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Normal-state properties of heavy-electron systems
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A generalization to finite temperatures of the Brinkman-Rice theory of almost-localized-electron systems

is presented. It describes a smooth transition from a Fermi-liquid regime at low temperatures to a set of
random spins at higher temperatures. The present theory gives a good description of the low-temperature

entropy and the specific heat in the normal state of the heavy-electron superconductor UBe/3.

The anomalous behavior of the specific heat in the super-
conducting phase of heavy electrons in the intermetallic
compound UBe~3 has been interpreted by Ott and co-
workers' as evidence that it is the first example of a p-wave
electronic superconductor. The analogy to He was stressed
and the description of the electrons as almost localized fer-
mions was proposed in Ref. 1 and independently by Ander-
son. Both authors propose that the Brinkman-Rice' theory
of almost-localized Fermi liquids should be applicable to the
heavy-electron metals. The theory has been successfully ap-
plied to He by Anderson and Brinkman, and more recently
by Vollhardt. It has also been used by Varma in the con-
text of the intermediate-valence problem of f-electron ma-
terials. In this paper we present a generalization of the
Brinkman-Rice theory to finite temperatures and show that
it gives a good description of the thermodynamics of the
normal state of the heavy electrons in UBe~3. Our model
has certain similarities to the periodic Anderson model (see
below). We would, however, point out that others" have
concluded that superconductivity in that model would be s
wave and driven by electron-phonon interaction and not p
wave, driven by spin-fluctuation interactions as suggested in
Refs. 1 and 2.

The starting point of the Brinkman-Rice theory is the
Hubbard Hamiltonian with a repulsive onsite interaction U.

As a ground state of this Hamiltonian, Gutzwiller proposed
a variational wave function in which the number of doubly
occupied sites is reduced by a projection operator operating
on an uncorrelated ground state 4o,

+G( (n(k, tr)),g) = +[1—(1 —g) n;tn;t]
I

xylo( {n(k, o.)])
with nI as the number operator for site i, and in Co the oc-
cupation values n(k, o.) =1 for ~k~ & kt; and 0 otherwise.
Gutzwiller9 obtained a relation between the variational pa-
rameter g and the concentration of doubly occupied sites d,
and an approximate expression for the ground-state energy
per site, as

EG = Xq (d, n ) e-„n(k, o.) + Ud (2)
k, cr

The sum over k states is normalized to 1. The function q is
given in terms of d and n (the concentration of occupied

sites with spin o-) as

q (d, n ) = [[(I—n —n +d)(n d)—1' 2

+[d(n d)]'i—']'/n (1 —n )

As U increases, so. do spatial correlations among the elec-
trons as they try to avoid doubly occupying sites. Thus d
decreases from its value of ~ in the uncorrelated state to-
wards zero. If the band is exactly half filled (i.e., n + n
=1), then d —=0 for

X
I k I &kF, ~

all sites are occupied by one electron only, and all electrons
are localized. As a result, the system is a Mott insulator.
If U & U„but U, —U « U„ then d «1 and q =8d« 1. In such a state there are very strong spatial correla-
tions among the electrons such that the electrons are almost
localized. This almost idealized limit has been used by An-
derson and Brinkman4 and by Vollhardt' to describe the
normal-state Fermi liquid He.

In the heavy-electron systems, due to the presence of
broad conduction bands (e.g. , Be-derived bands in UBe~3),
the number of f electrons on the Uions may not be exactly
integer and we shall assume instead that n +n =1 —5
with 5 « 1 (the sign of 8 is immaterial due to the particle-
hole symmetry of the model). ' In this case, the system
never becomes completely localized but for large U (say,
U) U, ), d 0, and q =25 [see Eq. (3)]. The enhance-
ment of the effective mass m' over the band mass m
(m"/m = q ') becomes very large, but it is insensitive to U
and varies with 5

It is straightforward to evaluate the Landau Fermi-liquid
parameters from the expression (2) for the ground-state en-
ergy. In this paper we wish to discuss the extension to fin-
ite temperatures. From the Gutzwiller form (1) we can de-
fine excited-state wave functions by varying the occupation
values (n (k, o-) } and then calculate the corresponding inter-
nal energies from (2). To obtain the free energy, we need
an expression for the entropy. We must recognize that the
set of excited states determined by varying [n ( k, o ) ] are
not mutually orthogonal because of the projection factor.
On the other hand, if we hold d fixed, we know the number
of excited states that are possible by expanding the excited
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states in the site representation. In this way we can easily
calculate the number of independent excited states as a
function of d and this number varies continuously from
four per site in the uncorrelated state (d =~) to two per
site in the almost localized limit (d~0). However, we
know from Landau Fermi-liquid theory that the low-energy
excitations are quasiparticles whose entropy is determined
by the free fermion entropy formula. Therefore, we make
the ansatz that the entropy is determined by introducing a
renormalization or weighting factor in k space to account
for the nonorthogonality and write the electronic entropy as

S, = —ks Xw(k, d, o) {n(k, o) inn(k, o.)
k, o

+[1—n(k, o)] in[1 —n(k, o)]]
(4)

I

To reproduce Landau Fermi-liquid theory, we require that
w 1 as k k~. Minimizing the free energy (E —TS,)
with respect to {n(k, o.)) leads to

n(k, o.) = {exp[q(e-„—p, )/w(k) T] +1]

with p, as chemical potential. In the almost localized limit,

q « 1 and n(k, o.) ~ ~(l —5) as T increases beyond

qEp —the renormalized Fermi energy. Then the entropy is

ksw [ln4 —(1 —5) ln(1 —5) —(1 + 5) ln(1 +5) ]

per site (w=xr, w(k)). The sum rule on the number of
degrees of freedom requires

{(1—5 —2d) ln[~(1 —5) —d] +dlnd+(d+5) ln(d+5))
ln4 —(1 —5) ln(1 —5) —(1+5) ln(1+ 5)

In the limit d and 8~ 0, ~
In almost localized systems with q « 1, the temperature dependence of the entropy has two temperature scales. The

lower is qE~, on which scale a total entropy Rkln4 is obtained. The second scale is set by Uand for T && qE~ one finds

d(2) =~[I+exp(U/2r)]-'+O(5) .

Thus as T/U~ ~, for 5—=0, d~ ~, w 1, and S,(T) saturates at the value R ln4, as it must. In the temperature range

with T qE~, the spatial coherence of the quasiparticles and the characteristics of a degenerate Fermi liquid are lost.
One can also calculate the spin susceptibility X,( T) by including a coupling term

r

poH $n(k, t) -n(k, J)

to the external magnetic field FE. The calculation is straightforward and gives in the limit (d ~ 0, 5 finite but small)
r

p02X, '(T) =45 g e „n(k, o-) +T g [w(k)] 'n(k, o)[1—n(k, o)]
k, o k, o

In the low-temperature limit T 0, this reduces to

, N(p, )
I +2eN(p, )

(9)

r

X, =p,o' $[w(k)] ' /22' .
k

(10)

In this limit, the number of magnetic moments should be
simply the number of singly occupied sites. This can be
achieved if we set (remembering that d =0)

)
——$[w(k)] '=2(1 —5}

The renormalized Fermi temperature (qEF) is the cross-
over temperature between Pauli and Curie behavior. %e
thus have three conditions that our phenomenological func-
tion w(k) should fulfill, determined from Landau Fermi-

with N(p, ) the density of states at p, . As stressed by An-
derson and Brinkman4 and Vollhardt, ' the Stoner enhance-
ment factor is not critical as d and 8 0, rather it is the ef-
fective mass term which is strongly dependent on d and 8
and causes the large susceptibility.

At higher temperatures T & qE~ but still T &( U we ob-
tain a Curie form

I

liquid theory and sum rules on the entropy and the number
of magnetic moments.

Turning to Uae~3, we propose to describe the low-
temperature thermodynamic properties of the normal state
by a 5f band whose width is determined by hybridization
through the broad conduction bands. Note, however, be-
cause of its much larger mass, the Sf'band rather than the
broad conduction band determines the low-temperature
thermodynamics. %uilloud et al. ' concluded from photoe-
mission studies that U ions in Uae~3 are close to a 5f con-
figuration. The most reasonable assumption for the
ground-state degeneracy of a 5f' configuration in a crystal
field is a Kramers doublet which in turn requires that the
total entropy of the local moment sites (the analogs of sing-
ly occupied sites in the model) is 8 ln2. Therefore, it is a
prediction of our theory that the electronic entropy at low
temperature should saturate at wRln4 with ~ =~. The
above mentioned x-ray photoelectron spectroscopy/
bremsstrahlung isochromat spectroscopy study gives no clue
with respect to a separation of the occupied and empty 5f
states due to an intra-atomic Coulomb repulsion U. A U
value of 1 eV, consistent with our model, could not be
resolved by this experiment but might partially be responsi-
ble for the rather large width of 3 eV of the observed struc-
ture around EJ:.
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FIG. 1. Temperature dependence of the electronic molar entropy
of UBe&3 below 14 K. T, for superconductivity is 0.9 K. The solid
line is the theoretical curve with a mass enhancement of 25.
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FIG. 2. Temperature dependence of the electronic specific heat
of UBe]3 in the normal state below 8 K. The solid line is the
theoretical result.

In Fig. 1, we show a fit to the experimental values of the
molar electronic entropy S,(T) of UBe~3. We see that it
tends to saturate at =R ln2. The solid line is a fit using as
a model band structure a rectangular density of states of
width 1070 K (or a bare Fermi energy of =520 K), and
with the choice 8=0.02 and d =0 (equivalently the mass
enhancement q '=25). A suitable form for the function
w (e) which satisfies the above conditions was found to be
w = 0.6 exp[ —(e/u)~] + 0.4, with u = 160 K. The choice of
EF and 5 determine the overall temperature scale at the
slope of S,( T) as T 0, but the vertical scale is fixed abso-
lutely.

Alternatively we can consider the specific heat C(T) in
the normal phase, and this is- shown in Fig. 2. The overall
agreement is also satisfactory especially considering the sim-
plicity of the model. We have not attempted a detailed fit
to the susceptibility X,( T) since the comparison of our sim-
plified model to UBe~3 is complicated by the need to know
the g factor and to divide the measured X into Pauli and van
Vleck terms.

In conclusion, we have presented a generalization of the
Brinkman-Rice theory to finite temperatures and have
shown that it can be used to describe the electronic entropy
and specific heat of a heavy-electron system quite accurate-

ly. The essential idea is that the large specific heat of the
almost-localized Fermi liquid arises from the magnetic en-
tropy of the singly occupied (or local moment) sites which
comes out in the Fermi liquid on a temperature scale which
is much below the bare Fermi energy. The renormalized
Fermi energy is the temperature scale on which the system
makes the transition from a coherent quantum Fermi liquid
to a set of random spins —a transition which shows up in
the spin susceptibility as a change from enhanced Pauli
paramagnetism to Curie behavior.

Note added in proof Related d.iscussions on the heavy-
electron systems as almost localized metals with large
spin fluctuations have been given by O. T. Valls and
Z. Tesanovic [Phys. Rev. Lett. 53, 1497 (1984)l and M. T.
Beal-Monod [Phys. Rev. B (to be published)].
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