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Cellular interface morphologies in directional solidification.
III. The effects of heat transfer and solid diffusivity
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The shape and stability of two-dimensional finite-amplitude cellular interfaces arising during
directional solidification are compared for several solidification models that account differently for
latent heat released at the interface, unequal thermal conductivities of melt and solid, and solute dif-
fusivity in the solid. Finite-element analysis and computer-implemented perturbation methods are
used to analyze the families of steadily growing cellular forms that evolve from the planar state. In
all models a secondary bifurcation between different families of finite-amplitude cells exists that
halves the spatial wavelength of the stable interface. The quantitative location of this transition is
very dependent on the details of the model. Large amounts of solute diffusion in the solid retard the
growth of large-amplitude cells.

I. INTRODUCTION

The evolution of steadily growing cellular melt-solid in-
terfaces from an initially unstable planar front has re-
ceived much attention because of the relationship of the
nonlinear interactions inherent in these transformations to
the processes involved in the formation of more complex
solidification patterns. The physics describing the onset
of cellular growth is well developed in the linear-stability
analysis of Mullins and Sekerka. ' Using either the growth
velocity V of the interface or the temperature gradient G
as a control parameter, periodic undulations develop along
a fiat interface at particular values of V or G for specific
spatial wavelengths. The wavelength corresponding to the
lowest growth rate or highest-temperature gradient for in-
stability is the most dangerous. In the analysis that fol-
lows we study the evolution of steadily growing cellular
interfaces that originate with fixed wavelength from the
small-amplitude states predicted by linear-stability
analysis. In doing so we concentrate on predicting the
evolution from the planar interface to deep cellular inter-
faces, while relying on the hypothesis that such a transi-
tion can be predicted without accounting for continuous
changes in the spatial frequency of individual cells. The
problem of predicting the mean spatial wavelength of a
front of growing cells has been investigated previously by
examining the stability of fixed-wavelength cells of small
amplitude to shape perturbations with longer wave-
length, ' but no deterministic theory for predicting
changes in wavelength has been derived.

Several research groups have computed, either
asymptotically or numerically, the steadily growing cells
which evolve at specific spatial wavelengths. In a recent
paper (Ref. 6, henceforth referred to as UB) we have used
ideas from bifurcation theory to describe the formation of
deep two-dimensional cellular interfaces for a simplified
solidification system where the thermal properties of both

phases are taken to be equal, latent-heat release at the in-
terface and convective heat transfer are neglected, and the
solute diffusivity in the solid is ignored. Families of inter-
faces with shapes represented by a Cartesian Monge' pro-
jection onto the planar front were computed as the tem-
perature gradient was decreased. One of the important
findings of this research was the existence of a secondary
bifurcation point between the shape family evolving from
the values of G for neutral stability to small perturbations
with the critical wavelength and shapes with wavelength
of half the critical value. Because of this bifurcation, the
stable family of cells evolved to lower values of G with
wavelength A,, /2 for all interface shapes that were
representable by the Monge' projection. For the calcula-
tions presented in UB, the secondary bifurcation occurred
at a temperature gradient so close to the critical value of
linear theory that only cells with half of the critical wave-
length are expected to be observed.

One of the aims of the present paper is to show that
this nonlinear transition is generic to a wide range of soli-
dification models, thus better establishing its importance
in the modeling of large-amplitude two-dimensional cells.
To do this we consider a general thermal-solutal solidifi-
cation model (TSM) which accounts for the coupling of
heat and solute transport in the melt and solid regions and
for the release of latent heat at the melt-solid interface.
We assume that the interface is in local equilibrium with
respect to solute and temperature and so still neglect any
effects of growth-rate kinetics on the interface morpholo-
gy. The simplified solidification models used in other
analyses are summarized in Table I according to the as-
sumptions made in each concerning the release of latent
heat at the interface, the thermal conductivities of the
melt and solid, convective heat transport in the bulk
phases, and the diffusivities of solute in both phases. The
model used in the original analysis of Mullins and Seker-
ka corresponds to our one-sided TSM where solute dif-
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TABLE I. Summary of models used for studying the formation of cellular melt-solid interfaces dur-
ing directional solidification.

Model

Thermal-solutal (TSM)

One-sided TSM

Equal conductivity

Solutal model (SM)

Symmetric SM

One-sided SM

'Reference 11.
Reference l.

'Reference 7.
"Reference 5.
'Reference 6.

Latent
heat

yes

yes

yes

no

no

no

not equal

not equal

equal

equal

equal

equal

yes

yes

yes

no

no

Thermal Convective
conductivities heat transport

Solid
diffusion

yes

no

yes (&L ——&g)
no

Reference-

fusivity in the solid has been neglected. The one-sided
solutal model (SM) was used in the analysis presented in
UB,

The mathematical representations of the models listed
in Table I are presented in Sec. II along with the results
for the general linear-stability analysis. When solute dif-
fusivity in the solid is neglected the neutral stability limits
can be superimposed by expressing the critical tempera-
ture gradient in terms of an averaged value computed be-
tween melt and solid and weighted with the thermal dif-
fusivities of each phase, similar to the expression given in
Ref. I. The formulation of the finite-element technique
and the methods for computer-implemented analysis of
bifurcation and stability have been detailed in UB and
only the slight differences needed to generalize the metho-
dology to the present models are discussed in Sec. II. The
results of the calculations for the various models are
described in Sec. III.

in the melt, and

(2.4)

g= I+ me+21 H, (2.5)

R V' c+p
By Bt

' (2.3)
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in the solid. In these equations, P = VX*/D is the solutal
Peclet number, P, =—VA, '/~ is the thermal Feclet number,
I., =Dla is the Lewis number, and R =a;/a and
R~:D, /D are the r—atios of the solid to the melt conduc-
tivities and diffusivities, respectively. Along the melt-
solid interface the temperature and solute fields are
prescribed to be in local equilibrium as given by the
Gibbs- Thomson condition

II. MODELS GF SGLIDIFICATIGN

We follow the approach developed in UB and view the
solidification of a binary melt from a reference frame at-
tached to a planar melt-solid interface moving at the con-
stant growth velocity V. Field variables are described in
the Cartesian-coordinate system shown in Fig. I, where
the melt-solid interface is given as a single-valued func-
tion, y=h(x). The equations governing the full thermal-
solutal model are presented in this coordinate system in
the dimensionless form obtained by scaling lengths with a
characteristic wavelength A,*, concentration with the value
in the melt far from the interface, c, time with, A, /D,
and temperature with the melting point of pure material
along a flat interface, T~.

When the only form of bulk convection in the melt is
due to the unidirectional solidification, the equations for
heat and solute transport are

Melt

Bc
Bt 'p2 p

By

BO BO+ f
B

e

(2.1)

(2.2)

X 1'2

FICx. 1. Schematic of melt and solid regions considered in
model for directional solidification. Wavelength of cell is denot-
ed by A, .
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( n.Vc)~ —R (n.Vc), =(1—k)c P + ah
at

(2.7)

(n.VH) —R(n.VO), =S, P, +L, Bh

Bt
(2.&)

where k is the equilibrium partition coefficient for solute
between melt and solid, and S, =L/pc&T~ is the Stefan
number which scales the contribution of the latent heat L
released along the interface to the sensible heat in the melt
at the melting point. The subscripts m and s denote that
the expressions are evaluated at the interface in the melt
and solid phases, respectively.

The solidification model is completed by specifying the
temperature gradients far from the interface as being
G =6k*/T~ in the melt and 6,:G, A,*/—T~ in the solid.
The concentration field is taken to be uniform at the di-
mensionless value of unity far from the interface in the
melt for all models and uniform far into the solid where
D, is not zero. The symmetry conditions enforced on the
lateral sides of the cell are written as

88 Bc =0, x =Ok.
Bx Bx

%"e use the temperature gradient in the melt G as the con-
trol parameter in our calculations of families of interface
shapes.

The models listed in Table I correspond to particular
values of the mass-diffusivity ratio R~, the thermal-
conductivity ratio R, the thermal Peclet number P„and
the Stefan number S,. The SM's are recovered by setting
S,=P =0, R = 1, and neglecting the convective-heat-
transfer terms in the energy equations in melt and solid;
the one-sided solutal model is the special case R =0,
while the symmetric model used by Langer corresponds
to R~ = l. Previous linear-stability analysis and nonlinear
calculations including the effects of the thermal field have
used R~ =0. The nonlinear finite-difference calculations
of McFadden and Coriell also assumed that the thermal
conductivities between melt and solid were equal, or
R =l.

The linear-stability analysis of the general thermal-
solutal model, Eqs. (2.1)—(2.10), follows the classical work
of Mullins and Sekerka' and examines the stability of the
planar interface to disturbances written in dimensionless
form as h(x, t) =h(t) cos(cox), where co is the dimension-
less wave number of the perturbation. We report our re-
sults in terms of the dimensionless temperature gradient
weighted with the thermal diffusivities in each phase,

and a liquidus curve of an ideal phase diagram, where
m =mc /T~ is the dimensionless slope of the liquidus
curve and I =I /1,* is the capillary constant. The mean
curvature H of the interface is given by the expression

d h/dx
(2.6)

[1+(dh/dx) ] ~

Conservation of solute and heat across the interface are
given as

where
(2.11)

~*=P/2+[(P!2) +(2m') ]'~z,

~; =P/2R [(P/2R—) +(2~co) ]'~2 .
(2.12)

The values of 6 predicted by Eq. (2.11) for set values of co

are the bifurcation points for families of steadily growing
cells evolving from the planar state. In the calculations
described below we focus on a value of wavelength A, near
the most critical value, where instability of the planar
state first occurs at the highest possible value of G.

III. FINITE-ELEMENT ANALYSIS

The finite-element analysis used for calculation of the
large-amplitude cellular interfaces, as well as the
computer-implemented perturbation analysis used to track
families of solutions and to determine their stability with
respect to perturbations that preserve the symmetry intro-
duced by Eq. (2.9), closely follows the methods described
in UB and in the references therein. We solve the field
equations on the finite domain created by replacing the
far-field boundary conditions in the melt with

Bc BO=P(c —1), =6, y =Li,
Bp Bp

(3.1)

where L i is taken to be sufficiently large to minimize the
amount of diffusion through this artificial boundary.
This parameter was taken to be L] ——3.5A, in most of the
calculations reported here.

The computational domain along the solid is truncated
at a distance L2 from the original location of the planar
interface. The temperature field there is set to a specified
value

8(x, L2) =8, , — (3.2)

where 0, is picked so that the interface remained in the
computational domain. Calculations were performed with
a varying temperature gradient in the melt, G. The value
of the temperature gradient in this artificial boundary is
recovered by calculation from the finite-element solution
or, equivalently, from the integral overall heat balance

G =RGs —StP (3.3)

and the value of the conductivity-weighted gradient 6 is
then calculated from Eq. (2.10).

When solid diffusion is included (R &0) we use the
boundary condition

Bc =0, y=L2. (3.4)

which is similar to the gradient first defined by Mullins
and Sekerka. ' For a perturbation with a given wave num-
ber co, the values of the temperature gradient for neutral
stability are given by the expression

T

m (k —1)P co* P-6= —2~r e)
k co*+(k —1)P—co,'kR

a, G, +aG6=
us+a

(2.10) Equation (3.4) is equivalent to abruptly setting the dif-
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fusivity in the solid equal to zero and approximates the
decrease in D, observed in real materials as the tempera-
ture decreases from the melting point. The length L, z is
taken to be sufficiently large that this change in D, does
not affect the shape of the interface

Galerkin-weighted residual equations are formed using
the isotherm-Newton method described in Ettouney and
Brown and are expressed in the same mapped coordinate
system used in UB. The field equations (2. 1)—(2.4), the
flux balances at the melt-solid interface (2.7) and (2.8),
and the boundary conditions (2.9) and (3.1)—(3.3) are all
incorporated in these residual equations. A set of one-
dimensional Galerkin equations formed from the Gibbs-
Thomson condition (2.5) are used to determine the inter-
face shape h (x).

Separate finite-element expansions are written for the
temperature and concentration fields in both phases, and
for the interface shape. %'e use the Lagrangian biquadrat-
ic basics for each field variable and the one-dimensional
quadratic basis set for h (x). Discretizations using eight
elements in each coordinate direction, in the melt and
solid, lead to approximately 250 unknowns representing
each field variable and to 17 unknowns for the interface
shape. The entire set of nearly 1000 equations is solved
by Newton's method with the elements in the Jacobian
matrix computed analytically as discussed in Ref. 9. The
computer-implemented perturbation methods then follow
directly, as described in UB.

Property

Segregation coefficient

Bulk concentration
of Sb (wt. %)

Slope of liquidus (K/wt. 'Fo)

Mass diffusivity in melt

Mass diffusivity in solid

Thermal conductivity
of melt (J/seccmK)

Thermal conductivity
of solid (J/seccm K)

Thermal diffusivity
of melt (cm /sec)

Symbol Value

0.4

0.02

2x10-'

1.47x10—'

2.75 x 10-'

Thermal diffusivity
of solid (cm /sec) 0.20

Latent heat of fusion
(J/crn K)

Reference melting
temperature (K)

Capillary length (cm)

yO

2. 8 x10'

600

8.2x10-'

TABLE II. Therrnophysical properties and dirnensionless
groups representative of Pb-Sb.

IV. RESULTS

Reference length
scale (cm)

Growth rates (cm/sec)

1x 10-'

1.6x10-', 1.6x10-'

A. Low growth velocity

The families of cellular interfaces that evolve from the
lowest two critical values of temperature gradient for the
lowest growth velocity ( P =0.8, V = 16 pm/sec) are
represented in Fig. 2 by the maximum interface deAection
5, computed as

b, = max Ih (x) )
—min Ih (x)I,

0&x&A, 0&x&A,
(4.1)

expressed as a function of the weighted temperature gra-
dient G. For this growth velocity, X=2.0 was approxi-
mately 15% above the critical value of the wavelength
corresponding to the highest possible value of G when

The calculations reported here are extensions of those in
Ref. 6 and thus focus on the same set of thermophysical
properties appropriate for the Pb-Sb system that is listed
in Table II. The wavelengths used were A, =2.0 for the
low growth velocity ( V = 16 pm/sec, P =0.8) and
A, =0.09092 for the high growth rate ( V=1600 pm/sec,
P =80). The families of cellular interfaces evolving from
the first two critical values G,"were computed as a func-
tion of R, A, and S, for fixed growth rate. The corre-
sponding value of the temperature gradient in the solid
was computed from Eq. (3.3). Results are separated below
according to the two values of growth rate used, for calcu-
lations neglecting solid diffusivity, R~ =0. The effect of
this parameter is examined separately.

Dimensionless slope
of liquidus

Capillary constant

Mass Peclet numbers

Thermal Peclet numbers

Thermal-conductivity ratio

Mass-diffusivity ratio

Stefan number

—1.67 x 10-'

8.2x 10-'

0.8, 80

I', 148x10 4 148x10 '
1.87

s, 0.29

R =0. All three sets of calculations shown in Fig. 2
have the same critical values predicted from linear theory,
as discussed in Sec. II.

The results for R = 1 and S, =0 are the calculations for
the one-sided SM discussed at length in UB and show the
secondary bifurcation between the interfaces with the
original wavelength and the shapes with wavelength A, /2.
As discussed in UB, this value of G =6,' ' was a bifurca-
tion point between interfaces with wavelength 2, /2 and
the shape shown in the inset of Fig. 2 and two types of
cells with wavelength k, but differing in whether the un-
dulation has up (the 1U family) or down (the 1D family)
at x =0.

Introducing the amount of latent heat S,=0.29 ap-
propriate for the Pb-Sb system resulted in the calculations
shown by the dashed curves in Fig. 2. Here the primary
family of cellular shapes with wavelength k evolved su-
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FIG. 2. Families of cellular interfaces represented by the in-
terface deflection for P =0.8 and A, =2.0. Results for three dif-
ferent models are shown.
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FIG. 4. Variation of temperature gradient and interface de-
flection for secondary bifurcation point as a function of Stefan
number S, for I' =0.8 and A, =2.0.

percritically (with decreasing G) before joining the second
family at the secondary bifurcation point. Clearly, the
structure of the solution families with and without latent
heat were qualitatively similar.

The role of latent-heat release at the interface (S,&0)
in establishing the relatively large quantitative differences
in the evolution of the shape families can be understood
by examining the isotherms in the melt and solid comput-
ed with S,=0.29; samples of these are shown in Fig. 3(a).
Even the small amount of latent heat released for this low
growth rate caused the effective temperature gradient in
the solid to be increased, as dictated by Eq. (3.3). When
.the melt-solid interface was curved the temperature distri-
bution in the groove of the cell was set by the interaction
of the temperature across the interface in a manner not
given by the analysis for a nearly planar interface. Intro-
ducing latent heat with the conductivities of melt and
solid equal (R =1) effectively increased the temperature
gradient in the melt and decreased the deflection of the in-
terface.

The first two families of cellular interfaces for the en-
tire set of thermophysical parameters appropriate for Pb-
Sb are also shown in Fig. 2; see the curves for R =1.87
and S,=0.29. Both families evolve subcritically (to

higher values of G). For these parameter values no secon-
dary bifurcation was calculated before the interface shapes
in each family became nearly vertical along the wall of the
groove. Calculations beyond the ends of the solution
branches shawn in Fig. 2 are useless because the Monge'
representation of the shape y =Ii (x) has failed. The
secondary bifurcation most probably existed at a value of
6 greater than the critical value 6,"', and so the abrupt
transition to cells with wavelength 1,/2 would appear be-
fore the transition from the plane to cells.

The shifting of the solution branches to higher values
of the weighted temperature gradient and to higher deflec-
tions for R =1.87 can be understood fram the isotherms
plotted as Fig. 3(b). With R greater than unity the gra-
dient in the solid adjacent to the groove in the interface is
less than in the melt; thus, increases in the composition in
the groove must drive the interface deeper into the solid
for the Gibbs-Thomson condition to be satisfied at the
same imposed gradient in the melt.

The continuity of the secondary bifurcation point
throughout the parameter space needed to span the solidi-
fication models in Table I is emphasized by calculating
the variation of G,' ' with changes of several decades in
the Stefan number.

The location of the secondary bifurcation point as a
function of S, for R =1.0 and I' =0.8 is plotted in Fig.
4. As expected from the above discussion, increasing the

——0.99958
Inter &ace

——0.99958

Solid—

FIG. 3. Sample isotherms for calculations with (a) latent-heat
release at the interface and (b) higher thermal conductivity in
the melt than in the solid. These results correspond to the
points marked a and b on Fig. 2. The spacing of the isotherms
is 68=1&&10 5.

g )I

p l I

p y Xi2 SXi2 2X

FIG. 5. Melt-solid interface shapes at secondary bifurcation
points for four values of the Stefan number.
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to a point on the curve in Fig. 6. For the highest value of
G, shown as Fig. 7(a), the isotherms in the melt are just
deformed from those for a fiat interface. Decreasing the
temperature gradient into the melt caused latent heat to be
released into the melt at the tip of the cell, instead of into
the solid. Because the gradient was positive far into the
melt, this extra amount of heat must be redirected
through the melt back into the solid in the groove. This
effect is demonstrated in Fig. 7(b) and is analogous to the
results of McFadden and Coriell for an Al-Ag system.
Further decreasing the temperature gradient in the melt
led to thermal undercooling away from the interface as
shown by Fig. 7(c). Melt in the groove was not under-
cooled; heat released at the interface was conducted into
the melt and passed through the groove into the solid.
The concentration fields for all three cases show the for-
mation of the diffusion boundary layer. The concentra-
tion field and interface shape deformed together, as ex-
pected from the linear analysis which sets the relevant
length scale for the instability as D/V.

C. Effect of solid diffusivity

0.8
P= 0.8—Rm= 0.05
——R = I.Omo 0.6

O
CO

CD

t=l 0.4
CP

O
L

~ 0.2

/
/

I
I

) I

/

I
I

)

!
)

I I I II I

I .5 I .5 I. I 0.9
Terr)perature Gradient G'

0.0 I

20 I.8
I

0.7 0.5

FIG. 8. Families of cellular interfaces for I' =0.8, A. =2.0,
and diffusivity ratios of R =0.05 and 1.0 computed for the
solutal solidification model.

Introducing diffusion into the solid will smooth the
concentration variations caused by the curvature of the in-
terface and retard the defiection of the interface as the
temperature gradient is decreased. To investigate the
quantitative effects of R &0, we performed calculations
with the solutal model for R~ values of 0.05 and 1.0 and
P=0.8. The structures of the interface families deter-
mined for these two cases are shown in Fig. 8 and are
identical to the results for R =0 discussed above. The
secondary bifurcation was located in each model for 6
less than 10% below the critical value for onset of the
linear instability. Interface deflections were damped con-
siderably by including solid diffusion; for R =1, shapes
in the fainily with A, =A,, never exceeded deflections of
0.4. Cells with nearly vertical sidewalls were computed
for R =1 and A, =A., /2, so that the Monge' representa-
tion again failed.

CONCLUSIONS

This research and the results presented in UB clarify
two major difficulties confronting either experimental or
theoretical progress in the understanding of cellular pat-
tern formation during solidification. First, the mathemat-
ical analysis of the evolution from planar to highly de-
formed interfaces is complicated by the secondary bifur-
cation demonstrated here, which halves the wavelength of
spatially periodic cells. This transition is present in all the
limits of the classical solidification model examined here,
but may occur for interface shapes so deformed that they
cannot be represented in the Mong e' representation
y =h (x). Like the primary bifurcations from the planar
state to cells of different, discrete wavelengths, the secon-
dary junctions will only be destroyed by imperfections
which break the basic symmetry in either the temperature
field, concentration field, or the interface shape. The im-
perfection caused by a grain-boundary groove along the
interface was analyzed in Ref. 10.

The location predicted for the secondary bifurcation
and the shapes of the first two families of moderate-
amplitude cells were very sensitive to the exact parameter
values used in the calculation. Latent-heat release, the
thermal conductivities in melt and solid, and the amount
of solid diffusion all had large quantitative effects on the
structure of the interfaces. Large amounts of solid dif-
fusion made both families evolve supercritically (to lower
values of G) and damped the amplitude of the cells. In-
creasing the growth rate had these same effects on the
cells with X=X,. Latent-heat release at the larger growth
rates caused the temperature field to become locally,
thermally undercooled at the cell tips, even when the tem-
perature gradient far from the interface was positive.

These results all indicate the sensitivity of quantitative
predictions for cellular morphologies to the assumptions
made about the physics of the solidification process. Any
attempt to match calculations with experiments near the
onset of cellular growth will probably have to account for
all these effects in the melt-solid system.

The second serious obstacle hindering further progress
toward the theoretical calculation of deep cells is the ten-
dency of the cell shapes with half the original wavelength
to become vertical in the Monge' representation. If the
deep cells observed experimentally are to be predicted to
be a continuous evolution from the plane, they must ap-
pear along the second family of cell shapes or some family
which bifurcates from it. We outline a method for con-
tinuing these calculations in the next paper in this se-
quence. "
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