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We calculate the single-particle excitation spectrum of a spherical no'rmal-metal particle embedded in an
infinite supercon&ucting host by solving the Bogoliubov equations, assuming that the electron and hole
amplitudes are proportional. The pair potential is modeled by a step function which vanishes in the normal
metal and takes on the bulk superconductor value in the host. With these assumptions, bands of bound
states are found with energies lower than the superconductor pair potential. These states will fill up the

gap for large enough particle size. The effects of these bound states on measurable physical quantities are
briefly discussed.

The-excitation spectrum of a normal metal in contact with
a superconductor has long been a subject of interest. ' This
spectrum is well suited to calculation via the Bogoliubov
equations, which describe such excitations in terms of cou-
pled electronlike and holelike amplitudes. As pointed out
by de Gennes and Saint-James, ' the result of this calcula-
tion is that there is no energy gap in the excitation of a slab
of normal metal deposited on an infinite superconducting
substrate. Similar results for a normal-metal-supercon-
ductor bilayer have recently been obtained by Zaitlin, 2 who
also discussed the effect of these excitations on the discon-
tinuity in the heat capacity at the transition temperature.

The purpose of this Brief Report is to work out the exci-
tation of a simple geometry that has not been previously
considered: a single sphere of normal metal embedded in a
superconducting host. This geometry is of interest because
of the considerable current work on random composites of
normal metal and superconductor, which have numerous
unusual properties. 4 The particular case of normal metal in
superconductor is relevant because of recent predictions,
based on classical arguments that the normal metal will ab-
sorb electromagnetic radiation below the energy gap of the
superconductor. 5 Here, it will be shown that there is always
a finite density of single-particle excitations within a spheri-
cal inclusion of normal metal, and that the bottom of the
band of excitations approaches zero energy as the sphere
becomes larger. This result suggests that there will be sub-
stantial electromagnetic absorption within the energy gap Qy

such inclusions, and also implies changes in the specific heat
and I-V characteristics of such materials from the usual
behavior of bulk superconductors.

We consider a normal-metal sphere (N) of radius a em-
bedded in an infinite superconducting host (S). For simpli-
city, we assume that the Fermi energy is the same for both.
The pair potential 6 is approximated by

should give the most important features in systems of phys-
ical interest.

The excitation spectrum of the system can be obtained by
solving the Bogoliubov equations:
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Here, u and v are the electron and hole amplitudes of the
quasiparticle wave function and e is the energy eigenvalue.
We shall seek solutions in which the energies e of the exci-
tations are less than the pair potential Ap in the supercon-
ductor. We make the additional assumption that the ampli-
tudes u and v are proportional. This ansatz will certainly
give some solutions to Eqs. (2), but we have not succeeded
in proving that there are no additional solutions. Neverthe-
less, given the boundary conditions, a self-consistency con-
dition for the energies ~ can be obtained. From this equa-
tion, the energies and the -corresponding density of states
can then be determined. The resulting density of states is
found to depend on only two parameters: kFa, the product
of the Fermi wave vector and particle radius; and 60/EF,
the ratio of the pair potential to the Fermi energy.

For r ) a (i.e., in S), the assumption that u and u are
proportional allows Eqs. (2) to be decoupled. Requiring
that the two equations are consistent with each other leads
to
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where a can take on the two values o.q, a2.
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In principle, the pair potential should be computed self-
consistently from the quasiparticle wave functions obtained
from the Bogoliubov equations, but this calculation is quite
difficult and'will not be attempted here. hp is thus the bulk
energy gap of the superconductor. Although (I) is only ap-
proximate, we believe that the spectrum resulting from it

(4)

In (4) the second forms of the solutions are valid for bound
states with energies «4p.

31 584



3i BRIEF REPORTS 585

u(r)
, tl( r ),

' ht'i(k, r)
Im n h (1)(k r)

'

i,"&(k,r)
'

+ ~lm n i ( t ) (k r) ~lm (0 ~ 4 )
l

The general solution of Eq. (3) (in S) is

(5)
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Since the solutions must remain finite at the origin, the
coefficients of the spherical Neumann function solutions
must vanish and the most general solution is

k2= EF+iAp 1—
' 2' 1/2' 1/2 ' ' 1/2
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For r ( a (i.e., in ii/) Eq. (2) reads

V —EF Q =~Op2

2m
g 2
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where spherical coordinates have been used and h,
' (x) is

the spherical Hankel function of order I. AI and BI are
coefficients to be determined and the Yl (8, qh) are spherical
harmonics. In writing Eq. (5), use has been made of the re-
quirement that u and v remain finite at large r. The wave
vectors k1 and k2 are complex and are given by

2' 1/2& 1/2
' 1/2
2mk1= —EF —imp 1—4p, h2

t

and

jl(x) being a spherical Bessel function, and Cl and Dl
coefficients to be determined. The wave vectors k and k'
are given by
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With Eqs. (5) and (8), we determine the unknown coeffi-
cients and allowed energies by matching boundary condi-
tions at r = a, requiring that both the wave functions and
their first derivatives be continuous at the surface. These
requirements give four homogeneous conditions for the
four unknown coefficients 3, 8, C, and D for fixed I and m.
To have nontrivial coefficients, for «Ap, the following
condition must hold valid for l ~ 1:

kk'hl ' (kia)hl ' (k2a)jl i(ka)jl i(k'a) —ktk'hl ' (k2a) hl 'i (kia)jl i(k'a)jl(ka)
—kk2iii"'(kta) iti'"i (k2ab & i(ka)j'l-(k'a) + ktk2hi'-"t (kia) hl'"i (k2a)jl(ka)jl(k'a)
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kkthl
' (k2a)hl 'i (kia)jl i(ka)jl(k'a)+ ktk2hl 'i (kia)hl 'i (k2a)jl(ka)jl(k'a)

(10)

Equation (10) is an implicit transcendental equation deter-
mining the excitation energies e. Both sides of Eq. (10) are
complex but can be sho~n to have absolute value unity.
The equation can be solved numerically for each I and,
hence, the density of states can be obtained numerically.
The required input parameters are properties of the materi-
als, namely, kFa and b,o/EF, the ratio of the pair potential to
the Fermi energy. For 1=0, one obtains by the same pro-
cedure the condition

n i [k cot( ka) —ik, ] [k' cot( k'a ) —ik2]

n2 [k cot(ka) —ik2][k'cot(k'a) —iki]

Figure 1 shows the dependence of the energies of the
i = 0 states on particle size for b, o/EF = 0.001, as obtained by
solving Eq. (11) for various values of kFa. The variation of
the l=0 state is of particular interest because, as will be
seen, this state forms the bottom of "bands" in the density
of states for «hp. For small kFa, the energy of the l =0
bound state approaches hp. However, there always exists an
I =0 solution with ~ ( Ap no rnatter how small kFa may be.
This result is different from the analogous result for a
square well potential in single-particle quantum mechanics,
in which a bound state exists only for a sphere of radius
greater than a minimum size. In the present case, however,
the assumption of a discontinuous change in the gap param-
eter at r=a may be inaccurate for a small particle, and
when this assumption is corrected, the results may be quite
different. As the particle size increases, e/ba decreases for
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FIG. 1. Energy ~ of I=0 states as a function of kFa for
ho/EF=0. 001. The figure shows the first four bands up to kFa
=10000. Here, kF is the Fermi wave number, a the particle ra-
dius, Ap the superconductor pair potential, and EF the Fermi ener-
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k aF kFa
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The lowest band is found always to be "complete" in the
sense that the cutoff value of I is around kFa. By using the

the first I=O state, and for k~a greater than a critical value
of about 32GG (corresponding to about 3200 A for Pb), a
second I =0 solution develops with energy very close to Ap.
Further increases in particle size give rise to third or higher
I = 0 solutions, and the first I = 0 state moves to lower and
lower energy. The positions of the I=0 states prove to
depend on kFa and b, a/EF only in the combination
(k«) (~,/EF).

To obtain a full excitation spectrum below the gap, we
need to solve Eq. (10) for all i and determine the energies
of the states with e ( Ap. This may be done numerically by
repeated use of the recursion relations for spherical Bessel
and Hankel functions to generate functions of higher order.
We have carried out this procedure for k~a = 300 and
k« = 450 with Aa/EF = 0.01. This choice of parameters has
a I=O state deep in the gap so that the distribution of
higher i states can be clearly seen. (For kFa =300 and
b,e/EF =0.001, the i = 0 state falls at e/b, a =0.959; there are
approximately kFa bound states with energies below Ap dis-
tributing themselves between 0.959 and e/50=1.00.) The
total number of states in a given energy interval can be
computed by counting the number of allowed I values and
taking into account the (2i+1) degeneracy of each i. The
resulting densities of states are shown as histograms in Figs.
2 and 3.

Figure 2 (kFa = 300) represents the case in which only a
single band of allowed I 'values is present. The number of
allowed I values in this first band is around k~a, so that the
total number of states N in the band is

large argument expansions of j~(x) and hl(x) for i && k~a,
it can be shown that the form of Eq. (1G) is identical for
any small even I. The same is true for different small odd
I 's. The equations obtained are, in fact, approximately the
same for both cases (even and odd small l's), and hence
the energies of all small i states (i « k~a) are approxi-
mately the same. This results in the peak shown in Fig. 2 at
the bottom of the band. For larger I's, the energy differ-
ence between neighboring I states becomes larger, and the
number of states per unit energy interval therefore- de-
creases. From the pattern of Fig. 2, the density of s'tates is
large at energy near the bottom of the band, decreases as
e/Ap increases, and finally rises slightly as e approaches 60.
Figure 3 shows a case (kFa =450) such that the particle is
large enough for the presence of a second band. The exam-
ple shown here represents an "incomplete" second band in
the sense that the particle size puts a cutoff other than kFa
on I. That is, the size is still not large enough for the
second band to develop into a "complete" band. If the par-
ticle size is further increased, the second band develops ful-
ly and additional bands will start forming in similar fashion.

The existence of bound states in the gap will certainly af-
fect physical quantities that depend on the density of states.
The heat capacity, for example, can be computed for a given
density of states and for low enough temperatures. At such
temperatures, we expect the dominant contributions to
come from states in the gap. Tunneling measurements can
also give the density of states, and the presence of unusu-
al structure in the density of states will produce correspond-
ing structure in the I-V characteristic for tunneling from a
superconductor into a normal metal. Finally, the presence
of states in the gap will produce additional far infrared ab-
sorption below the gap in the composite superconductor,
arising from the influence of the localized states. The mag-
nitude of the optical absorption so produced, however, will
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FIG. 2. Distribution of allowed energy states for a sphere of nor-
mal metal embedded in a superconductor. Only the first band is
present in this case. The shaded area in each energy interval gives
the number of states. Notation as in Fig. 1.

FIG. 3. Distribution of allowed energy states. In this case, the
first band starts at e/b, 0=0.285 and the second band enters at
e/hp = 0.830.
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be difficult to determine because local (depolarization) field
effects will cause the local electric field within the X grains
to differ from that of the bulk superconductor.

In actual measurements, we are dealing with a system of
many particles, possibly of different sizes, embedded in a
host. If the interactions between these particles can be ig-
nored, the structure in the J-V characteristic, and other
properties, will be a superposition of those of single particles
with different sizes. The interaction range can be estimated
from the wave functions calculated above. For r & a, the
wave functions (S) are exponentially decaying functions
with a decay length g given by the inverse of the imaginary
part of the wave number (6):

~0 (I —(el&0)'1' ' (13)

where we have used the approximation 60 ((EF, and vp is
the Fermi velocity. This length is of the order of the super-
conducting coherence length for states well within the gap
but becomes arbitrarily large fpr states near the gap edge.
The overlap between bound states could thus become signi-

ficant at fairly low concentrations of inclusions.
To summarize, we have sho~n that in a superconducting

composite containing spherical not mal-metal inclusions,
there exist bound states with energies below the supercon-
ducting energy gap which are solutions to the Bogoliubov
equations. These bound states form into bands which have
a substantial nonzero density of states and which may influ-
ence various measurable properties of superconducting com-
posites. We have not been able to prove uniqueness, i.e., to
prove that there exist no other bound states besides the
ones we have calculated. Nevertheless, we expect such
bound states to influence the properties not only of super-
conductors containing spherical inclusions, but also other
geometries (such as superconductors with disklike normal-
metal inclusions), where the explicit calculation of the den-
sity of states may be more difficult.
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