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Universal relations among critical amplitudes of surface quantities are discussed for d-

dimensional semi-infinite systems near their bulk critical temperature T, . Based on the field-
theoretic renormalization-group approach, a general derivation of the expected multi-scale-factor
universality is given and various universal ratios involving critical amplitudes of the ordinary and
special transitions both above and below T, are calculated to first order in @=4—d. In addition, an
error in the published one-loop result for the universal order-parameter profile at the ordinary tran-
sition of the semi-infinite Ising model is corrected.

I. INTRODUCTION

As is well known, systems showing critical behavior can
be divided into equivalence classes such that all members
of a class have the same ("universal" ) critical properties. '

Aside from critical exponents, scaling functions, and
equations of state, the set of universal properties includes
combinations of critical amplitudes ("ratios"). The
universality of most of these ratios was originally con-
cluded on purely phenomenological grounds. Subse-
quently, the general origin of universal relations among
critical amplitudes was clarified and a systematic deriva-
tion of them all was given using the renormalization-
group (RG) approach. Such relations are not only in-
teresting from a theoretical point of view; they also have
experimental significance in. that they reduce the number
of adjustable parameters of the theory, a fact which al-
lows a more rigorous confrontation between theory and
experiment.

The purpose of the present paper is to investigate criti-
cal amplitudes of surface quantities. We have in mind
systems such as a semi-infinite ferromagnet near its criti-
cal temperature T, for the appearance of bulk order. In
the past few years the theory of surface effects on critical
behavior has advanced considerably. ' In particular, it
has become clear that the concept of universality classes
can be appropriately generalized. However, since a ther-
modynamic description of surface effect involves, besides
the usual bulk fields (bulk magnetic field h, temperature
T) and densities (bulk magnetization mt„bulk energy
density), additional surface fields (such as a surface mag-
netic field h ~, surface interaction constant, etc.) and corre-
sponding densities (such as the magnetization at the sur-
face, m ~ ), universality classes for surface critical behavior
are usually narrower than those for bulk critical behavior.

For example, in the case of a semi-infinite Ising ferromag-
net with short-range interactions, m

~
behaves as —

~

v
~

when ~=(T T, )/T, ~—O+, with an exponent P~=gj"
characteristic of the ordinary transition if the interaction
between the spins at the surface is not enhanced too much
relative to the bulk, but with a different exponent f3~ =PP
characteristic of the special transition if the enhancement
takes a critical value —even though all bulk quantities
have the same critical behavior in both cases. For still
stronger enhancement, a behavior of m& characteristic of
the extraordinary transition is observed.

The universal relations among bulk critical amplitudes
near second-order phase transitions can be understood as
the result of a two scale factor u-niuers-ality. Roughly
speaking, this means that all nonuniversality of the singu-
lar part of the bulk free energy and of the asymptotic part
of correlation functions can be absorbed in two indepen-
dent nonuniversal scale factors, which are associated with
the two relevant fields h and ~ appearing in a scaling or
RG analysis. A description of surface critical behavior
requires at least one, or more, relevant surface fields in
addition to these bulk fields. [Note that we do not consid-
er transitions (such as the surface transition) at which the
bulk, stays noncritical. ] By analogy, one thus expects a
multi scale factor uni-uersal-ity, namely a three-scale-factor
universality in the cases of the above-mentioned ordinary
and extraordinary transitions, at which three fields are
relevant, and a four-scale-factor universality in the case of
the special transition, which has four relevant fields. We
shall give a general derivation of this multi-scale-factor
universality using the field-theoretic RG approach. This
approach has been extended recently to semi-infinite sys-
tems' ' and lends itself particularly well to a systematic
investigation of universal properties.

Our analysis is based on the Hamiltonian
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~=fdV —(V(()) +—ro(t +—p + —co f dSQ (1.1)
2 4t

for a scalar order parameter P(x). Here, x =(x(~,z) is a
d-dimensional position vector with x(~, a (d —1)-
dimensional component, and z)0. The volume integral

fd V extends over the d-dimensional half-space z )0, the
surface integral over the (d —1)-dimensional plane z =0.
The model is the Ising (n =1) version of the much-
studied semi-infinite n-vector model. ' Although we
shall, for simplicity, only consider the n = 1 case, those of
our results that concern the O(n)-symmetric paramagnet-
ic phase carry over to the general n&1 case; this will be
indicated by keeping track of the n dependence in the cor-
responding results. For the sake of simplicity, we shall,
moreover, limit ourselves to a computation of critical am-
plitudes (above and below T, ) for the ordinary and special
transitions. Critical amplitudes for the extraordinary tran-
sition can be calculated along lines similar to those we
take in the computation of the amplitudes below T, .

In contrast to critical bulk amplitudes, critical ampli-
tudes of surface quantities have scarcely been studied pre-
viously. The only studies we are aware of are the Monte
Carlo work of Landau, ' ' a recent calculation of the
universal ratio C,'+,~'/C, '+„d to first order in e=4 d fo—r
the model (1.1), where the C,',~«,d mean the amplitudes
of the singular part of the (excess) surface specific heat for
r~0+, at the special and ordinary transitions, ' and
some preliminary results of Eisenriegler' concerning am-
plitude ratios for polymer quantities. '

The remainder of this paper is organized as follows. In
Sec. II we briefly recapitulate the necessary field-theoretic
tools which are used to derive the promised multi-scale-
factor universality. In Sec. III examples of universal ra-
tios involving critical amplitudes of various surface sus-

I

N M conn
G()v, M)( r) g y(x ) Q y(r 0)

i =1 j=l
(2.1)

denote a connected (N+M)-point correlation function
(cumulant) with N points x;=(x;,z;), i =1, . . . , N, off
the surface, and M points (rJ, O), j=1,2, . . . , M, on it.
The cumulant average ( )"""has the usual meaning and
is defined relative to the thermodynamic average ( ) with
the Boltzmann factor exp( —4 I/I ). We use the abbrevi-
ations x = Ix; ~i =1, . . . , NI, z= tz; ~i =1, . . . , NI, and
r =

I r
~ j= 1, . . . , M I. Introducing N+M (d —1)-

dimensional parallel momenta pk, 1=1, . . . , X+M—
one for each x; (pk ——p;) and one for each r

'll J
(p =p)v+; )—we define the parallel Fourier transform
G ' '(p, z), with p = tpk I, by

ceptibilities at the ordinary and special transitions, both
above and below T„are given, and the results we obtain
for these using the e expansion are summarized. In Sec.
IV some of the calculations are outlined. In addition, the
universal order-parameter profiles at the ordinary and
special transitions are given to order e. While in the case
of the special transition our result is in accordance with
Ref. 12, we find in the case of the ordinary transition a
discrepancy with the profile obtained by Wilson. The
source of this discrepancy is explained in Appendix B.
Section V is reserved for concluding remarks and a brief
summary.

II. THE RENORMALIZATION GROUP, SCALING,
AND MULTI-SCALE-FACTOR UNIVERSALITY

We begin with a brief summary of renormalization-
group results. Details of the field-theoretic approach we
employ may be found in Refs. 10—12. With regard to no-
tations, we follow Ref. 21.

Let

N+M N M6' ' '(p, z)(2m) '5 g pk =f G' '(x, r)'exp i g p;.x; i g —pz—+~ rj
k=1 i =1 j=l

(2 2)

In order to absorb the ultraviolet singularities of
6' ' ', the following reparametrizations are needed: pB~+Pg Bg —(2+ 7/~)'TB~

(t)=ZI) p, 7o=p Z~7 +'Tb, g =p 2 77 Zgu
(2.3)

P ~, =(Z&Z, )' (P ~,), co=pZ, c+c,~ .
—(1+q, )cB,+ gp+ g) Gg ' ——0,%+M M (N M)

2 2
(2.5)

Here, p is an arbitrary momentum scale. P ~, =P(r, O)

means the order parameter at the surface. Z,
w =P,r, u, l,c, are bulk and surface normalization factors
which are given in Refs. 10 and 11 to two-loop order. ~b
and c p are the critical values of the multicritical point
that describes the special transition; they vanish in dimen-
sional regularization.

The renormalized functions

G(N, M)( . ) Z —(M+N)I2Z —M/2x,r, u, w, c,p =
1

with P„=—)MB&
~

u and q:—pB„~ InZ, w=g, r, u, l, c,
where B~ ~ o denotes a derivative at fixed bare parameters
ro, g, co. The values ri~=g~(u*) of gy„at the infrared-
stable fixed point u' give us the usual bulk exponents
ri=riy, v ——(2+g*, ) ', and 4=(v/2)(d +2—ri), as well as
the surface exponents vill rI+ g) 6) ——(v/2)(d —g
the special transition, and the crossover exponent
N =v(1+g,').

Solving the RG equations (5) in the standard fashion, 9

NMby characteristics, one obtains, for 6~ =6 ~~~™

(2.4) G~(p, z;u, ~,c,p) =I EGG+(p/i, zl;u, T.,c,p), (2.6)

satisfy the RG equations where l is a scale factor and the running variables u, ~,c
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are defined by

lnl =f du'/P„(u '),
r(l) = l '~"E~r,

c(l)=l e/vE c

with

E =E (u, u)

(2.7)

d~ ~ v(dg+gG j

GR(p, z;u, r~c, h~h»p)-p EGr

X (P1 /p, pzr

with

(2.15)

=exp —f du'[2+1i, (u') —v ']/p„(u')

E, —=E,(u, u)

=exp —f du '[1+g, (u ') @—/v] /P„(u ')

(2.8)

~=E*,~, c =E,*c, h =EI*,h, h, =&I, h&, (2.16)

where the asterisk again indicates the replacement u ~u
The function Eo —=Eo(u*,u), as well as E'„E,*, and E1*, ,

depends on the initial coupling u and are therefore
nonuniversal. By contrast, the scaling function =, which
is given by

We have used the notation do for the p dimension of G
and gG, with

rig = [(N +M)rip+Mg1] l2,
for its anomalous dimension. Eo is given by

Eo —=Eo(u, u)

, T=1,@=1

is independent of u and p and therefore universal. Note
that

(2.17)

r

=exp du' YJG u —'gG „u' (2.9) E*=E„*~E*M
1

(2.18)

The result in (2.6) can be easily generalized to include bulk
and surface magnetic fields. Given the Hamiltonian

A —hp f dVQ —hip f dSQ, (2.10)

we can define dimensionless renormalized field h, h& and
corresponding running variables h, h ~ via

h=p '"+' Z' h h = "(ZZ)'~h0~ 1 I Q 1 10

and

—b, 'p/v
h(l) =l 'Ehh, h1(l) =l '

Eh, h1,

where

(2.11)

(2.12)

—b, 1~/v] /P„(u')

Equation (2.6) remains valid if we add h and h
&

or h and

h1 to the variables appearing in the GR's on the left- or
right-hand side.

In the critical domain (~~0), which corresponds to
I~O, we may replace u by u*, neglecting corrections to
scaling. Choosing I such that ~ is no longer critical,
namely by

Et, =E1,(u, u)

=exp —f du'I —,[d +2—q~(u')] —b/vI/P„(u')
(2.13)

Et, ,
—=Ei, , (u, u)

r

=exp —f du'I —,
' [d —gp(u') —g, (u')]

Two important results can therefore be read off from
(2.15): First, GR asymptotically takes the scaling form
expected from the phenomenological theory of scaling.
This means, in particular, th'at the critical exponents of
the special transition can be expressed in terms of two
bulk exponents (v, h) and two surface exponents (61~,@).
Second, we see that apart from the four nonuniversal
scales E„Ef,, E,*, and Et', (and the trivial p dependence),

the right-hand side of (2.15) is universal. This four-scale
factor uniuersality is the obvious analog of the familiar
two-scale-factor universality of bulk correlation func-
tions.

To proceed, we need some information about the scal-
ing function = in various limits. If ~, c=c 7.

+SP
A'=h7. , and Aq ——h&7 are small, one observes a
behavior characteristic of the special transition. Thus the
limit c~O of:- should exist:

(2.19)

as do the limits h~O, h, ~O at fixed c&0 or c =0.
These statements can be, and in some cases have been,
checked by perturbation theory. However, as ~ decreases
at fixed small c & 0, c~ oo and one expects a crossover to
a behavior characteristic of the ordinary transition when
c= 1. The form of:- for c~ oo follows from the require-
ment that (2.15) must match with the asymptotic behavior
at the ordinary transition (which was analyzed in detail in
Ref. 10). Reasoning as in Ref. 21, one finds that

:-(P,g, c,A', 8, ) —c «=„(/t, g, A, A1c «)

r(1)= 1, (2.14)
+5~ 2&& const&& e (2.20)

and using dimensional considerations, we find that G~
takes the asymptotic form wit
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mb=m(~), Xb=X(oo),

m) ——m(0), X) ——X(0),
y=(y'() —y)) )/24 =1+ e+O(e ), (2.21)n+8

where y11 and y11 denote the familiar susceptibility ex-
ponent y)) ——v(1 —

q~~) of the special or ordinary transi-
tion, and it should be recalled that M specifies the number
of surface points. [The additional term for M =2 follows
from the fact that lim, o+ G z ' '(p =0) exists for c & 0
and h =h) ——0; see, e.g., Ref. 21.] An easy way of seeing
that A) appears in = in the combination A')c is to note
that, upon taking a derivative 8/BA) of (2.20), M should
be replaced by M + 1 because 8:-/BA) is the scaling func-
tion associated with 6' ' +".

Using well-known scaling laws, we can rewrite A')c

(3.2)

00 00 Bm
m, = J dz[m (z) —mb], X, =J dz[X(z) —Xb] =

We also define the local susceptibility by

Bm1
11 (3.3)

Writing the singular part of any of these quantities in the
orm

~ord/sp

x)),ora/sp I
&

I
(3.4)

we introduce critical amplitudes X'11 d/ p m d/ p etc.
Here the plus or minus sign refers to r & 0 or ~ &0, and
ord or sp to the ordinary or special transition. In the
analogous definitions of the critical amplitudes of the
quantities mb, Xb, m1, X1, m„and X„ the appropriate
bulk or surface exponents P, y, P), y), P, =P—v, and
y, =y+ v must, of course, be substituted for y) (.

As an example, let us demonstrate that the ratio
X,' —'X')) '/(X) —') is universal. The susceptibilities X„X»,
and X) can be expressed in terms of G ~', G z' ', and
G ~', respectively, and satisfy the same RG equations as1)

these. Let =,' '(c), :-)) '(c), and:-') —'(c) be the scaling
functions of X„X»,and X), i.e., the analog of:- in (2.15)
for h =h (

—=0. Using the well-known scaling law

y, +y)) ——2y) and (2.15)—(2.18), one concludes that

Otd
y ordA)c y=Eb, h, v (2.22)

where

(2.23)

[X,- X —(X,—) '], =:-,'-'(0+):-',—, '(0+)

X[:-) '(0+)] (3.5)

All nonuniversality has dropped out of
lim, 0+ lim, o+X,X))/X), leaving a universal ratio. The
universality of this ratio at the ordinary transition can be
derived in an analogous fashion. According to (2.20), we
expect, for c—+ ao, the asymptotic behavior

:-,' —'(c) =:-,' +—'+o (c ),

is a scale factor analogous to Eb . When (2.20), (2.22),
and (2.23) are inserted into (2.15), one sees that, for
choo, G has a similar scaling form as for c =0. The
only differences are (i) the scaling function =

I . 0= =0 in
(2.15) is replaced by ",(ii) the surface exponents b'P in
(2.15) and rl))~ in the definition (2.17) of 2pG must be sub-
stituted by the corresponding exponents h1', g~~' of the
ordinary transition, and (iii) in the definitions (2.16) of h )

and (2.19) of Eg,Eb is to be replaced by Eb' .
The result confirms what one would naively expect for

the ordinary transition according to the phenomenological
theory of scaling, namely that all critical exponents can be
expressed in terms of three exponents (two bulk ex-
ponents, v and b„and one surface exponent, 6)' ) and
that all nonuniversality is contained in three nonuniversal
scales (Eb, E*, and Eb' ). Thus, in contrast to the spe-

cial transition, the universality class of the ordinary tran-
sitions is, in fact, characterized by a three scale factor--
uni Uersality.

III. UNIVERSAL AMPLITUDE RATIOS -(+)(
)

-(+) —y+ (
—y) (3.6)

Bm(z)
Bh h =hi ——0

(3.1)

In the following we shall always assume that h =61——0,
unless the contrary is said (or evident from the context).
In terms of m (z) and X(z), the bulk, surface, and excess
magnetizations mb, m1, and m„or susceptibilities Xb, X1,
and X„are given by

Using the results of the preceding section, it is straight-
forward to construct universal amplitude ratios. The only
carriers of nonuniversality are the scale factors
E*„.. . , Eh and p. Consequently, a ratio is universal

whenever these scale factors and the powers of )M cancel
out. We shall mostly be concerned with susceptibility am-
plitudes and therefore begin by recalling the definition of
local, layer, and excess susceptibilities.

Let m (z) = (p(x~),z) }b b be the renormalized order

parameter profile and X(z) be the layer susceptibility

[X(+)X(+)(X(+))—2] (+) (+)
(

(+)
)
—2 (3.7)

The universality of other ratios —in particular, of those

SP /@:-'() '(c) =const&&c " +=')) ' c y+o(c "),
where =,' —„', ='(—', and:-')) ' are (universal) constants and
the symbol o( )—which should not be confused with
0( )—has the usual meaning. [A function f (c) is said to
be o(g(c)} for choo if f( )cg/( )~c0; it is said to be
O(g(c)} if f(c)/g(c)~const. ] We must now take into
account that because of y11 &0, X11 does not diverge at
the ordinary transition. Its leading singular gart (for
c—+ ~ ), X')')"g, in terms of which the exponent y)) and the
amplitude X')),',d are defined, follows from the term
~ c y of:-')) '(c). Upon inserting (3.6) in
lim 0+lim, X,g1'1" /X1, one sees that all nonuniversal
factors (contained in c, for example) cancel again out, giv-
ing
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presented below —can be derived along the same lines.
We next present the e expansion of a variety of univer-

sal ratios. The results are based on the one-loop calcula-
tions described in the next section. We find

m, p /(mb g( )
) =—e+0 (e ),

n+8 3 2

(3.16b)

[X,'+'X)) '(X'i+') ']o,d= 1+ &—+O(&'), (3.8a)

[X,' 'X)) '(X') ') ]„d=—0 09e+O(&'),

[X(+)X(+)(X(+)
)
—z] +

~ +O (~2) (3 8c)P n+8
[X'-'X', —, '(X',-')-'] = —0.25~+O(~') .

Note that the e terms in (3.8b)—(3.8d) are identically zero
because the Landau approximation predicts that X&I is
analytic in ~ for r & 0 and c )0, and yields
X,(r, c =0)—:0, both above and below T, .

Other universal ratios we have calculated are

(3.8d)

(X,'+'/X, ' ')„d——— (1—0.15m)+O(e'),

(X,'+'/X,'-'),„=—4~2~'+O(~),

(X'(+'/X') ')Ord —— (1+0.11m)+O(E ),v'2

(XI+'/XI '),
p
——2(1+0.92m)+O(e ),

(X')) '/X)) ')„d——3. le '+O(e ),
(X') ( '/X')) '),

p
——~2(1+0.56m)+O(e ) .

(3.9a)

(3.9b)

(3.10a)

(3.10b)

(3.11a)

(3.11b)

(+) (+)
Xs,ord/Xs, sp

= n+2 1T

n+8 2
+O(e ), (3.12a)

In each case, a calculation of the next term in the e expan-
sion [for example, the O(e) term in (3.9b)] would involve
a two-loop calculation.

Since y, =y+v, both at the ordinary and the special
transition, the ratios X,' +—„'d/X,' +—,p are also universal. Their
e expansion reads

X, „dl(X'b g' ')= —,
'

(, 1+0.94m)+0 (e ),

X,(+,)/(X(,+)g(+))= "+
~—+O( ')

n+8 2

X,', ,pl(X'b 'g' ') = — e+O(e') .

(3.17a)

(3.17b)

(3.17c)

(3.17d)

a
I

+
Irl

2.-

As already indicated in the Introduction, no previous
estimates of the above universal amplitude ratios other
than Landau's' ' Monte Carlo (MC) results
(X,'+'/X,' ')„d-3.14 (d =2) and =0.78 (d =3) of the
two- and three-dimensional Ising model seem to exist in
the literature. In Fig. 1(a) we compare these with our re-
sult (3.9a). The agreement is unfortunately extremely
poor. Particularly puzzling is the fact that these MC esti-
mates and the (exact) mean-field result for d =4 appear to
fall on a straight line whose slope differs appreciably from
the one predicted by (3.9a) at d =4. While we certainly
cannot expect that a simple linear extrapolation of our
first-order result, (3.9a), gives accurate results for d =3 or
even d =2, the slope at d =4 should come out correctly.
Landau also gives the estimates 4

~
m,'„d

~

=0.60+0.05
and mb '=1.20, for d =2, and 6m,'„z

~

=2.3+0.2 and
mb '=1.57, for d =3. These can be combined with the

X,'„'d/X,',p'= —5.8e '+O(e ) . (3.12b)

We also give some examples of mixed universal ratios
involving amplitudes of both bulk and excess surface
quantities. For c = oo or c =0 the order-parameter pro-
file m(z) and the layer susceptibility X(z) can be written
as

29213

(b)

m (z) =mbo~, d/, p(z/2$), (3.13)

X(z) =XbXO—,d/, p(z/2$), (3.14)

where g=g'+—'
~

r
~

" is the bulk correlation length. Since
aside from the scale g' +—', the scaling functions o.sp«, d and
X,'~&„d are universal, the following ratios are also univer-
sal.

I

JD

6
O

I

E
I

10-

0.$--

m,',„d/, p/(mb 'g' ') =2 f dg[o„d/, p(g) —1],

X,'+-„'d/, p/(XI;+'g(+-)) =2 f dg[X', +—,d'/, p(g) —1] .

Our results for these ratios read

m, „dlmb g = —21n2(1 —0.05m)+O(e ),

(3.15a)

(3.15b)

(3.16a)

FIG. 1. Universal amplitude ratios (a) (g,'+'/g, ' ')„d and (b)
m,'„z/mt 'g' ' as a function of the space dimension d. The
straight lines below d =4 are linear extrapolations of the e ex-
pansions given in (3.9a) and (3.16a). The arrow and the dashed
line indicate the respective mean-field results which are exact
for d )4. The dots represent values which were obtained from
the MC results of Refs. 15 and 16 and the results of Ref. 26 for
g( —)
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results g' '(d =2) =0.176+0.005 and g' '(d =3)
=0.244+0.001 of Tarko and Fisher to obtain the esti-
mates m,'„d/mb 'g' '=0.71 (d =2) and =1.0 (d =3).
The same d =3 estimate is obtained from the more recent
data of Binder and Landau through numerical integra-
tion of their profile o„d(g), using (3.15a). In Fig. 1(b)
these estimates are compared with the linear extrapolation
of the O(e) result in (3.16a). While the agreement is
much better than in Fig. 1(a), it is again somewhat dis-
turbing that the estimates based on the MC data seem to
fall on a straight line through the exact d =4 result, with
a slope different from the one predicted by the e expan-
sion. It would be interesting to see whether the d =4 re-
sults in Figs. 1(a) and 1(b) can be confirmed by MC calcu-
lations. For completeness we also note that the exact re-
sults of McCoy and Wu on the two-dimensional Ising
model imply that (X'» '/XI~ ')„d =—1.

IV. OUTLINE OF THE CALCULATIONS

%'e next give a brief outline of our calculations, omit-
ting uninteresting technical details. The interested reader
may consult Refs. 10—12 and 29 for further information
on technicalities.

Being specifically concerned with susceptibility ampli-
tudes, we begin by recalling how the surface susceptibili-
ties X~ ~, X~, and X, read in terms of the correlation func-

tions G ' ' introduced in Eqs. (2.1) and (2.2). We have

be calculated along similar lines.
However, for the evaluation of the amplitudes, detailed

knowledge about the c dependence of these quantities is
actually not needed. It is sufficient to know their asymp-
totic behavior for c equal or close to the respective fixed-
point value c =0 or c = oo of the special or ordinary tran-
sition. In the case of the special transition, the amplitudes
are, because of (2.19), entirely given by c =0 quantities.
Since we use the dimensional regularization scheme, c =0
implies cp ——0. Hence, only Feynman graphs with the
Neumann propagator Gz ——G ~, & have to be evaluated.

This procedure, in which one sets c =0 from the outset,
gives the same results as the previous one of keeping the
full co dependence first, then renormalizing, and finally
taking the limit c—+0.

The case of the ordinary transition is more subtle. Here
one would like to set co ——oo from the outset, so that only
Feynman graphs with the Dirichlet propagator
GD =6 ~, must be computed. While this turns out to
be possible, two interrelated difficulties are encountered.
First, the amplitudes cannot entirely be expressed in terms
of the functions G~ ' '

~, because these vanish identi-
cally whenever M & 0. Nevertheless, the asymptotic
behavior of G~ ' ' can be related to cp ——oo quantities in
the way described in Refs. 10, 21, and 31: One expands
the bare 6' 's in powers of co '. The leading term in
this expansion is cp ~G' ' ', where 6' ' ' is the Fourier
transform of the cp ——ao function

and

Xi i =6 tt
' (p =0;0,0) (4.1)

Xi —— dz 6 ~'"(p =0;z,O) .
p

X, is given by the last line of Eq. (3.2), with

(4.2)

A. The disordered phase ( T) T, , c)0)
The strategy outlined in Sec. III requires the calculation

of the scaling functions associated with 711, X1, etc. This
can be done in a perturbative fashion by computing the
latter quantities for u =u* and arbitrary c & 0, r & 0, us-
ing the free propagator

K —cp
6(p 'z zest)

— e Klz z
I + e K{2+2

2K K+cp
(4.4a)

(p2+ )I/2 (4.4b)

In fact, to one-loop order, with which we will be satisfied
throughout, 711, X1, and X, can be worked out analytical-
ly; 711 may be found in Ref. 39, p, in Ref. 29, and 71 can

X(z)=f dz'6 g' '(p =0;z,z') . (4.3)

These relations hold above and below T, . We first
describe the calculations for the disordered phase
T & T„c&0. These are technically easier because below
T„as in any ordered phase (including the surface-ordered

and bulk-disordered phase), the 6 ' 's also depend (in a
functional way) on the order-parameter profile m (z).

and B„=B,means a normal derivative. The desired infor-
mation then follows upon renormalization of G
However, the two methods —first renormalizing, then tak-
ing the limit ch oo, or first expanding in powers of co
then renormalizing the expansion coefficients 6' ' '—do
not, in general, give identical results. The reason, roughly
speaking, is that the limits A —+oo and cp~oq do not
commute. [The co ' expansion fails to capture terms
~ ln(1+ A/co ) which become singular in the limit
co/A~O. These are precisely singularities of the sort
that are absorbed by Z, .] Exceptions are quantities such
as- G~ ' ', whose limit ciao exists and is nonvanishing.
For those, both methods yield the same results because the
contributions from the additional counterterms one has
for c & ~ vanish as c—& ao. For other quantities (such as
G~ ' ', M&0, or X&) the two methods yield different
nonuniversal amplitudes. The difference amounts to a
different choice of the scale factor Eh' in (2.23): Aside

1

from an overall proportionality factor (which depends on
the choice of Z„Z1, and the corresponding renorrnaliza-
tion factor' needed to renormalize B„P for co ——oo), the
two scale factors EP' differ in that c in (2.23) is re-

1

placed by (co/p) ' if one uses the method based on the
co ' expansion. Of course, we are free to use either one of
these two methods for calculating the universal amplitude
ratios at the ordinary transition as long as we consistently
use the same method for all nonuniuersal amplitudes in
UolUed. However, caution must be exercised in calculating
universal ratios which involve amplitudes at both the spe-
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cial and ordinary transitions. Here, one must really insert
the values which follow from the large-c behavior of the
renormalized quantities for the amplitudes at the ordinary
transition. If one nevertheless wishes to use the co ' ex-
pansion, one must know the precise relation between the
respective nonuniversal amplitudes. In the case of the
amplitude ratios (3.12a) and (3.12b), no problem arises,
since lim, 7, exists and is nonvanishing, both methods
yield the same X,' —+„'z.

Our results for the susceptibilities at u =u" and c =0
read

with the boundary condition

~, &y&=co&/ ~, &, (4.8)

where I '" is the usual (bare) one-point vertex func-
tion. Writing I'"=I"o"+I'i"+ . , &P&=&/)o
+&/&i+, etc., we split all quantities into tree (=0
loop), one-loop, and higher contributions. We then ex-
pand Eq. (4.7) about &P&o. Since I 0"(x; I &P&oI)=0, we
obtain, to one-loop order,

t'

s

Xii ~ ' 1+ e ,'(5 3—CE)+—O(e )n+8

Xi ——r 1+ e 1 ——,Cg+ —3 +O(e )
y) n +2 3 m 1/2

n+8 2

(4.5a)

(4.5b)

(4 9)

On the left-hand side the mean-field expression for the
(p =0) Fourier transform of the two-point vertex func-
tion is recognizable; its inverse is the free propagator
G o '(p;z, z', I & P &0] ) defined by

r

+S —+
n+2 7T—e'+O(e )

2

n+8 2
(4.5c)

(4.10)

where CE ——0.577215. . . is Euler's constant and we have
set p = 1. The corresponding results for the ordinary tran-
sition are

01'd
~sing (Eords )2 F]1

11 — h,

together with the boundary condition (4.8) for
z —+O, z'~0, or vice versa. The right-hand side can also
be expressed in terms of G o '. With the notation

yd —lp 2~ d —1

P

X 1+ e —,(3—Cz)+O(e )n+8 (4.6a) it reads

~ord
Xi Ep,

' '~ ' ——1 — e (CE+m3 ' ———)2

(4.11)

+O(e ) (4.6b) Using Go ', Eq. (4.9) can be solved for &P&i. Upon sub-
stitution of Eq. (4.11), the profile becomes

1+. e[ —,
' (1—Cx)+n( —, —3 ' )]

&y( )&=&/(0, )&o

—I f"dz' G ' '(0;z z'; t & P &oI ) & P(0,z') &,

+ O(e') (4.6c)
G p

' p;z', z', p +0 2-loop

The results in (4.6a) and (4.6b) were obtained using the
co ' expansion. EI",

* should therefore be interpreted as
—1

Cp

B. The ordered phase ( T ~ T„c)0)

I "'(x
I &/&I)=0 (4.7)

The computation of the amplitudes for the ordered
phase requires as a first step the calculation of the order-
parameter profile. Since one-loop calculations of the pro-
files at the ordinary and special transitions were already
described in Refs. 10, 12, 20, 29, and 32, we only give a
brief summary of the equations which must be solved. As
stated, we will only consider the case n =1. (The profile
for n & 2 may be found in Ref. 29 to one-loop order. )

In the absence of bulk and surface magnetic fields the
(bare) profile & P(x) & = & P(0,z) & satisfies the equation

(4.12)

The mean-field quantities &P&0 and Go ' are known for
all values of co&0. Specifically for co ——oo, they may
be found, for instance, in Refs. 10 and 20, and for
cp =c,~, they are given in Ref. 12. In a similar fashion
the two-point correlation function G '2'(p;z, z'; I & P & I ),
which, for z & 0 and z' & 0, is precisely the function G ' ' '

defined by Eqs. (2.1) and (2.2), can be expressed in terms
of & P &0 and G o '. The result is represented graphically in
Fig. 2.

To obtain the renormalized profiles for c = oo and
c =0 from (4.12), we isolated the poles in e which occur
for co ——oo or co ——0 in the dimensionally regularized
theory and verified that these poles vanish when the bare
order parameter, temperature, and coupling constant are,
according to Eq. (2.3), expressed in terms of their renor-
malized counterparts. We then set u =u* and exponen-
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tiated the logarithms in r to arrive at (3.13) with

mb =mb

where

(4.13a)

(2,0) + C

+ C L

(4.13b)

and

(4.14a)

with

'=2 "[1—( —,', CE+ —,
' )@+0(e )] . (4.14b)

(The bulk correlation length is normalized such that

m,' '=(6/2d7r 'u*)' '
1 ——(»2+Cb —I)+0(~')

6

c) lnI'b Ig(g, r)
Bq q2=0

where I b„1k is the renormalized two-point vertex function
of the translationally invariant P theory in momentum
space. ) Our result for o„d(g) can be written as

FIG. 2. Expansion of 6' ' ', for T&T„ to one-loop order.
The lines represent the free propagator 60 ' '. The weight of the
two-point vertex in the second graph is g (P)p(P) ~, and that of
the three-point vertex in the last graph is g (P )p.

(4.15b)

o.„d(g)=o,',d(g)+acr,",d(g)+0 (e ), (4.15a)

o."„'(g)= tanhg,

o,",d(P) = —,
'

4 (m~3 ——", )/sech g —tanhgsech g+ —,
' f "dz'R(g')tanh(g')2

~

r
~

6 p (0 z z', I (P)pJ ), (415c)
2 3 0

with

R (g) = 9tanh /[I(g)(1+tanh g) —I'(g)tanhg]+3Kp(4$)(1+5 tanh g)+12K~(4$)tanhg+ K~(4()—(4.16)

where Kp and K, are modified Bessel functions and I(g)
is defined by

exp[ —2g(p +4)' ]
P (~ 2+ 4)1/2(p2+ 3)

cr,z(g) was already given in Ref. 12; it reads

(4.17)

cr,p(g) =1+—Kp(4$) —3I(g)+ e '& +0(e') .
6 2

(4.18)

[Note that the variable g of Ref. 12 differs from the one
employed here by a factor 1+0 (e). Nevertheless, the two
functions cr,„(g) are the same to first order in e, the im-
plied difference being of order e . ]

The shape function o„d(g) was previously calculated by
Wilson, who used a different method and obtained a
slightly different result. Instead of solving Eq. (4.9) by
means of the Green's function 6 0 ', Wilson made an an-
satz for (P) ~ in the form of a linear combination of hy-
perbolic functions and then tried to solve for the coeffi-
cients. In Appendix A we repeat the calculation of
cr„d(g) along these lines and correct Wilson's result. The
corrected result is given in Eq. (Al 1). We checked by nu-
merical evaluation that the latter is equivalent to Eq.
(4.15). In Figs. 3 and 4 extrapolations of cr„d(g) and
cr,~(g) to d =3 are depicted and compared with the recent
Monte Carlo results of Binder and Landau. To ensure
that the extrapolation complies with the exponentiated

(gj" —P)/v= 1 ——,
'

g—,",, e +0(e ) (4.19)

is not very accurate. If we neglect the 0(e2) terms in

o„d(g)

FIG. 3. Order-parameter profile at the ordinary transition,
o„d(g), in tree (dashed curve) and one-loop approximations
(solid curve). The dots are Monte Carlo results taken from Ref.
27.

short-distance form' ' cr(g) -g ' of o„d&,~(g) we
expanded the logarithm of o(g), reexponentiated to obtain
cr(g)=cr' 'exp(eo'"/cr' '), and then set e= l. In both
cases the one-loop result compares better with the Monte
Carlo data than the mean-field result. Perfect agreement
between our one-loop o„d(g) and the Monte Carlo data
cannot be expected, because the one-loop approximation
to10
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(4.19) and then set @=1, we obtain (g&" —P)/v=0. 83; if
we include them, we obtain instead =0.73. Since this
latter value is much closer to the Monte Carlo estimate
0.67, a two-loop approximation should give much better
agreement. In the case of o»(g) the corresponding O(e)
and 0 (e ) estimates for

(gj~ —:P)/v=——,
' e+ „',e'+O(e') (4.20)

are = —0. 17 and = —0. 16, and are virtually indistin-
guishable from the slope = —0.17 of the Monte Carlo
data [cf. Fig. 5(b) of Ref. 27].

Substitution of Eqs. (4.15) and (4.18) into Eq. (3.15a)
yields the amplitudes

m,'„d ———(3/2"m / u')' 21n2[1 —0.32@+0(e )]

(4.21a)

FIG. 4. Order-parameter profile at the special transition,
o,~(g), in tree (dashed curve) and one-loop approximations (solid
curve). The dots are Monte Carlo results taken from Ref. 27.

PBg»:(3/2 & u*) e +'O(E )
7 6

(4.21b)

S

X((——
I
r

I

'
( I/V 2)[1—0.294@+0(e )],

SP

X, = IrI "—,'[1—0.4319~+O(~')],

(4.25a)

(4.25b)

The susceptibility amplitudes can be calculated along
similar lines. One starts with the expression for the bare
two-point function given in Fig. 2. The computation of
7, and X& involves z integrals over external points. It is
advantageous to do these integrals first because the corre-
sponding external lines of the one-loop graphs in Fig. 2
are then simply replaced by the mean-field susceptibility

x, = —IrI
24 2

e+O(e ) (4.25c)

At the ordinary transition we find

Xi'i" = —(&h', )
I
r

I
"[0.321@+0(e)], (4.26a)

Ol d

X~ El',
,
""

I
r——

I

' 2'~ [1—0.259@+0(e )], (4.26b)

Xo(z) =(2
I ro

I
) 'sech y[sinhy cosh y X, =3&&2

I

r
I

'[1+0.177e+O(e )] . (4.26c)

for co ——oo, or

Xo(z) =(2
I &o I

)

+ —', (y+ sinhy coshy) —cosh y+ 1]

(4.22)

(4.23)

From Eqs. (4.13b), (4.14b), (4.21a), (4.21b), (4.25a)—
(4.25c), and (4.26a)—(4.26c) the e expansions of the
umversal amplitudes given in Sec. III follow in a straight-
forward fashion.

V. SUMMARY AND CONCLUDING REMARKS

for co ——0, where y =
I
ro/2 ' z. External legs that con-

nect a surface point with an internal point z&0 corre-
spond to

cp 8&'6 p '(p =0 z', z; I (P )pI ) I, p, =cp 'sech y

(4.24)

in the case of the ordinary transition and to Xo(z =0) in
the case of the special transition. Care must be exercised
in the calculation of 7, to properly extract the divergent
bulk piece f dz Xp. By isolating the poles in E and re-
moving these via the reparametrizations (2.3), one can
bring the renorrnalized susceptibilities g„g&, and g» into
a form which contains only convergent integrals. These
can then be evaluated by numerical integration. Since the
calculations are fairly lengthy, we refrain from presenting
them in detail. As an example, we only describe the cal-
culation of X& in Appendix B. [To make Appendix B
self-contained, there we use o„d(g) in the corrected Wil-
son form (Al 1) as input. However, we checked again that
the alternative computational method outlined above and
based on Eq. (4.15) gives the same results. ]

Our susceptibility results for u =u* and c =0 are

In this work we have shown that universal relations ex-
ist among critical amplitudes of surface quantities. By
applying field-theoretic RG methods to semi-infinite
model systems we were able to elucidate the general origin
of these relations and to give a systematic derivation of
the expected multi-scale-factor universality. Within our
field-theoretic approach this multi-scale-factor universali-
ty arises as a natural consequence in much the same way
as the familiar two-scale-factor universality at bulk criti-
cal points. With each relevant field (h, r, h&, c at the spe-
cial transition or h, r, h ~ at the ordinary transition) is asso-
ciated one independent critical exponent (which follows
from the anomalous dimension of the bulk or surface
operator to which it couples) and one independent
nonuniversal scale factor. Similarly, as all critical ex-
ponents can be expressed in terms of the four (special
transition) or three (ordinary transition) "basic" exponents
g, v, g~~, @or q, v, q~~', say, all nonuniversal amplitudes are
expressible in terms of these four or three scale factors.
Ratios from which these scale factors drop out are univer-
sal.

We also worked out the e expansion to one-loop order
of a number of universal ratios. Owing to the shortness of
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the series, extrapolations to three dimensions are very un-
certain. This can, in principle, be improved by extending
the e expansion to the next order, a task which appears
feasible but extremely laborious. To obtain more accurate
estimates of the universal ratios that we calculated.
Monte Carlo calculations along the lines of Binder and
Landau might be very useful. An experimental deter-
mination of susceptibility amplitudes is clearly difficult
but seems absolutely within reach of present experimental
techniques. In particular, the proposed x-ray scattering at
grazing angles should have some potential usefulness in
this respect. Another type of experimentally accessible
universal amplitude ratios are those for the surface ten-
sion of polymer solutions discussed recently by Eisen-
riegler. ' [The statistics of such polymer solutions is
described by the n~0 limit of the semi-infinite n-vector
model (1.1); ' ' their nice feature is that the analog of
the surface enhancement c may be experimentally varied. ]

Finally, we have presented, within the one-loop approx-
imation, the universal order-parameter profiles at the or-
dinary and special transitions. These compare reasonably
well with the Monte Carlo results of Binder and Lan-
dau

manuscript. We also wish to thank E. Eisenriegler for
communicating the results of Ref. 18 to us prior to publi-
cation and for discussions. Finally, we gratefully ack-
nowledge financial support of the Bundesministerium fiir
Forschung und Technologie (BMFT) for one of us (G.Cx.).

APPENDIX A: ORDER-PARAMETER PROFILE
AT THE ORDINARY TRANSITION

where here and below yo means

yo =Bz, B=(
I
ro

I

/2)'~

The free propagator reads

(A2)

In this appendix the order-parameter profile o«d(g) is
calculated along the lines taken by %'ilson. The main
difference between his and our approach is that we again
use dimensional regularization, whereas he cuts off the
parallel momentum integrations at

I p I
=A.

To calculate the bare profile we set co ——oo. At zero-
loop order we then have

(P(x))p ——(6
I
ro

I
/g)' tanhyo,
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G o"(p;z,z'; I (P )p] ) =f(p;z, z') f(p;z, —z'),—
with

(A3)

f (p;z z')=[exp( w~ I
z —z' —

I
)/2w~(wz B)(wz—4B )]I—[3B tanh Bz—B +w~+sgn(z z')3w„B ta—nhBz](z~~z') I,

(A4)

]./2

—I ( «'I&0)oI)= ——() g 6l pl
2 g

tanhypg (yp),

(A5)
0(yo)/I &o

I
2 ~ '"=& '( —4+6sech'yo)+2 E —2+2»

I 2' I
+(6—~3'"—3CE —3»

I 2' I
»«h'yo

++3'~2sech"yo —
2 J '(yp)+2J(yp)+6J (yp)tanhyp —[—', I"(yp)+ 12J(yp)]tanh yp

+ 18I'(yp)tanh yo —18I(yp)tanh yp .

where w~ =p +4B . This agrees with Eqs. (12) and (17) of Ref. 20 up to an obvious misprint in the last line of Eq. (17)
[—3 sgn(z' —z) should have a plus sign].

We now wish to solve Eq. (4.9). Inserting Eqs. (Al) and (A3) into Eq. (4.11), we obtain, for the right-hand side of Eq.
(4.9),

The functions I and J are the same as in Ref. 20; I was
already introduced in Eq. (4.17), and J is defined by

J(yo) =J 4 V '+4) '"exp[ —2yoV '+4)'"] .

Equation (A5) may be compared with Eq. (A2) of Ref. 20.
In the latter the first term inside the curly brackets should
be increased by 1, so that it becomes 1 —2 ln(A/B). Aside
from some additional terms in our Eq. (A5) resulting
from products of the form 0 (E ') X0 (e), the 0 (e )

terms then agree in both equations, as they should.
Following Wilson, let us take

(y(x)), =g2 '~ '"(6lr,
l

/g)'"-

X2[a ((yp)+b (yp)tanhyp+c (yp)sech yp

+d)(y())sech y()tanhy()] (A7)

as a trial solution to Eq. (4.9). Inserting an ansatz of this
form in his Eq. (A2), the analog of our Eq. (4.9), and
comparing the coefficients of tanh"yo, r =0, 1, . . . , 5, on
both sides, Wilson derived his set of equations, (A9). If a
solution to these latter equations exists, then the ansatz
clearly solves his Eq. (A2). However, since (A9) consti-
tutes six conditions for the four unknowns a)(yp), b (yo),

. c (yp), and d) (yp), a solution to (A9) need not exist. Con-
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a, (yo) =a, (yo) —a, ( ec )tanh yo,
in which

P'0

a~(yp)=3 f dy'[4I(y')+ J(y')+3H(y')],

(ASa)

with

H(y) =f dp(pz+3) (p +4) '~ exp[ —2y(hz+4)'~z] .

versely, if (P) &
in Eq. (A7) is a solution to Eq, (4.9) [or

Wilson's Eq. (A2)], the coefficients a &(yp), . . . , d&(yp) do
not necessarily have to satisfy his six conditions (A9). In
fact, this is precisely what happens. We find that the
solution to Eq. (4.9) takes the form (A7), with

which his a ~(yp) was constructed. On the other hand, re-
placement of his a

~ (yp) by ours does not lead to a solution
of his set of equations (A9); otherwise the terms that re-
sult from the tanh yp piece of a&(yp) would have to van-
ish identically. While, therefore, our coefficients
a~(yp), . . . , d&(yp) likewise do not satisfy the analogs of
Wilson's conditions(A9), it is a matter of straightforward
algebra to verify that our result in Eq. (A7), with the coef-
ficients (A8a) —(A8d), is a solution to Eq. (4.9).

When Eq.
'

(A5) is combined with Eqs. (A7) and
(A8a) —(A8d), and the expressions from Eq. (2.2) are sub-
stituted for rp and g ( Z~ = 1) at this order), the poles in e
are found to cancel. After setting u=u*, Eqs. (3.13),
(4.13a), (4.13b), (4.15a), and (4.15b) are recovered, with

The other coefficients are

b(yo) =(2e)-' ——,
'

(CE —1+In
I 2' I

)+b, (yo),

bl(yo) = —
4 [15I(yo)+J(yo)+18H(yo)]

c (yo) = ayo«z+ 2 +»
I

2'ro
I

—2«)+c, (yo»

(Alo)

(ASb)

o"',,d(g) =—', [a ((g)+b )(g)tanhg+c )(g)sechzg

+d~(g)tanhgsech g] .

APPENDIX 8: CALCULATION OF P](T & T )
AT THE ORDINARY TRANSITION

(Al 1)

(ASc)

c&(yp) = ——,
' f dy'[18I(y')+5J(y')+9H(y')]

+ —,yo(+~3 —+),

Following the strategy explained in Sec. IV, we expand
the bare susceptibility P&»„ in powers of cp . This gives

Xl,»re co Xl ao+0(co) ~ (81)

di(yp) =
2 I(yp) —(w/12)v 3 (ASd) with

where we have defined ci in such a way that o',",d(g) takes
the concise form given below.

The main difference between Wilson's and our result
for (P)i shows up in a&(yp). His ai(yp) differs from
ours in Eq. (ASa) in that tanh yp is replaced by
exp( —2yo) —1. To see that Wilson's a&(yp) is incorrect,
note simply that the terms ~ exp( —2yp) to which it gives
rise cancel neither in his Eq. (A9a) nor in (A9c); they only
vanish in the difference (A9a)—(A9c), as a solution to

I

Xi „——f dz G '„'"(p =0;z),
(iwhere G ""is the Fourier transform of

(82)

(B„P(xi'i, 0)P(x i(,z) ),,
The graphs of P~ follow from those given in Fig. 2 by
taking a normal derivative at one external point and in-
tegrating the other external point over z. One thus finds

X, „=B ' (g/B) f dy—[(P(O,y))p(P(O, y)) &+ —,
' Q(y)]sech yXp(y)

00 00
2+ 6g dy& dy2tanhy&tanhyzsech yi&o(y2)R(y„y, ),

where Xp(y) was defined in (4.23a), and

(83)

R(yi, y~)= f [G o"(p =0;zi,zz;[(0)o]) I,,=.l'=2 "~ "" 4~'"
J

B' ' r(x,yi,yz)dx .
2

(84)

The function r is symmetric with respect to interchange of y &
and yz, and for y & &y2 is given by

r( , x&y, y)=z[( x—4) ' +'~ /x(x —1) ]e '(3tanhy&+x —1+3xtanhy, )

&& [(3tanh yz+x —1)sinh(xyz ) —3x tanhy2cosh(xy2 )]

R (y&,y2) contains a bulk singularity, as may be seen from the fact that the x integral in (84) diverges for e=O when
y &

——y2. We extract this singularity by rewriting the x integral as follows:
00 00 00

dx r(x,y~,y2)= —, f x 'exp( —2x ly~ —y2 I
)dx+ f [r(x,y~,yq) ——,exp( —2x ly~ —y2 I

)]dx+0(e) . (86)

The second integral is convergent, so we set e=O there. The first integral, considered as a distribution in y& —y2, has the
expansion

f x exp( 2x lyi y2 I
)dx=2 [(e +Ca@(y& y&)+ ly& y& I

+ exp( 4lyi y2 I
)+«e)]
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in which
i y| —y2 ~

+
' is the generalized function denoted by

~ y| —yz ~

' in Ref. 37.
Another problem arises in the y integral in (83). Aside from the explicit pole terms in (P}~ and Q(y), there is a

singularity coming from the term ~J"(y) in Q. To see this, note that since J"(y) -y and sech yXo(y) -y as y ~0, the
integral diverges at the lower bound. In Eq. (A5) we gave the e expansion that results when Q (y) is considered as a func
tion Th. e appearance of the above singularity —a typical surface singularity —tells us that Q(y), considered as a distribu
tion, has an additional singularity ~ e 5'(y). To evaluate the latter pole term, we must go one step back and replace

~

r
~

OJ"(y) by the corresponding d-dimensional term from which it originated, namely by

f exp[ —2z(p +2
~
ro

~

)'~ ]e!2J ( )
—24~12

2 8 2p (p +2i i)'i
The y integration can now be done before the p integration. One thus finds

'"-f dy J,"(y)sech'yXO(y) =——C, +2—ln
f 2' f

—8 f dy K', (4y)[2
i
ro

i
Xo(y)sech'y —4y] .

Using this in conjunction with Eqs. (82)—(88) and Eqs. (A7)—(A9), one is led to

X) „——(
~
ra

~

/2) ' [1+u(e ' ——,'ln ~rod +A)],
with

f dy sech y2
~
ro

~
Xo(y) I tanhy[24a, ",d(g)+ —,'y(Cz+ —', +ln2)sech y]+Cz —1+ln2

+ —,(2—~3 ' —CE —ln2)sech y+(m/2)W3sech y+3J'(y)tanhy

—[—„I"(y)+6J(y)]tanh y+9I'(y)tanh y —9I(y)tanh (y) I

+ 2
——,'»2 —C~/4 —2 f dy&'g(4y)[2

i ro /Xo(y)sech y —4y] ——,
' f dyKD(4y)2

f
ro /Xo(y)sech y

+(—,ln2+ —,'Cz+3)( —'„' ——', ln2)+ —,
' f dy f dy'f(yy') iy y'~+'e —~!&—&'I

+12 f dy f dy' f dx f(y,y')[r(x, y,y') —,e 2"!~ ~—!],

(89)

(810)

(811)

where

f (y,y') =2
~
ro

~

Xo(y')tanhy'tanhy sech y . (812)

Aside from an elementary integral, we need

f dy e y &t —en(2y)
Numerical evaluation gives

A = —0.77 . (813)
1/241 —e/2 I'(e —1)

(2+&)I ((1+e) /2)
The renormalized function Xf is given by'
[1—(u /2e) ]X&

at this order. At the fixed point
u*=e/3+O(e ), it becomes

3—e 1+@ k —2
2 2 k+2

(C3)

X =2' (1—Au*)
i
r

~

This implies Eq. (4.26b).

APPENDIX C: CALCULATION OF +I( T ~ T, )
AT THE ORDINARY TRANSITION

(814) for k=1 and 2. Here, Eq. 6.621.3 of Gradshteyn and
Ryzhik was used. The e expansion of the hyper-
geometric function 2F& may be worked out as in Eq. (2.12)
of Ref. 39. It can be written in the form

Above T, the calculations are much easier and can be
done analytically. Specifically for X1, we have again Eqs.
(81) and (82), where now

—1/2r ~ I ~ —d —d/2 —e/2
~1, oo +0 i ~ —28~ ~ &0

X f dye "(1—e )Q&(y)+O(g )],
(Cl)

=(1—x) 1 + ln2 (1+x)
26'

1/2
+ x' 1n, ~2 + O(e) . (C4)

1 —x

F 1 ' x I I (e—1) IpX
2

with

Q, (y) =ro '+'~ 24rt4~' f G(p;y, y;ro ——1)

= I (e/2 —1)—2y &I—e/2(2y) . (C2)

From here on the calculation proceeds in a straightfor-
ward fashion. Upon going over to renormalized quanti-
ties, the result in Eq. (4.6b) is recovered.
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