t rz(g t ) (5.3) Z(z) =1+Z,z+Z, z'+ (5.9)
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which implies that (8"X/Bg")s o should contain additive
singular terms of the form

countering any resonance phenomena up to order k&+k2,
where k

&
and k2 are the smallest integers satisfying

Zkt
—r+4k~ for k = 1,2, . . . . (5.10) 8 ( = —A, 2/A, ])=k]/k2 . (5.13)

(Note that other, more dominant singularities arise from
the g dependence of the nonlinear field t whj. ch enters
even in the linear field t.) Now the. critical-point decay
laws for the pure Ising correlation functions are rather
well understood; ' ' in particular, one concludes, as for
X(T,g =0) itself, that there can be no terms like (5.10)
with k = l, 2, 4, 5,7, 8, . . . . This observation would be ac-
counted for, however, if the scaling function were such
that all its expansion coefficients Zk Vanish except for
k =3j=0,3,6, . . . . Equivalently, one may suppose that
Z (z) is a C function only of the combination

z =w=g t (5.1 1)

Now suppose that the nonlinear scaling fields g and t
are C functions of g and t, as is generally true then the
statement that Z has an expansion only in w would force
us to conclude that the nature of the singularity in X(T,g)
at fixed g is the same away from g =0 (y = 1) as at g =0.
In other words, the critical point at g=O (y =1) would
not actually be multisingular in character. In view of the
fact that the majority of PDAs rather clearly pick out a
distinct, Ising-like multisingular point in the vicinity of
y = 1, this is clearly a paradoxical situation!

To escape this paradox we must identify some way in
which g =0 is selected as a special multisingular point of
X(T,g), apparently characterized by a correction exponent
0= —, , while, at the same time, accounting for the fact
that no correction terms involving the factors t' and
t~~ appear in P or any of its g (or t) derivatives at g =0.
To this end we examine the flow equations (5.4) and (5.5)
in more detail, following the elegant and seminal analysis
of Wegner. '

The crucial observation' on which we focus is that the
formal construction of the nonlinear scaling fields in
powers of t and g runs into difficulties if a vanishing
denominator occurs in the expressions for the expansion
coefficients. This in turn will occur if the resonance con-
dition

Correct to this order we suppose that t=t and g=g,
where t and g are thus polynomials in t and g behaving as
r and g when t,g~O. The flow equations may now be
rewritten in terms of t and g in the form

d t ~() ~k) k)
(5.14)

(5.15)

where we have, for the sake of obtaining explicit closed-
form answers, dropped (or absorbed into r and g) other,
nonresonant terms of order k]+k2+1 as well as higher-
order terms (which would, in general, also entail higher-
order resonances): all lower-order terms have been ac-
counted for' in the construction of t and g.

The solutions of these model flow equations are

t(l)=tpe '/(1 —Dtcol) ', (5.16)

g(l) =goe ' /(1 —Dwol)"' (5.17)

(see Appendix C), where to and go represent the initial
(l =0) values, while

D =k )D] +k2D2,

p~
——D~ /D, p2 ——D2/D,

and we have written

~kl k2
wp ——tp gp

(5.18)

(5.19)

(5.20)

dG
=A,pG, (5.21)

Now the l dependence in the denominators in (5.16) and
(5.17) generates a logarithmic dependence of a thermo-
dynamic variable, say G(t,g), on r and g (and thence on r
and g). In order to see this explicitly, suppose for sim-
plicity that G undergoes only a constant multiplicative re-
normalization according to

k)k]+k2A2 ——0 (5.12) which implies

is satisfied for some positive integers k~ and kz. Since,
by (5.6), A, , and X2 are of opposite sign (8 being taken posi-
tive), this merely means that A,

&
and A2 are rationally relat

ed, which, in turn, is certainly true if the correction ex-
ponent 0 is rational —as expected heref Wegner' shows
that when a resonance such as (5.12) (or, more generally,
involving any other relevant or irrelevant eigenvalue, A,„)
occurs, one must anticipate the appearance of /ogarithmie
factors in the expressions for t and g in terms of t and g.

—k l~
G(tg, go) =e ' G (5.22)

where G is a noncritical reference, or matching value of
G. Gn substituting for e' from (C15) in Appendix C and
dropping the subscripts 0 (and replacing the circumflexes
omitted in the Appendix), we find

G(t,g) = CGt [W(t,g )] ' Z [wW(t, g )], (5.23)

where CG is the critical amplitude at g=0, the leading
exponent is given by

B. Model renormalization-group flow

To see what is involved more explicitly and to discover
what might arise in the Ising model, we will explore the
simplest situation. Thus suppose that the nonlinear scal-
ing fields t and g have been constructed without en-

y= —A.pj~(,

while the logarithmic dependence is contained in

W(t, g )= 1/[1+ (D/A ) )w 1n(t/tc"')],

(5.24)

(5.25)
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where, to recapitulate, w = t 'g '. [Compare with (5.11)
and (5.20).] The scaling function Zo(w) [which derives
from X(w) in Appendix C] is normalized so that
Zo(0) =1: it should have an expansion for small w that
ensures that G(t,g) has a simple power series in g (at
g =0) when t & 0; see further below.

Before discussing the significance of this result for the
Ising model, it is useful to note some of the limitations of
the model equations we have solved and indicate the
modifications that can result in a more general situation.
We comment briefly on three aspects: (i) Only two fields,
one relevant and one irrelevant, have been considered in
our model. A more complete description would include,
for example, the effects of the ordering field h, whose
presence in the full temperature-like nonlinear scaling
field can be shown' to lead to additive terms proportional
to

~

t
~

' in the ordering susceptibility; these behave as
t ln

~

t
~

in the d =2 Ising model. (ii) Despite the appear-
ance of terms like lnt and lng in thermodynamic quanti-
ties, the model equations yield no logarithms in the equa-
tion for the critical locus, t, (g), itself: this is given by
t(t,g) =0, and since t is a C„ function of t and g, no log-
arithms appear. In fact, one can see that this is always
the case for any pair of flow equations with one relevant
and one irrelevant field. If, however, two (or more) ir-
relevant fields enter, logarithms can also appear in the
equation for the critical surface. (iii) In writing (5.21)
we have not considered the most general renormalization
equation for G. For instance, terms representing additive
renormalization can lead to additive logarithms in the re-
sult. (This is the mechanism yielding the logarithmic
specific heat of the pure Ising model. ')

g (t,g) =g [1+O (g, t)], (5.26)

so that g =0 (or y = 1) is the full nonlinear scaling axis.
If one accepts 8= —', and acknowledges A, ~=1/v= 1 as

the thermal (or energy) renormalization-group eigenvalue,
one has A2 ———', and the appropriate choice for (k~, k2) is
(4,3). Then t and g appear only in the scaling combina-
tion w =g t ", except in the argument of the logarithm in
(5.25), where one finds g t "'with /=4 —1/p~.

It is worth commenting that quite equivalent results
would obtain if we supposed that g itself did not couple
directly to a critical operator but that g '=—g =u3 was
the field which coupled to a critical operator, which, in
that case, would have an eigenvalue k3 ——k2kq ———4. This
is more palatable as regards the known behavior of the

C. Ising-like scaling and the pure Ising model

I.et us, finally, consider the logarithmic
renormalization-group scaling form (5.23) as a candidate
for describing the susceptibility X( T,g) [identified as
6 ( T,g)] of the Kl and DG Ising-like models in the vicini-
ty of the pure Ising limit, g =0. As discussed, we must
now identify t(t, g) as an intermediate nonlinear scaling
field which is a polynomial in t and g reducing to the
linear scaling field t defined in (5.1) for small t and g.
Likewise, g(t, g) must be a polynomial reducing to g and,
in light of (5.8), satisfying

where B,J. and C;~ are analytic functions of t. Clearly,
then, (s(0)s (R) ) contains t "(lnt) ~ singularities with
k —

~

R
~

. Similar remarks apply to the higher-order
correlation functions needed to evaluate (8"X/Bg")s

Lastly, a further remark about the nature of the scaling
function Zo(w) is in order The poi.nt is that for t & 0 the
right-hand side of (5.23) must produce no terms involving
factors of lng as g~O with t & 0 since these would imply
nonanalytic behavior in g above T, (g), which is not phys-
ical. This means that the scaling function itself must con-
tain logarithmic terms so as to cancel the lng terms aris-
ing from the W functions in (5.23). Specifically, one can
check that if

Zo(w)= I+Z~ ~w lnw+Z&w+Z22w (lnw)

+Z2 ~w lnw+Z2w +O(w ln w),

then the leading lng and (lng) terms cancel, provided

(5.27)

Zi i DP&1'/A, ~ and Z22= ———&D P]1(1+Pl)')/X~1

(5.28)

while appropriate values of Z2 ~, etc., serve to cancel
higher-order logarithmic terms.

In summary, the numerical and analytical evidence is
consistent with the corrections to scaling in the two-
dimensional Klauder and double-Gaussian models being
purely logarithmic in character for g&0 (y&1), but with
amplitudes that vanish on approach to the pure Ising lim-

pure Ising model since such irrelevant operators do in fact
arise (for example via lattice differences). ' The reso-
nance condition would then be 4A, ~+A,3

——0, but one would
still have m=u t =g t .

Now, provided only integral powers of w appear in the
expansion of the scaling function Zo(w) in (5.23), it is
clear that the desired absence of the unseen factors t'
and t at g =0 is ensured not only in X(T,O) itself, but
also in all the derivatives (8"X/Bg")s o. On the other
hand, the presence of logarithmic terms of the form
g t lnt in (5.25) means that additive logarithmic terms of
the form g 3"t r(lnt ) ~ should appear in g( T,g) for
all k=1,2, 3, . . . and j=0, 1, . . . , k —1 whenever g&0.
These "correction-to-scaling" terms vanish, however, at
g =0, which clearly identifies g =0 as a multisingular
point. On the other hand, one should, for example, be
able to find a term varying as t rlnt in (a'X/ag'),
and as t r(lnt) in (8 X/Bg )~ 0. These expectations
could be checked by explicit calculations for the pure Is-
ing model. The appearance of such logarithms appears
very reasonable in view of the fact that they are already
known to appear in the individual Ising spin-correlation
functions. More explicitly, the spin-spin —correlation
function (s(0)s(R)) in the pure Ising model can be ex-
pressed in terms of Toeplitz determinants of an order that
{on average) increases linearly with the separation

~
R

~
. '

Each individual Toeplitz matrix element behaves like the
mean thermodynamic energy exhibiting the (precise) criti-
cal behavior
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it (g =0) in a way described by an apparent correction-to-
scaling exponent 0= —", .

VI. BORDER MODELS AND INCIPIENT
MULTICRITICALITY

In Sec. III we reported the observation of an effective
exponent y,f~-1.95 in single-variable analysis of the Kl,
DG, and ky models for intermediate values of y and A,

(see Fig. 1). In their single-variable analysis (using shorter
series than available to us' ) of the A.y model at a theoret-
ically identified '"' "border" value, k=kb, that corre-
sponds to u2=0 in (2.31), Baker and Johnson "found
similar values of y, rr. They cited their observations as evi-

dence that "critical exponent universality fails for the
two-dimensional continuous spin Ising model. ; .contrary
to what has previously been assumed. " Specifically, they
claim that the Aby border model is in a different univer-
sality cia's than the standard Ising model having
yb-2. 00 in place of yI ——1.750: they quote the range
1.89 to 2.02 for yb and suggest, in our notation, Ob —0.90
to 0.99. We believe that such a conclusion is premature at
best: Indeed, the balance of the evidence, which we re-
view below, seems to support the alternative interpretation .

which reads the observation of y, rr—1.95 as merely symp-
tomatic of strong Gaussian-to-Ising crossover effects.
The true asymptotic exponent would then be y =yI for all
nonzero values of y or A, , in accord with the standard pic-
ture. Nevertheless, for strong enough deviations of the
single-spin weighting function, W~(s), from the Kl, DG,
or Xcp forms, other types of critical behavior must arise
so that the full span of behavior encompassed by O(1)
continuous-spin Hamiltonians with nearest-neighbor cou-
plings does, surely, include more than just Ising and
Gaussian criticality. Accordingly, we also make some
comments about the possible role of scalar tricriticality in
the observed crossover behavior. (Related considerations
by Baker "should also be mentioned. )

Recall, first, the fact that the two-variable PDA
methods are intrinsically better able to address questions
of crossover versus new types of criticality than are
single-variable methods. Further, our PDA study pro-
vides definite evidence favoring asymptotic Ising-like crit-
ical behavior for all 0 &y ( 1 for the Klauder and double-
Gaussian models. Thus, as discussed in Sec. III, the ma-
jority of approximants computed exhibit flow patterns
isomorphic to those in Figs. 2 and 3, with a critical trajec-
tory that flows directly from the Gaussian multicritical
point, 6, to an Ising-like multicritical point, C, thus irn-
plying that the entire critical locus from 6 up to and
through C is Ising-like. On the other hand, a minority of
the approximants do display an extra fixed point, , B, on
the critical trajectories linking 6 and C, which might well
be viewed as supportive of the Baker-Johnson contention.
However, as explained in Sec. III, the associated. flow pat-
terns are most often defective, inasmuch as another, un-
physical locus of singularities, DB [in Figs. 4(a) and 4(b)],
is also present: This suggests that the appearance of 8 it-
self should be regarded as a defect, a viewpoint which is
supported by the wide numerical range of associated
crossover exponents Pz =——8& which is found. Further-

more, the critical behavior implied by this class of ap-
proximants is Ising-like on the critical line between B and
C, but Gaussian-like between B and 6. This latter,
"asymptotically free" behavior is difficult to reconcile
with the results of perturbation theory around the Gauss-
ian limit. As discussed in Sec. II, the exact perturbative
results for (BPIBy)z 0, etc., are fully consistent with the
standard field-theoretic picture of an unstable Gaussian
fixed point with a positive crossover exponent
PG

———,
' e—:z (4—d). An unstable fixed point indicates

crossover to a new type of critical behavior, inconsistent
with the Gaussian-like, asymptotic freedom implied by
those approximants exhibiting a border multisingularity,
B. In principle, however, one might have a Gaussian-to-
Gaussian crossover at or, perhaps, very close to y =0;
thus the argument is not totally convincing. However, it
would still seem very difficult to explain such behavior in
what is, after all, a weak-coupling regime where the field-
theoretic picture may even be susceptible of rigorous
proof.

Another argument casting doubt on the existence of a
new, non-Ising universality class, at least within the
double-Gaussian model, invokes the exact factorizability '

of the DG partition function. As discussed in Sec. II, the
critical properties of the DG model are identical to those
of a "range" model that is a standard (s;=+1) Ising
model with ferromagnetic pairwise interactions that decay
exponentially with distance. Such interactions can sup-
port only the orthodox type of Ising order. One knows,
e.g. , by comparing the exact results for honeycomb,
square, and triangular Ising lattices, ' that adding fer-
romagnetic short-range interactions normally has no ef-
fect on the nature of the criticality. Renormalization-
group arguments, supported by exact spherical model, re-
sults for all d, etc., suggest strongly that exponentially de-
caying interactions should be equivalent to strictly short-
range interactions. In summary, it seems most likely that
the range model, and hence the DG model for y &0, is in
the same universality class as the pure Ising model with
only nearest-neighbor couplings.

Finally, the close numerical similarity of the A,y, DG,
and Kl spin weight functions as they each interpolate
smoothly between the single-peaked Gaussian weight and
the infinitely sharp double peaks of the pure Ising limit,
leads us to believe that the conclusions for the latter two
models should apply equally to the former. For the
reasons given we thus feel it is more fitting to ascribe the
observations of y,rr—1.95 for intermediate y and A, in the
A.y, DG, and Kl models to crossover effects rather than
to invoke a new universality class.

Let us round out the discussion, however, by looking a
little further into one other type of (multi-) critical
behavior that should arise in two-dimensional scalar spin
systems even if it does not occur in that part of Hamil-
tonian space spanned directly by the Kl, DG, and A,y
models. (A schematic representation of the space of
Hamiltonians illustrating the relation between various
models, including the general spin Ising model, ' is given
in Fig. 2 of Ref. 26.) Specifically, we wish to discuss a
natural extension of the DG model, which should encom-
pass tricriticality. To this end we first define modified
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single-spin weight functions by writing the full partition
function as

T

Zx ——f gds; Wx(s;)exp —,g Kz(s; —sj)
I (i,j )

(6.1)

By matching this to (2.1), one finds

Wx(s) —=exp[ —,
' E(0)s ]Wx(s), (6.2)

M „=f Wx(s)s "ds
n/2f Wx(s)s ds (6.3)

normalized so that M 2
—= 1.

An example of the quasiuniversality exhibited by
single-spin distribution functions is provided by the Kl
and DG models at their Ising-like multicritical point. In
two dimensions, the identity of W~~(s) and WDo(s) is im-
mediate if, as we have argued, the multicritical point for
both models coincides with the pure Ising critical point.
In three dimensions (where the quasiuniversality was first
noticed ) PDA study' yields the Ising-like multicritical
values x, (K1}=x,(DG)=1.21 and y, (Kl)=0.81,
y, (DG)=0.90. From these, one finds

where k(q) is defined as in (2.11). The point of rewriting
Z in this way is that the net single-site energy, In[ a(s)],
is thereby exhibited explicitly. For appropriate block spin
variables SJ, the existence of a universal net weight func-
tion W(S} governing the fixed-point distribution of spins
is fairly well established. Furthermore, there are indica-
tions that some properties of even the net single spin di-s-

tribution, Wx(s), are quasiuniversal, provided one con-
fines attention to Hamiltonians with only nearest-
neighbor interactions. To explore this feature, it is
reasonable to characterize a weight function by its re-
duced moments

M4-2. 40 (Kl), 1.99 (DG), 1.58 (Ay ),
M6-9. 12 (Kl), 5.57 (DG), 3.02 (A(p ) .

(6.8)

(6.9)

These values vary quite strongly, but in a regular way,
which suggests a monotonic approach to the tricritical re-
gion located by (6.7). (See also Fig. 2 of Ref. 26.)

This observation suggests that it might be the relatively
close approach of the Kl, DG, and Xy border models to a
tricritical manifold that plays a role in determining the
behavior of y,fr (as exhibited in Fig. 1). This proposed as-
sociation would also rationalize the appearance of PDA
flow patterns of type 8, containing the extra fixed point
8; the fraction of such approximants found increases in
going from the Kl to the DG model. This might reflect
the closer proximity to the tricritical manifold and the as-
sociated stronger crossover effects in the latter case.
Perhaps B itself could be interpreted as an approximate,
but premature representation of an incipient tricritical
point.

To investigate these speculations it is desirable to gen-
eralize the Kl, DG, and A,y" models so as to encompass
genuine tricriticality. Many such generalizations are pos-
sible, but a particularly appealing one is obtained by ap-
plying the procedure of Gaussian smearing to the
Blume-Capel weight function (6.6): This yields

that these moments differ significantly from (6.4) and
(6.5).

We now raise the question: "Might the strong cross-
over effects observed in the 'border regions' of the Kl, DG
and ky models, where y,~f attains a maximum, be associ-
ated with incipient tricriticality?" To shed some light on
this question, we may evaluate the moments correspond-
ing to the border values x~ —1.20 (Kl), 1.19 (DG), 1.32
Q,p, Ref. 27) and yb =0.30 (Kl), 0.50 (DG), and
Lb=0. 1142 (Ay, Ref. 27). We find

Mg —1.37 (Kl), 1.34 (DG),

M6 —2.43 (Kl), 7.00 (DG) .

(6.4)

(6.5)
W3 (s;y, w) = 2( w —1 )exp( —s /2g) +exp[ (s +V'wy ) /2g ]

+exp[(s —&wy ) /2g], (6.10)
The originally unanticipated near equality of the fourth
moments here indicates the quasiuniversality. The sixth
moments, however, necessarily differ by virtue of the fact
that we have restricted the Hamiltonians to the submani-
folds spanned by the Kl and DG models.

Now consider the Blume-Capel model: this is a spin-1
Ising model (s; =1,0, —1) with nearest-neighbor coupling
Es;sj and a single-spin term 5s;. It can be described by
the weight function

WBc(s) =2(w —l)5(s)

+ [5(s +3/w )+5(s —V w )]exp[ —,
' E'(0)sz],

(6.6)
in which the parameter w stands in for the single-spin (or
crystal-field} parameter. This model certainly has a tri
critical point; a recent study reports the tricritical values
x,(BC)=0.573 and w, (BC)=10.61, which yield the mo-
ments

M&—1.46 and M6 —2. 13 (BC, tricrit. ) . (6.7)
We take these values as an indication of the location of
the tricritical manifold in the space of Hamiltonians: note

where, again, g=1 —y. Consider this weight function
combined with a nearest-neighbor coupling: The model
reduces to the Gaussian model when y =0, to the Blume-
Capel model when y =1, and to the double-Gaussian
model when m =1. Now, the tricritical point in the
Blume-Capel model is presumably drawn out into a tri-
critical locus in the full three-parameter (w, x,y) space. It
would be important to know the location and orientation
of this tricritical locus relative to the double-Gaussian
plane (w =1) if the associated crossover effects are to be
understood quantitatively. Thus, the observed values of
ydf close to 2.0 might possibly result from an approxi-
mate tangency of a locus at fixed y in or near the double-
Gaussian plane, to the tricritical locus; a precise tangency
of this sort would imply a doubled value, y=2. 06, of the
standard tricritical susceptibility exponent y, =

36
=1.03. To support (or destroy) such a speculation, how-
ever, a study of the full (w, x,y) space seems imperative.
Even if successful, it might well still leave one with the
conclusion thai only normal crossover effects are visible
in the simple Ising-like models considered here. Cori-
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versely, some more exotic form of multicriticality might
come clearly to view: we feel, however, that the simpler
possibilities should be explored first.

VII. CONCLUSIONS

correspondence with J.-H. Chen, D. A. Huse, B. G. Nick-
el, V. Privman, M. Randeria, S. Shenker, and D. F. Styer.
The support of the National Science Foundation, princi-
pally through the Applied Mathematics program, is grate-
fully acknowledged.

Our study of the O(1) Klauder and double-Gaussian
models in two dimensions has addressed two distinct is-
sues; our primary concern has been the nature of the
corrections to leading power-law behavior in the vicinity
of the pure spin- —,

'
Ising limit: Secondly, we have con-

sidered the strong crossover effects apparent in these
models in the intermediate parameter range between the
Gaussian and Ising extremes. Analysis of a wide range of
partial-differential approximants has led to the notion
that for d =2 (in contrast to d =3) the pure spin- —, Ising
model plays a special role: Explicitly, the Onsager critical
point appears as a multicritical point in the full parameter
space, and the Ising axis (y =1) is an axis for the non-
linear scaling fields describing Ising-like criticality.
Moreover, the numerical results support Nienhuis's con-
jecture that the leading corrections are described by an ex-
ponent 0= —,. To reconcile the absence of terms like
(T —T, )' and (T T, ) in—exact calculations for the
pure Ising model with this result, we propose that a reso-
nance between two renormalization-group eigenvalues
leads to logarithmic singularities in the nonlinear scaling
fields (in contrast to simple power-series expansions).
Such an effect should occur whenever 0 is a rational frac-
tion and, in turn, yields logarithmic correction factors in
the critical behavior of thermodynamic functions away
from the pure Ising limit. The proposed logarithmic
structure may be probed by computing sums of appropri-
ate correlation functions of the pure Ising model, and may
thus be checked by explicit calculations which, clearly,
would be valuable to have.

Our single-variable analysis of the Klauder, double-
Gaussian, and ky" models yields a maximal value for the
effective susceptibility exponent of y,tt-1.95, for inter-
mediate values of the parameter y. However, the two-
variable PDA analysis provides evidence that there is only
a single (Ising-like) universality class away from the
Gaussian limit of the Kl and DG models and, by numeri-
cal similarity, for the A,y models also. In a speculative
vein it was suggested that the strong crossover effects
might be associated with incipient tricriticality in these
models: Calculation of moments of the critical-point
single-spin weight functions provides some evidence for
this, but a systematic consideration of this idea would in-
volve enlarging the parameter space so as to ensure the
presence of genuine tricriticality. A suitably extended
model was defined which would be interesting to study in
the hope of elucidating how close the "border" models lie
to a tricritical or other type of manifold.
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APPENDIX A: NEAR THE ISING LIMIT

In this appendix we establish the relation (2.16) between
the single-spin partition functions of the double-Gaussian
and Klauder models, to first order in the deviations g
from the Ising limit y = 1.

It is easy to calculate ZDo(h;y) [see (2.6)j since each of
the two separate integrals resulting from (2.3) is Gaussian
in form: One obtains

ZDo(h;y) =cosh(hV'y )es" (Al)

where we have normalized, by dividing by ZDo(0;y). On
expanding this to first order in g, one recovers the first
part of (2.16).

It is not quite as straightforward to evaluate

Z~, (h y)~ J dse"'~s
~

e

However, it may be rewritten as

ZK~(h;y) ~ cosh(ht)e~'"0 ~dt

(A2)

(A3)

with

When g~0 the integrand becomes sharply peaked about
t =1 and, setting t 1 =u~g—, the integral can thence be
evaluated by the method of steepest descents. Carrying
this through to first order in g yields the second part of
(2.16).

APPENDIX B. FLOW PATTERNS
WITH EXTRA FIXED POINTS

Q(xn, 0)=xD(1—xD)P(xD, O) . (B1)

In Sec. III we pointed out that a significant minority of
PDAs exhibit additional fixed points 8 (on the critical
locus) and D (on the Gaussian axis) in addition to the
Gaussian and Ising fixed points G and C (see Fig. 4). In
this appendix we discuss some implications of such flow
patterns, and, in particular, the nature of the singularity
on the segment of trajectory DB.

Before taking up the patterns in Figs. 4(a) and 4(b)
separately, let us remark ori a feature common to both,
namely that the exponent yD which characterizes the
singularity of the susceptibility along the y =0 axis near
D is identically zero. This follows because the Gaussian
model susceptibility, X6 ——1/(1 —x), is nonsingular for
x & 1, and the exact Gaussian form was imposed on the
PDAs under discussion. Explicitly, we must have
Q(xD, O)=0 at the fixed point D, but in view of the
Gaussian axis constraints (3.8) and (3.9), and (3.15) and
(3.16), it follows that
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X=C t Z~(z) (82)

Hence, for 0& x&& & 1, we must have P(x~, O) =0 and thus
(using results from Ref. 12, etc.) y~ ———P(x&,0)/A, i also
vanishes.

Now let us turn to the individual flow patterns. In Fig.
4(a) the fixed point B is bicritical' in character and thus
exhibits a "radial" flow pattern. Around B, the scaling
form

z =g t, one finds that one must have

Z~(z)=Z z as z~O0 [&a-&s~/~a
(86)

in order to reproduce the singular behavior 7-t
where t represents the deviation from the critical locus
BC with t=t near B. From (86) and (82) it follows that
7 is also singular along the locus DB, and so at a fixed or
slowly varying value of t one has

holds, " with X g ~ tg with f=(7'g —1 y)/Oii (87)

z=g/t ~, (83)

where g and t are nonlinear scaling fields asymptotically
equal to the linear scaling fields g and t defined with an
origin at B and axes labeled as shown in the figure. The
susceptibility must be nonanalytic along the loci BC and
BD since the approach to these loci is governed by the
flows into fixed points C and D, respectively. Now C is a
fixed point of Ising character implying that the critical
behavior all along BC is also Ising-like. At fixed point D,
on the other hand, yz vanishes and the leading singular
behavior is that characterized only by the corrections to
scaling. Hence, if tran measures the deviation from the
locus DB, we will have

APPENDIX C: INTEGRATION OF THE MODEL
FLOW EQUATIONS

In this appendix we present some details of the solution
of the model flow equations (5.14) and (5.15) which illus-
trate the phenomenon of resonance for rational 8. For no-
tational convenience, we denote t and g by t and g here.
The first step is to definel, —A2lg' =ge (C 1)

Depending on the relative magnitudes of yii and yr, the
susceptibility X may thus diverge (yii & yI ) or attain a fi-
nite value in a singular fashion (y~ )yI ) as the locus BD

.is approached, i.e., when t&~0.

8~
CD(1+aDtD + (84) which then satisfy

gii = —Pii )0 . (85)

Furthermore, the t and g axes coincide asymptotically
with the loci BD and BC, respectively. As in the case
shown in Fig. 4(a), the susceptibility must be singular
along BC, with Ising-like critical behavior. This has the
important consequence that the scaling function Z~(z)
must be singular at z =0: In fact, recalling the fact that

The two different types of critical behavior (along DC and
DB) manifest themselves' as two different singularities of
the scaling function, ' Zii, at finite values of z, say z+
and z

Although the singularity across the locus BD seems
highly unphysical, as discussed in the text, it is compara-
tively weak (typical values of 8~ ranging from 0.01 to
0.30). Furthermore, since, as argued in the text, D most
probably represents a defect, it should not, as such, be al-

lowed to introduce spurious singularities into the integrat-
ed approximant as occurs in (84). This can, indeed, be ac-
complished within the spirit of PDA analysis by matching
the flows from B on a locus which runs above D up to
some value x)x~. Then the singular amplitude a~ in
(84), and all higher singularities, would vanish identically
Thus it is appropriate to consider the continuation of
X(x,y) beyond the locus BD into the region BDG. Similar
arguments then show that the locus BG must be singular
and, indeed, exhibit a divergent Gaussian-like singularity
with y&

——1. This singularity cannot reasonably be re-
moved by choice of boundary-matching locus.

Consider now the situation illustrated in Fig. 4(b).
Flows around the fixed point B are hyperbolic: The scal-
ing form (82} is still valid, but the crossover exponent Ps
is now negatiue, so that it is appropriate to define

1 d, 1 d, ,k),k2—(lnt') = —(lng') = t' 'g' ' .
D) d/ D2 dl

On setting

,k),k2 k
1 k2w(l} t& lg& 2 —t lg 2

we find that (C2) implies

(C2)

(C3)

w (1)=wo/( I —Dwol ) (C4)

and

(C5)

Using the solutions (5.16) and (5.17) then yields

A) A2 1/k2
G(Vi, Vi wo )=G (C8)

where D is defined in (5.18) and the subscript 0 denotes,
here and below, evaluation at I =O. From these results
the solutions (5.16) and (5.17) follow immediately.

To understand the resulting thermodynamics we follow
standard procedures and renormalize up to a matching
Ualue, l (to,go), defined as the solution of the equation

G [t(lt), g(lt)] =Gt, (C6)

where Gt is fixed noncritical, reference value of a selected
thermodynamic (or other) variable, which, following the
text, we may suppose obeys the multiplicative flow equa-
tion (5.21). To solve this equation for l, consider first
the simple case D =0 and set

1/A, iVl(to go}=«0 (C7)
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from which it is clear that V& is actually a function only
of wp. By solving (CS) for l and normalizing by defining
tt as the root of

G(tt, O) =Gt,
we obtain, for D =0,

l (tp, gp)=(1/At)ln(t Itp)+lnVp(wp),

(C9)

(C 10)

where Vp(0)=1 and Vp(z) should have a formal expan-
1/k2 . 1sion in powers of wp since G(t,g) should be analytic

in g for t)0.
To obtain a solution for D&0 we generalize (C7) in the

light of (5.16) by defining

V(tp, go)=e tp 'I(1 Dw—pit)"' (Cl 1)

W(u;D)=1/Du —(1/A&)ln(u '/t )+lnX(u;D), (C14)

where X(0;0)=1 and X(w;D) should have a power-series
1/k~

expansion in m
' up to order kz. On using this and

solving (C13) for l, we finally obtain

appearing in (C12). Then one can rearrange (Cl1) and
solve formally to obtain

v /D = 1/Dwp —l = W[w pW(tp, g p );D], (C13)

where W(tp, gp) is the logarithmic function defined in
(5,25) which approaches unity when D~O. The function
W(u;D) represents a reincarnation of the scaling func-
tion. To east this result in a more useful form we note
that it must reduce to (C10) when D~O. For this to
occur, W has to take the form

and then, from (5.17), we obtain

g(l )= V '[wp/(1 —Dwplt)] (C12)
e' =(t It()) '[W(tp, gp)]

"' 'X[wpW(tp, gp)], (C15)

where we have used k&)M&+kqpq ——1, which follows from
(5.19). Substituting, as before, in (C6) we now find that V
is a function only of the combination v =(1—Dwpl )/wp

k) k~
in which, to recapitulate, uo ——to go, and we have omit-
ted the explicit D dependence of X.
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