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Critical behavior of the two-dimensional random-bond Ising model:
A dynamic 1/T expansion

J. D. Reger and A. Zippelius
. Institut fiir Festkorperforschung der Kernforschungsanlage Jiilich GmbH, Postfach 19I3, D 5I7-0 Jiilich, 8'est Germany

(Received 10 December 1984)

We have developed a technique to derive a systematic high-temperature series expansion for

dynamic correlations of a random-bond Ising model. Results are presented for the +J model in two

dimensions. In particular the relaxation rate 7 FA is found to obey an Arrhenius law

~«-exp(AE/T) with a finite energy barrier AE as T~O.

I. INTRODUCTION

The two-dimensional (2D) random-bond Ising model
has been the subject of intensive research in recent years.
With the help of transfer matrix calculations, Morgen-
stern and Binder' showed that no phase transition occurs
at finite temperature. Furthermore, they gave convincing
evidence for long-range correlations at T =0. These re-
sults were confirmed by extensive Monte Carlo simula-
tions, which moreover revealed a power-law divergence
of the correlation length s-T " and of the spin-glass
susceptibility (of Edwards and Anderson) XE&—T
Based on these findings, Kinzel and Binder proposed a
simple cluster model to explain their Monte Carlo data
and in particular the observed anomalous critical slowing
down: The relaxation to equilibrium requires the reorien-
tation of clusters of correlated spins, which have the size
of the correlation length g. The free-energy barrier b,E
for this process is predicted to diverge as b,E-(' "~ as
T—+0. The relaxation time ~—corresponding to thermal
activation —should diverge as ln w-AE/T-T ' with
vz =v(d —1 )/2 + 1.

This phenomenological scaling theory was subsequently
applied to Monte Carlo data of the +J model. ' A best
fit was obtained with @=4.1, v=2.75, and vz=2, imply-
ing hE-1/T. However, the data were found to be con-
sistent also with a finite, but large energy barrier
b,E/J —18. This was first suggested by Morgenstern,
who estimated AE/J —13. Using a phenomenlogical
renormalization-group approach, McMillan also predict-
ed finite-energy barriers in agreement with his own Monte
Carlo calculations, yielding bE/J —14.

Quite recently McMillan' and Bray and Moore" stud-
ied the Ising model with gaussian bonds at zero tempera-
ture. They calculate the energy of defect lines as a func-
tion of system size. In d =2 these energies vanish in the
thermodynamic limit, AEd, f-L, ' with v=3.56 and
v=3.4, respectively. The nature of these domain walls in
a system with frustration and a macroscopic degeneracy
of the ground state is not well understood.

To summarize the state of affairs: All studies agree on
the absence of a phase transition at finite temperature
and, furthermore, that d =2 is less than the lower critical
dimensionality for the random-bond Ising model. Howev-
er considerable controversy remains as to the critical

behavior at T=O. In particular, the equilibration prob-
lems in Monte Carlo calculations are so severe, that the
critical behavior must be extrapolated from a temperature
range T/J-l.

In this paper we present results of a high-temperature
series expansion for static and dynamic quantities. For
random systems, such studies have previously been re-
stricted to static quantities. ' ' The results for d )4 are
considered reliable, whereas the series in dimensions d ~ 4
were found difficult to analyze. As we will show below,
the series expansion for dynamic quantities are well
behaved and easily analyzed. This allows us to confirm
the above scaling ideas in terms of a zero temperature
transition. For the dynamic exponent we obtain vz=1
and conclude that the energy barriers are finite as T~O.

II. MODEL

We consider an Edwards-Anderson model, '

HE~ ———J g E~SSJ, (1)
&i,j)

for Ising spins of unit length, S; =1. The exchange ener-

gy is a quenched random variable, that fluctuates in sign
according to the probability

(2)

B,P(S), . . . , S~,t)

= —Q W (SJ)PJ(S), . . . , S .J. . , S tiv)

J

+g WJ ( —SJ )P(S), . . . , —SJ, . . . , Stv,'t ),
J

where the probability WJ(SI ) to flip SI is chosen as

WJ (SJ ) =—[ 1 —SJ tanh( pEJ )], (4)

P(e;, ) =po(~;, —1)+(1 p)&(e;, + I) . —

The model is symmetric around p = —, , so that it is suffi-
cient to consider —, &p (1.

To introduce dynamics, we assume that the system is in
contact with a large heat bath giving rise to spontaneous
flips of spins. ' The probability to find the spins in con-
figuration [S; ) at time t evolves in time according to a
Master equation,
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PEq ——K Q @AS;, K=—.J
T

' (5)
minates after the second term, yielding the following
decomposition of the Liouville operator,

In the following we shall set a—the microscopic relaxa-
tion rate—equal to 1.

The physical quantities of interest are time-delayed,
nonlocal spin correlations,

L=L0—L) —I 3,
with

Lo ———,
' g(l Pk)—,

k

(15)

(16a)

C;,(t) = &S;(0)S,(t) & .

With help of the Liouville operator,

L =y ~k(sk )( 1 Pk )
k

these can be represented as

C;, (t)=&S;(0)e 'S (0)& .

(6)

and

C]
Li = g ek&sks&(1 Pk—),

&k, E&

C3
ek( ek( ek( Sksi S(2S(,(l —Pk) .

(k, lI, l2, l3 &

(16b)

(16c)

The operator Ik flips Sk, according to

Pkf(s„,sk, . . . , s~)=f(S~, . . . , —Sk, . . , S~) .

The linear-response functions are related to CJ.(t) via the
fluctuation-dissipation theorem:

The summation over l &, l2, l3 in L3 extends over all
nearest neighbors of a given spin Sk with all three of them
different. For the particular flip rate of Eq. (4) the coeffi-
cients are given by

r

c ~
———,(2 tanh2K+ tanh4K) =01 1

T

X;J(t)= — Cj(t), t )0 . (10) c3 ————,(2 tanh2K —tanh4K) =01 1
(17b)

Of particular interest are the averaged local susceptibili-
ty,

X(~)=—+[X;;(~)]...1

and the Edwards-Anderson susceptibility

To obtain a systematic 1/T expansion we therefore ex-
pand the inverse of L in powers of L

&
and L3 up to the

desired order X (M =N /3 )

M
I. '= g [-(I.,—L. , )-'L, ]"(L,—L, )-'

n=0

XE~(co)=—g [X,j (co)X;k(co)],„.1

X, (12)
M N

L 'g(LL ')L,
n=0

The configurational average with the probability distribu-
tion of Eq. (2) has been denoted by [],„.In the paramag-
netic phase we expect exponential decay for long times. It
is then meaningful to define relaxation times as

rq=——
& =—g [&SL 'S;&],„,. ox-'

a~
(13)

~+EA
+EA = ~XEA(0)

aM .=0

=2x;~(0)—g [&s,L-'s,
& &s,s„&].„=2'

III. TECHNIQUE GF THE DYNAMIC 1/T
EXPANSION

To set up a dynamic 1/T expansion, we expand the flip
rates 8'J(SJ ) in the number of nearest neighbors, as first
suggested by Yahata and Suzuki' ' for a uniform fer-
romagnet. For the square lattice, this expansion ter-

(14)

These quantities, as well as the static spin-glass suscepti-
bility, have been calculated in a high-temperature series
expansion.

N

XL3LO ' g (L)LO )'.
1=0

In the calculation of the relaxation rates [Eqs. (13) and
(14)] these operators are applied to a single spin variable
S;, whereby static multispin correlations are generated.
These can be calculated in a 1/T expansion by standard
methods. Note, however, that we have to keep track of
the bond variables, since we are dealing with an inhomo-
geneous system and the configurational average is the last
step in our calculational procedure. A further complica-
tion arises, because successive applications of L3 lead to
rather high order static cumulants. For these reasons we
have found it more convenient to employ the algorithm of
Yahata' for the calculation of static cumulants. This al-
gorithm can be implemented on a computer, so that the
enumeration of graphs and symmetry factors by hand be-
comes unnecessary. In that way we were able to obtain
ten nontrivial terms for the asymmetric distribution of
bonds (P& —,) and seven terms for the symmetric distribu-
tion. These are listed in Tables I and II.

IV. SERIES ANALYSIS

High-temperature series of the ferromagnetic suscepti-
bility and relaxation rate show, ' that the ferromagnetic
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TABLE I. Matrix of coefficients aqk for rEA ——QIk oa~k(2p —1)'v" with u=tanh J/T.

L=0
L=1
L=2
L=3
L=4
L=5
L=6
L=7

12

16

72

148

360

124

792

1604

3780

6492

709+ 3

4904

16272

24 704

5316

21 900

65 068

89 424

3383 + 9

24 872

91 735+—
„

243 176

23 020

106211+2„

357944+ 9

872330+ 9

E =10

13331+ 8,

101417+

436 736+ 243

1 306 824

L=8
L=9
L =10

312908

1 061 068

3017098+ 3

3518446+ 27

M
vM(T)=tanh g IC ~1 2e —as E~~, (19)

transition temperature T, (p) decreases as a function of in-
creasing concentration 1 —p of antiferromagnetic bonds.
Beyond a critical concentration p, -0.85, no ferromagnet-
ic transition is observed. For higher concentration
—,
' &p(p„we expect the 2d system to undergo a zero

temperature transition to a spin-glass phase. In this paper
we concentrate on the spin-glass transition and postpone a
discussion of the ferromagnetic transition for p &p, to a
future publication. '

The natural expansion variable of the kinetic Ising
model is v(T)=tanh(J/T). If there is a transition at fi-
nite temperature the transformation v(T) is analytic and
an algebraic singularity in T—T, is transformed into an
algebraic singularity in

i
v —v,

~

. However at T=0 the
transformation v (T) is singular and an algebraic singular-
ity in v corresponds to an essential singularity in T. It is
therefore very important to choose the correct expansion
variable for a zero-temperature transition. For p& —, we
have employed the following transformations:

AE/T
&EA &oe (21)

and allow for a diverging energy barrier hE/T- T . If
the barriers are finite as predicted by McMillan, this cor-
responds to an algebraic singularity in v =v&,

rEA=rp
i
u] —1

~

(22)

If the energy barriers diverge as hE-b/T, then Eq. (21)
implies an algebraic singularity in v~ 2,

rEA ro
i

vz —1
i

(23)

We have analyzed our data with the help of ratio methods
as well as Pade approximants. A ratio plot for
rEA(u& ) =g„pa„v&is shown in Fig. 1 for p=0.65. For
p close to, but strictly larger than 0.5, the coefficients os-
cillate, so that it is advantageous to consider the ratios,

rEA(v)~rEA(x), it is a necessary condition that the
transformations [(19) and (20)] can be expanded in a
power series around 1/T=O.

For ~EA we assume an essential singularity

m=1

x( T)= 1 ~1—T/J as T~O .1+T/J (20)

In order to convert the series, for example

0.3

A(vj

Ratio Plot
t l

TABLE II. Coefficients b„and c„for r~=g„pb„u" and

GAEA
=g„pc„v" for P =

z and v =tanh J/T.

~EA(U'")

1

2

-3
32
376

3

3392
9

91 976
81

3 595936
1215

131 126 104
19683

124
2128

3

30452
9

1 079 888
81

59 777 356
1215

73 606 232 656
492 075

= 0.65

1.0 1.5 20 „25
I

3.0 3.5
FICr. 1. Ratio of coefficients p„+1=(a„+1/a„1)'

=p*[1+hE/2n+ O(1/n )] for rEA(v, p=0.65)=g„pa„u"
plotted versus 1/n. The full line shows our estimate of the
asymptotic behavior.
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Pn+1=
&n+1

&n —1

I /2
AE 1=u I 1+ +0
2n n

(24)

d ln[lnrEA(x)] PL (x)
dx Q~(x)

as x~x* .

At the critical point x*=1 (T, =0), this function should
have a simple pole with residue —vz. The results of an
unbiased Pade approximant are listed in Table III for
@=0.55. The upper number gives the critical temperature
[(we have performed an Euler transformation
x —=-x/(1+9x), so that the critical point is shifted from
x*= 1~x =0.1)] and the lower number the exponent.

In the Pade analysis we can impose the exact value of
T, =0. The results of such a biased Pade analysis for the
exponent vz are shown in Table IV. The upper number
refers to an approximant in which the transformation
u~x(u) was performed before the logarithm of rE& was
taken, and the lower number to the reversed order of
transformations. The deviations give an estimate of the
error bars involved.

Both types of analysis clearly support the conclusion
that b,E remains finite as T~O. Given these results we

TABLE III. Pade tab1e for d In[lnrE~(x)]/dx=PL, (x)/
Q~(x) with x=(1+T/J) ', A dash denotes a Pade approxi-
mant, which locates another pole on the real axis, close to the
physical one; asterisks denote a Pade approximant with a spuri-
ous pole. The upper number gives the critical temperature (ex-
act value x*=0.1) and the lower number the exponent vz. The
concentration p was chosen as p =0.55.

Plotted versus I/n, these should extrapolate for large n to
u

&
——1 with slope bE/2. As can be seen from Fig. 1, the

variation of p„with I/n is quite regular for n )4. All
other expansion variables uM ( T) yield highly erratic
series. We interpret this result in the following way: The
ratio method fails for u~ (M&1), because the assumed
form of the singularity of ~HA is incorrect. We find in
particular for M =2, that our data are not consistent with
hE-1/T. So the ratio plots definitely discriminate be-
tween various types of singularities for 'TEg. However, ten
terms are not sufficient to determine the numerical value
of b,E accurately. We estimate b,E-20J, but note that
we are not yet in the asymptotic regime, as can be seen
from the curvature of the plot in Fig. 1.

We therefore employ Pade approximants to analyze our
data further. As a first step we check our conclusion, that
the energy barriers remain finite as T~O. This can be
done with a Pade analysis for

TABLE IV. Same as Table III, but with the exact critical
temperature imposed. In each entry both numbers refer to the
exponent; the upper one to a Pade approximant, in which the
transformation Ux(U) was performed before the logarithm
was taken, and the lower one to the reversed order of transfor-
m ations.

1.15

1.15

1.14
0.79
1.15

0.95
1.13
0.96
1.15
0.98
1.15
1.01
1.16

0.96
1.15
0.92

0.98
1.15

TABLE V. Pade table for ln ~E&(x); the upper number refers
to the critical temperature (exact value x =0.1) and the lower
number to the energy barrier b,E/J.

can determine b,E from a Pade analysis for In&E&(x),
which should have a simple pole at x*,

AE
ln~EA- [x"—x

[

with residue hE. The results of an unbiased Pade approx-
imant are given in Table V. The upper number refers to
the critical temperature and the lower number to the ener-

gy barrier. The entries in Tables III to V refer to @=0.55,
but should be considered typical for 0.5 &p &p, . We did
not observe any significant variation of 4E with p for
0.55 &p &0.75.

For p = —,
' we have analyzed the data for rz and rE& by

ratio methods as well as Pade approximants. The cori-
clusions are qualitatively the same as for p& —,', although
the limited number of terms does not allow for precise es-
timates. Nevertheless one feature seems to emerge unam-
bigously: From the data of ~s and vEp„we deduce dif-
ferent numerical values for the energy barriers. We are
not aware of any argument, that relates the critical singu-
larities of these two dynamic quantities beyond mean-field
theory. '

The dynamic 1/T expansion also provides us with stat-
ic quantities. Of particular interest is the Edwards-

0.105
1.05
0.105
1.03
0.104
0.97

0.105
1.05
0.105*
1.06
0.106*
1.10*
0.109*
1.17

0.098*
0.96*
0.097
0.95
0.095
0.92

0.097
0.95

0.105
18.8
0.104

17.9
0.104

17.8
0.)04*

18.1

0.105
18.8
0.100

15.5
0.100

15.5
0.099

15.4
0.099

15.2

0, 104
18.0
0.100

15.5

0.104
17.9
0.099

15.4

0.105*
18.1
0.099

15.2
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K =10

12 116L=0
L=1
L=2
L=3
L=4
L=5
L=6
L=7

72 152 26424
248 44836 592

808344144 1000
1184 2552 1648524

1800 3880 7048
11 888 18 5605916

18 848 36 072
104 608

542 452

58 812L=8
L=9
L =10

179784

Anderson susceptibility XEz ——PE&(ro =0). The coeffi-
cients of the series expansion XE& g& k

——obtk(2p —1)'u"
are listed in Table VI. These have been previously calcu-
lated by Rajan and Riseborough' up to l, k &6. Our re-
sults agree, except for the entry b&5.

A ratio plot of XEA(v) is well behaved and extrapolates
to a finite limit as u —+1. This result confirms the finding
of various other authors, ' " that there is no phase transi-
tion at finite temperature. We furthermore conclude, that
XEA(T) does not have an essential singularity as T~O.

Our data are consistent with an algebraic singularity
XEp, ( T)-T, but not sufficient to provide a reliable esti-
mate of the exponent y.
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