High-pressure phase transition in CsBr

Elise Knittle, Abbey Rudy, and Raymond Jeanloz

Department of Geology and Geophysics, University of California, Berkeley, California 94720

(Received 6 August 1984)

Static-compression data have been collected on cesium bromide up to a pressure of 70 GPa ($V/V_0 = 0.500$) with use of x-ray diffraction through the diamond-anvil cell at room temperature. CsBr, which is in the CsCl (B2) structure at zero pressure, undergoes a second-order phase transition to the tetragonal CuAu I structure at 53 (± 2) GPa. Only one other alkali halide, CsI, has been shown to undergo a similar distortional transition at high pressures. With the extrapolation of the available data, both halides are expected to achieve the fcc lattice by about 130 GPa. Our new CsBr data are in good agreement with an Eulerian finite-strain equation of state derived from the ultrasonically measured elastic constants.

INTRODUCTION

Complete descriptions of the equations of state of the alkali halides necessitate an understanding of the properties of these compounds in the CsCl (B2) structure. Aside from CsCl, CsBr, and CsI, which exhibit this structure at room pressure and temperature, a number of the NaCl- (B1-) structure alkali halides transform to the B2-structure phase at high pressure.¹⁻⁶ Recently, CsI has been shown to undergo a second-order phase transformation to the CuAu I structure at 40 GPa.⁷⁻¹⁰ This transition involves a continuous tetragonal distortion of the cubic B2 structure.

To determine if transformation beyond the B2 structure is characteristic of the cesium halides, we have carried out x-ray diffraction experiments on CsBr to ~ 70 GPa. Because of the high compressibility of CsBr, these measurements also provide an empirical test of equations of state based on ultrasonically measured elastic constants. Finally, we were able to compare the optical absorption edges of CsBr and CsI at similar compressions, although quantitative absorption spectra were not collected in the present experiments.

EXPERIMENTAL PROCEDURE

Polycrystalline cesium bromide of 99.9% purity (Alpha Ventron Corp.) was used in all the experiments. Samples were compressed in a Mao-Bell-type diamond cell¹¹ and the ruby fluorescence technique was used to measure the pressure for each run at 4–8 locations within the sample.^{12,13} X-ray diffraction patterns were collected on film using a rotating-anode x-ray generator and Mo radiation.

Mineral oil was used as a pressure medium in some but not all runs; however, the degree of sample hydrostaticity was not improved by the pressure medium (details are provided in Table I). Most data were collected using Mo $K\alpha$ radiation only (Table I). Lattice parameters for the B2 structure were determined using one to five of the following diffraction lines: (100), (110), (200), (211), and (220). One lattice parameter for the tetragonal high-pressure structure was calculated using the (100) and (110) diffraction lines, and the (200) line when visible. The second lattice parameter was determined from the (101) = (011) line, and the (211) and (112) lines when visible.

RESULTS AND DISCUSSION

The static-compression data for CsBr are plotted in Fig. 1 and listed in Table I. The data are compared with Eulerian and Lagrangian finite-strain equations of state¹⁴⁻¹⁶ extrapolated from ultrasonic values of the elastic constants of CsBr.¹⁷ The Eulerian finite-strain formalism is in good agreement with the CsBr data to a volume compression of 50%. In contrast, the Lagrangian equation of state is considerably softer than the data at compressions beyond 30% of the zero pressure volume. Thus, the present results are in accord with the measurements on a number of materials that demonstrate the success of the Eulerian finite-strain form of equation of state.^{7,8,14,16,18-20}

At 53 (± 2) GPa, the diffraction lines of CsBr gradually split, indicating that the B2 structure undergoes a phase transition to a CuAu I structure (equivalent to a body-centered tetragonal distortion in a monatomic lattice). The c/aratios for the high-pressure structure are given in Table I and plotted as a function of pressure in Fig. 2. The gradual increase in c/a ratio and the apparent lack of volume change upon distortion (Fig. 1) indicate that the phase transition is of second order. The only other alkali halide that transforms beyond the B2 structure at high pressures is CsI, and it exhibits the identical second-order distortional transition.⁷⁻¹⁰

As noted previously,^{8,9} the effect of the tetragonal distortion is to change the lattice towards the fcc type for which $c/a = \sqrt{2}$. Thus, beyond the pressure required for closure of the band gap, the cesium halides are expected to be fcc metals. Although the second-order transition sets in at a higher pressure for CsBr than CsI, the change in the c/a ratio with pressure is somewhat larger in the bromide. Consequently, CsBr is expected to achieve the fcc lattice at 136 (±6) GPa, which is virtually the same as for CsI (129±5 GPa, Refs. 8 and 9).

The phase transitions occur at different pressures in CsI and CsBr: 39 (\pm 1) and 53 (\pm 2) GPa, respectively. The volume compression at the transition, however, is the same: tetragonal distortion is definitely occurring at $V/V_0 = 0.54$ in both cases. Both in the present experiments on CsBr and in previous work on CsI (Refs. 7 and 8) broadening of diffraction lines without splitting could be observed in one run. At this point of incipient tetragonal distortion the observed volume compression is $V/V_0 = 0.546$ (± 0.003) for CsBr

BRIEF REPORTS

Run number	Pressure (GPa)	<i>V</i> / <i>V</i> ₀	c/a	Sample ^a
060 584	$0.56 (\pm 0.03)$	0.969 (±0.002)	1.000	<i>b</i> 1 <i>m</i>
100 781	$4.88 (\pm 0.16)$	0.857 (±0.002)	1.000	a6y
060 684	$6.18 (\pm 0.21)$	$0.821 (\pm 0.002)$	1.000	b1m
100 381	6.34 (±0.15)	$0.830 (\pm 0.003)$	1.000	a6y
100 581	11.93 (± 0.71)	$0.731 (\pm 0.003)$	1.000	a6y
060 784	$14.34 (\pm 1.88)$	$0.706 (\pm 0.003)$	1.000	b1m
101 281	23.39 (±1.49)	$0.664 (\pm 0.002)$	1.000	a6y
101 781	$30.52 (\pm 1.65)$	$0.635 (\pm 0.002)$	1.000	a6y
060 984	34.46 (±1.23)	$0.588 (\pm 0.009)$	1.000	c1m
061 184	36.24 (±4.03)	$0.581 (\pm 0.005)$	1.000	c1m
092 081	42.58 (±3.77)	0.586 (±0.004)	1.000	a6y
102 081	51.35 (±1.59)	$0.562 (\pm 0.003)$	1.000	a6y
091 581	52.43 (±3.78)	$0.553 (\pm 0.005)$	1.000	a6y
061 584	52.46 (±3.53)	$0.542 (\pm 0.002)$	1.000	c1m
061 884	54.84 (±2.49)	0.546 (±0.003)	(1.000) ^b	c1m
070 484	60.75 (±1.79)	$0.525 (\pm 0.002)$	$1.083 (\pm 0.022)$	c1m
071 084	$61.68 (\pm 2.04)$	0.510 (±0.001)	$1.095 (\pm 0.011)$	c1m
062 984	66.22 (±2.35)	0.505 (±0.001)	$1.113 (\pm 0.007)$	c1m
062 084	66.33 (±2.97)	$0.502 (\pm 0.001)$	$1.085 (\pm 0.014)$	c1m
062 284	69.79 (±2.58)	$0.507 (\pm 0.001)$	$1.136 (\pm 0.004)$	c1m
062 584	69.89 (±4.08)	$0.500 (\pm 0.001)$	$1.121 (\pm 0.011)$	c1m

TABLE I. Static compression data for CsBr.

^aa, b, and c refer to different samples. 1 and 6 label the two diamond cells used. y indicates that a pressure medium (mineral oil) was used. m indicates that a graphite monochromator was used to provide pure Mo $K\alpha$ radiation ($\lambda_{\pi} = 71.073$ pm).

^bSplitting is marginally observed but cannot be quantitatively resolved—pattern is interpreted as cubic.

and $V/V_0 = 0.544 \ (\pm 0.003)$ for CsI.

As with the pressures, the optical properties of CsI and CsBr differ at the phase transition. Upon compression, the band gap of CsI decreases from its zero-pressure value of 6.4 to 2.4 eV at the onset of the tetragonal distortion at 40

FIG. 1. Room-temperature equation of state for the B2 and tetragonal structures of CsBr as determined by x-ray diffraction. The data are compared with Eulerian and Lagrangian finite-strain equations of state computed using the ultrasonic data of Barsch and Chang (Ref. 17).

GPa.⁷⁻⁹ The band gap of CsBr, which is 7.3 eV at zero pressure, only approaches a value of 2.5 eV at pressures above 70 GPa. As a result, there is a striking difference in the colors of CsI and CsBr at the phase transition: the former is bright orange whereas the latter is a pale yellow in transmitted light (samples are about 10 μ m thick in both cases).

Recent lattice dynamical²¹ and static-lattice⁸ calculations demonstrate that the cubic structure becomes unstable, and a tetragonal distortion sets in, when the first-neighbor repulsive forces dominate sufficiently over the second-neighbor repulsion. Qualitatively, the high-pressure transition observed here is analogous to the well-known dynamical insta-

FIG. 2. Ratio of unit cell parameters c/a is plotted as a function of pressure for CsBr. The amount of distortion observed in the run at 54.8 GPa was too small to be resolved quantitatively. The continuous increase of the c/a ratio above 53 GPa is similar to that observed in CsI above 39 GPa (dashed line—no data shown) (Ref. 8).

bility of the bcc lattice.^{21,22} What is notable, however, is that this tetragonal distortion towards the fcc lattice has only been observed in the cesium halides so far. For comparison, neither RbI nor KI, which have been compressed to $V/V_0 \leq 0.49$ in the B2 structure, exhibit this transition.³ Apparently, the presence of the low-lying²³ Cs 5d states help to precipitate the tetragonal distortion of the B2 structure at high pressures.

Note added in proof. Huang, et al. have recently reported

- ¹Y. Sato-Sorenson, J. Geophys. Res. 88, 3543 (1983).
- ²D. Heinz and R. Jeanloz, Phys. Rev. B 30, 6045 (1984).
- ³K. Asaumi, T. Suzuki, and T. Mori, Phys. Rev. B. 28, 3529 (1983).
- ⁴W. A. Bassett, T. Takahashi, and J. K. Campbell, Trans. Am. Crystallogr. Assoc. 5, 93 (1969).
- ⁵A. J. Darnell and W. A. McCollum, J. Phys. Chem. Solids 31, 805 (1970).
- ⁶H. H. Demarest, C. R. Cassell, and J. C. Jamieson, J. Phys. Chem. Solids **39**, 1211 (1978).
- ⁷E. Knittle and R. Jeanloz, Science 223, 53 (1984).
- ⁸E. Knittle and R. Jeanloz (unpublished).
- ⁹K. Asaumi, Phys. Rev. B 29, 1118 (1984).
- ¹⁰T.-L. Huang and A. L. Ruoff, Phys. Rev. B 29, 1112 (1984).
- ¹¹H. K. Mao, P. M. Bell, K. J. Dunn, R. M. Chrenko, and R. C. Devries, Rev. Sci. Instrum. 50, 1002 (1979).
- ¹²J. D. Barnett, S. Block, and G. J. Piermarini, Rev. Sci. Instrum. 44, 11 (1973).

data showing the same transition in CsBr as described here [Phys. Rev. B 30, 2968 (1984)].

ACKNOWLEDGMENTS

The initial experiments in the study were conducted in the Harvard University Materials Research Laboratory. This work was supported by the National Science Foundation and the Alfred P. Sloan Foundation.

- ¹³H. K. Mao, P. M. Bell, J. W. Shaner, and D. J. Steinberg, J. Appl. Phys. 49, 3276 (1978).
- ¹⁴F. Birch, J. Geophys. Res. 83, 1257 (1978).
- ¹⁵F. Birch, Phys. Rev. **71**, 809 (1947).
- ¹⁶G. F. Davies, J. Phys. Chem. Solids 34, 1417 (1973).
- ¹⁷G. R. Barsch and Z. P. Chang, in Accurate Characterization of the High Pressure Environment, edited by E. C. Lloyd, National Bureau of Standards Special Publ. 326 (National Bureau of Standards, Washington, D.C., 1971).
- ¹⁸F. Birch, J. Phys. Chem. Solids **38**, 175 (1977).
- ¹⁹F. Birch, J. Geophys. Res. 57, 227 (1952).
- ²⁰D. Heinz and R. Jeanloz, J. Appl. Phys. 55, 885 (1984).
- ²¹G. Wolf and R. Jeanloz, Phys. Rev. B (to be published).
- ²²M. Born and K. Huang, *Dynamical Theory of Crystal Lattices* (Oxford Univ. Press, London, 1954).
- ²³Y. Onodera, J. Phys. Soc. Jpn. 25, 469 (1968).