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Monte Carlo simulations are used to study the location and nature of phase boundaries for Ising
square lattices with antiferrornagnetic coupling JNN between nearest neighbors and additional in-

teractions JNNN between next-nearest neighbors and J3NN between third-nearest neighbors. Results
in zero magnetic field are obtained for a wide range of R =JNNN/J» and R =J3NN/JNN. In addi-
tion to the c(2)&2) and (2)& 1) phases, which also occur for R'=0, we find new (4&(4) and (4&(2)
ordered states, for R'&0, which are separated from the disordered state by lines of first-order tran-
sitions. The nonuniversal critical behavior of the (2)& 1) phase is studied using the block-
distribution method and finite-size scaling. The possible existence of incommensurate phases is also
explored.

I. INTRODUCTION

The Ising square lattice has long been the object of
scrutiny. Although it can be solved analytically' when
nearest-neighbor (NN) coupling is present, the model has
defied solution when more-distant-neighbor interactions
are added. For many years the model was of purely
theoretical interest, but more recently- it has been recog-
nized that both layered quasi-two-dimensional anisotropic
antiferromagnets and adsorbed monolayers on cubic
(100) surfaces may be describable in terms of this
model. Because of this a wide variety of approximate
methods have been applied to the model: mean-field
theory, ' series expansions, ' ' real-space renormal-
ization-group methods, ' ' interface methods, free-
fermion calculations, and Monte Carlo and Monte Carlo
renormalization-group (MCRG) computer simula-
tions

We now know that if next-nearest-neighbor (NNN)
coupling is added the ground state may be either c(2&&2),
with the usual Ising exponents, or (2& 1) with nonuniver-
sal critical behavior, i.e., exponents which depend upon
R =JNNN/JNN. (In Fig. 1 we show a number of possible
ground-state configurations and label them with both the
usual magnetic designation as well as that used for
describing adsorbed monolayers. ) The effects of adding
third-nearest-neighbor (3NN) coupling, however, is not
yet generally understood. Selke and Fisher have given
preliminary phase boundaries for the special case of NN
and 3NN coupling. This model, which is an isotropic ver-
sion of the axial NNN Ising (ANNNI) model, shows an
incommensurate phase in addition to ordered, commensu-
rate phases.

In this paper we shall describe the results of extensive
Monte Carlo calculations on this model. From these data
we shall locate phase boundaries, determine their charac-
ter, and compare the results with the predictions based on
ground-state symmetry arguments. In Sec. II we present

ground-state and mean-field results for this model. In
Sec. III we describe the methods used to obtain and
analyze data. Section IV gives our conclusions.

where o.;=+1 and the sums are over NN, NNN, and
3NN pairs, respectively. The ground-state energies of the
ordered states shown in Fig. 1, as well as many other pos-
sible. ordered states, were calculated. We find that states
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FIG. 1. Possible ground-state spin configurations on the
square lattice. Both lattice-gas and magnetic notation are
shown where appropriate.

II. THEORETICAL BACKGROUND

We consider Ising square lattices with the Hamiltonian

~=JNN g ~i~j +JNNN g ~i~k+~3NN g ~i~1 ~

NN NNN 3NN
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with the lowest energies for some region of R and R' have
energies

Uc(2X2)
= —2+2R +2R', (2a)

I JNN I

U(2xi)
= —2R +2R', (2b)

I
JNN I

U(4X4)
= —2R',

IJNN I

U(4x2)
= —1. (2d)

I JNNI
4

By comparing these energies we find a ground-state phase
diagram as shown in Fig. 2. (Our results agree with those
of Kaburagi who approached this problem somewhat
differently. ) Using mean-field theory, we also find indica-
tions of interesting behavior for T&0. In mean-field
theory the momentum-space susceptibility can be written

(2c)

2

x(q) =
kg T J(q)—

For the model which we are considering,

J(q) =2I JNN(cosq„+cosq~ )

+JNNN [cos(q„+qy ) +cos(q —
qy )]

+J3NN [cos(2q„)+cos(2' )]] .

The (2&1) phase corresponds to q„=m., q~=O or q„=O,
q~

=m.. By writing out J(q) explicitly for small deviations
from the q for the (2X 1) phase, we find that an incom-
mensurate phase becomes stable for 2JNNN —JNN—4J3NN & 0; hence a Lifshitz point appears for
RL;r= —,'R ——,'. This behavior is quite similar to that of
the ANNNI model (in fact our model may be considered
to be a generalization of the isotropic version of the
ANNNI model). The qualitative phase diagram that we
might then expect is shown in Fig. 3. In the mean-field
case the incommensurate phase also makes transitions to
various commensurate phases [including (4&4) at low
temperatures] when the temperature is sufficiently lower
than the paramagnetic-incommensurate transition. '

Since the phase diagram is expected to be very complicat-

- (b)
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FIG. 3. Possible phase diagrams showing an incommensurate
phase: (a) schematic (simplified) mean-field diagram; (b) phase
diagram from Monte Carlo calculations of Ref. 28.

ed ("devil's staircase" of phases), no attempt to include
these phases has been made.

III. SIMULATION METHODS

A. Monte Carlo method

Data have been obtained using a standard importance-
sampling Monte Carlo method which employs single
spin-flip kinetics. We have studied L gL lattices with
periodic boundary conditions for lattices as large as
L =48. Phase boundaries were generally located using
data points obtained from 400 MCS (Monte Carlo steps
per spin). Data obtained for analysis of critical point
behavior using the block distribution (cumulant) method
(to be described below) employed much longer runs. Typ-
ically for L =4 we kept 10 MCS for calculating the cu-
mulants and for L =32 about 1.5—2.0X10 MCS were
kept. Each point was then repeated at least once and the
results averaged.
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B. Free-energy analysis near first-order transitions

The bulk properties of a system exhibiting a first-order
transition will often exhibit hysteresis. The actual loca-
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FIG. 2. Phase diagram at T =O.
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FIG. 4. Determination of the location of the first-order phase
transition for R = 2, R'=1 from comparison of free energies.
The upper part of the diagram shows the entropy determined
via this procedure.
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tion of the transition may then be determined directly
from the Monte Carlo data. If, however, the hysteresis is
extremely pronounced, this description may be difficult
(or even impossible) to use. Instead, one may determine
the location of the transition through an analysis of the
free energy F and entropy S as described by Binder, 3

The internal energy U is integrated starting at infinite
temperature, yielding

F 1/k~ T

k~T
= —S(T= ao)+ J Ud(l/kgT)

and
1/kB T

+ —J Ud(1/k T) . (6)
k~ k~ kg T o

At a first-order transition there will be a jump AU in the
internal energy which gives rise to a jump in the entropy
b,S=b, U/kzT. The transition temperature must then be
chosen consistent with the restriction that the total entro-

py determined from the integration is exactly equal to the
exact value determined from the spin degeneracy (for ex-
ample, in the present case S(T= co )/k~ =ln2). Figure 4
shows a practical example.

C. Block distribution (cumulant) analysis

If the magnetic field is zero, the spin distribution func-
tion PI (s) for an L XL lattice is symmetric, i.e.,

PL(s)=PL( —s) .

The expectation value of the kth spin moment is then
given by

(s )I ——J dss"Pl (s) . (&)

An analogous expression can be written in terms of a
more general order parameter m which is appropriate to
nonferromagnetic order

(m")~= f dmm'PL(m) . (9)

D. Finite-size scaling

The behavior of finite systems near the infinite lattice
critical temperature can be described by finite-size scaling
theory. For example, for sufficiently large values of L
the specific heat should diverge as L, where a and v
are the infinite lattice exponents. If we interpret the loca-
tion of the specific-heat peak as the finite lattice critical
temperature T, (L ), then

(14)

In addition, at T, ( oo ) the order parameter should go to 0
as L ~~". The analysis of the size dependence of these
properties has been quite successful in the determination
of infinite lattice critical exponents.

IV. RESULTS

A. Phase diagrams

We have chosen a number of different values of R for
which different characteristic behavior is found as a func-
tion of A' and have determined the critical temperatures
as a function of E. '. In Fig. 5 we show the phase dia-
grams for R =1.5 and R =1.0 for which only the stag-
gered antiferromagnetic (SAF) (2X 1) and (4X4) ordered
structures appear at low temperatures. The phase transi-
tion involving the SAF state was clearly second order.
The transition from the (4X4) state to the disordered
state was strongly first order at low temperatures, and the
transition temperature could be determined only by com-
parison of free energies. At higher temperatures the hys-
teresis became much less pronounced and T, could be
determined directly. No incommensurate phase in be-
tween the (4X4) phase and disordered phase was found.

7-

Following Ref. 33 we can define cumulants as well:

(m )L

3(m')L
(10)

5-

2-

The critical behavior can then be determined from a com-
parison of the moments and cumulants for lattices of size
L and L'=bL. At T,

Ul ——UI ——U

ln(dUbl IBUI )

lnb
(12) kT

I JNNI 2

=ln((m )bl l(m )I )/1nb . (13)

Since there are in general residual effects due to correc-
tions to finite-size scaling, it is necessary to extrapolate
the results as a function of (lnb) ' to (lnb) '=0. For
practical examples, see Figs. 11 and 12 below.

0 0 2 5
R'

FIG. 5. Phase diagrams for R =1 and R =1.5 showing the
phase boundaries to the SAF and (4 X4) phases as a function of
R'. Results are for I. =48. The thin solid lines show the
asymptotic behavior for R' —+ ao.
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FIG. 8. R-R'- T phase diagram.
FIG. 6. Phase diagrams for R =0.25, 0.5, and 0.75 showing

phase boundaries to the AF, SAF, (4)&2), and (4X4) phases as
a function of R'. Results are for L =48. The thin solid lines
show the asymptotic behavior for R'~00. The dotted curves
shown for R =0.75 separate the regions of short-range order of
different types.

This behavior is in contrast to that observed previously
for the isotropic ANNNI model. Due to its large unit
cell, the (4X4) state has a large number of order-
parameter components. Thus it is clear that this phase
cannot belong to any of the orderings for which symmetry
arguments would predict a second-order transition to
the disordered state.

In Fig. 6 we show phase diagrams for R =0.25, 0.5,
and 0.75. All three phase diagrams show a line of first-
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FIG. 7. Phase diagrams for R = —1.0, —0.5, and 0 showing
the phase boundaries to the AF and (4&&4) phases as a function
of R'. Results are for I. =48. The thin solid lines show the
asymptotic behavior for R'~ 00.

order transitions from the (4X4) state to the disordered
states; these phase boundaries are qualitatively similar to
those in Fig. 5. For all three values of R we also observe
a (4X2) ordered state which is also separated from the
disordered phase by a line of first-order transitions. The
transition was also strongly first order at low tempera-
tures and T, could be determined only by comparison of
free energies. The major qualitative differences in these
phase diagrams is the appearance of an ordered antifer-
romagnetic c(2X2) phase for R =0.25 and a SAF (2X 1)
phase for R =0.75. No corresponding phase is present
for R =0.5. Recall that at this value both phases are de-
generate in the ground state. Thus it is quite plausible
that at finite temperature fluctuations can destabilize any
order. In Fig. 7 we show phase diagrams for these values
of R &0. The phase diagrams are qualitatively alike with
second-order transitions to an antiferromagnetic (AF)
c(2X2) state and first-order transitions to the (4X4)
state. At low temperatures the (4X4) phase boundaries
seem to show small "bulges"; these protrusions and their
implication for the nature of the phase boundary will be
discussed shortly.

Using the results just presented, we have constructed a
three-dimensional phase diagram in R-R'-T space. This
is shown in Fig. 8. The shaded "bubble" in the center is
the surface bounding the (4 X 2) phase; the dashed lines
show the T=0 phase boundaries which are in the R-R'
plane.

B. Critical behavior

1. The checkerboard phase

A careful study of the nature of the transition from the
checkerboard (4X4) to the disordered phase is interesting
for several reasons. Previous work by Selke and Fisher
on the isotropic ANNNI model (our model with R =0,
R'~0) suggested that as the temperature increases the
system first enters an incommensurate phase after which
it undergoes a second transition to the disordered state.
However, Selke and Fisher studied only one lattice size for
this model; experience with the ANNNI model shows,
however, that a finite-size analysis is crucial for any de-
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nonuniversal critical behavior. A number of studies have
now been carried out for varying R with R'=0; we have
therefore studied this phase boundary in detail using the
block distribution method described in Sec. II. In order to
assess the error estimates of this analysis we chose one
value, R =0.65, to study with very long runs. For L =4
a total of 2&(10 MCS were used with the runs decreasing
in length until for L =32 a total of 3X10 MCS were
kept for the averages. In Fig. 11 we show results for UL
versus Us for 12&L &32. The thin solid lines show
linear fits to the data close to the critical temperature, i.e.,
close to the intersection with the line of slope 1. The vari-
ation of the critical temperature and critical exponents
with the scale factor b =L/L' which relates the two lat-
tices being compared is shown in Fig. 12. The extrapola-
tions for L'=8 and L'=12 agree quite well; the differ-
ence for L'=4 suggests that the lattice sizes studied are
not yet in the asymptotic regime where the effects of
correction terms to finite-size scaling justify a strictly
linear extrapolation.

Our extrapolated results for a wide range of R are
shown in Fig. 13 along with results obtained using other
methods. The agreement with the MCRG results is quite
good, and both sets of estimates for v lie outside the pre-
dictions obtained from series expansions. The finite strip
RG estimates for v appear to be quite good; however, the
critical temperatures were not given in Ref. 16 and the es-

timates were hence obtained using our estimates for T, .
For all values of R the estimates for 2P/v fell within the
range 0.23 0.03 with no systematic variation with R.

The fixed-point cumulant U* also varies substantially
with R. The results for R'=0, see Fig. 14, show a rapid
drop as R ~0.5. For large R the value of U rises slight-

ly above the estimate for the nearest-neighbor square lat-
tice. This means that either U does not approach the
R = oo limit monotonically with increasing R or that
finite-size corrections are still sufficiently strong that we
have not really reached the regime of asymptotic behavior
for the lattice sizes studied here.

Estimates can also be extracted from the size depen-
dence of bulk properties as described in Sec. III D. Using
the estimate of T, (oo) extracted from Fig. 12, we con-
structed a plot of Inkz[T, (L)—T, (oo)]/JNN versus lnL
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FIG. 13. Variation of the correlation length exponent and
critical temperature T, with R for R'=0. Results of the
present block distribution Monte Carlo study, 0; Monte Carlo
result from Ref. 26, 8„' MCRG results of Swendsen and Krin-

sky (Ref. 27, &(; series-expansion results of Ref. 13, ; finite
strip RG (Ref. 16), CI; real space RG results of Ref. 15, +.

for R =0.75, R'=0. This plot, shown in Fig. 15, does
indeed show the variation predicted in Eq. (14) and yields
v=0.65. From the variation of the specific-heat maxima,
also shown in Fig. 15, we find a/v=0. 92. Combined
with the scaling law d v =2 —a, this estimate yields
v=0.68. These values are in close agreement with the re-
sult obtained in Fig. 12 from the cumulant. The size
dependence of the order parameter shown in Fig. 15 is
consistent with a "universal" value of 2P/v=0. 25.

C. First-order behavior

Since the (4&&2)~P and (4X4)~P transitions are first
order, there are no characteristic exponents which can be
used to describe the transitions. We can, however, exam-
ine the discontinuities in the bulk properties which occur
at the transitions. These do indeed show a characteristic
behavior, an example of which is shown in Fig. 16. For
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FIG. 12. Variation of critical parameters with b =L/L for
R =0.65, R'=0. Data for 0, L =4; &, L =8; Q, L =12.

FIG. 14. Variation of the fixed point value of the cumulant
U* with R. The dashed line shows the result for R =0.
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the (4 X2)~P transition the discontinuities in the internal
energy, which corresponds to the latent heat in the specif-
ic heat, and the entropy show rounded maxima as a func-
tion of R. For the (4X4) transition, however, the internal
energy discontinuity increases monotonically with R' over
the range studied, but the entropy shows a broad max-
imum at about R'-1. Note that the magnitude of the
discontinuity in the entropy is generally much greater for
the transition to the (4X 2) state than for the (4 X 4) state
although the reverse is true for the internal energy. The
order-parameter discontinuities at the transitions are all
quite large ( &0.95) for the values of R' studied for the
(4X2) transition. For the (4X4) transition the discon-
tinuity is quite large for R' near 0.5 but then begins to de-
crease for large R'. In the limit R' —+ oo the lattice breaks
up into four interpenetrating, noninteracting Ising square
lattices (with twice the lattice constant of the original sys-
tem) which undergo simultaneous second-order transitions
to the disordered state. It is therefore necessary that
6m~0 and ES~O in this limit; since the ground-state
energy, Uo~ 00 as R ~ ao, it is also necessary that
AU/UO~O, and from Fig. 16 and Eq. (2c) we see that
this is indeed the case. The behavior of the discontinuities
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0
0 0.5
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FIG. 16. Variation of the discontinuities in the internal ener-

gy AU/R and the entropy AS/R at the first-order phase transi-
tions for R =0.75.

FIG. 17. Temperature dependence of order parameters for
L =36 and R =0.75.

of other values of R' is qualitatively similar to that just
presented.

D. Short-range order and disorder points

Above the phase boundaries the system is in a disor-
dered state but one which can show considerable short-
range order. For phase diagrams with multiple-ordered
phases, such as those shown in Fig. 6, it is not obvious
how the short-range order will vary with T and R'. To
examine this behavior we have taken data for R =0.75
and have plotted the order parameters (for all three states
which show order) as a function of temperature in Fig. 17.
Since we are looking at finite (L =36) systems the order
parameter, of type m, is a measure of the correlation be-
tween two sites a distance L/2 apart. For R &0.5 m4&&4

is larger than m4&&2 at all temperatures, for R =0.5 they
are almost the same, and for R'&0.45 m4~2 is greater
than m4&&4 at all temperatures. For R'&0.25 we find
that m4~2 is greatest at high temperature, but that as the
temperature is lowered m2~ &

becomes larger and remains
so down to the phase transition. Since the (4X2) state
shows a greater periodicity in the (11) direction than does
the (2X 1) state, this behavior may be analogous to the
disorder point behavior described by Stephens on.
Stephenson showed rigorously that in the triangular Ising
antiferromagnet there exists a temperature Td in the
disordered phase where the asymptotic exponential decay
of the correlations changes from oscillatory in sign
(characteristic of antiferromagnetic short-range order) to
monotonically positive (characteristic of ferromagnetic
short-range order). In our case we expect disorder lines
separating asymptotic decays characteristic of the various
types of AF order as well.
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V. CONCLUSIONS

We have determined the location and nature of the
zero-field phase transitions which occur over a wide range
of R and R'. Depending on the values of these parame-
ters, the system may order in various antiferromagnetic
structures, namely c(2X2), (2X1), (4X2), and (4X4)
phases in the notation of Fig. 1 or stay disordered at all
temperatures (this happens only for special values of
R,R'). We find that transitions from the disordered
states to the (4X2) and (4X4) phases are first order. We
also conclude that in an infinite system there is no incom-
mensurate phase although in a finite system the data
could be interpreted as showing an incommensurate
phase. We have also studied the nonuniversal critical
behavior for the transition from the SAF state to the
paramagnetic state. We find no evidence for any order-

order transition between any of the ordered phases. Since
unit cells as large as (4X4) are needed to describe the or-
dered states, which are in many cases degenerate, we be-
lieve the behavior in a field is likely to be quite rich and
we are currently in the process of studying it. This prob-
lem would possibly be experimentally relevant for ad-
sorbed monolayers on (100) surfaces of cubic metals
which might be modeled by the corresponding lattice gas.
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