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We have extended our previous microscopic numerical calculations for the dynamic structure fac-
tor of the electron gas at large momentum transfers to include the overall relaxation of the central
peak due to electron-hole correlations and self-energies. These contributions vary slowly with ener-
gy transfer as had been anticipated. We confirm our excellent agreement with the multiple peaks
experimentally observed in Li. Satisfaction of the sum rules is built into the formalism, and we con-

firm this numerically.

I. INTRODUCTION

In a series of papers we have formulated and applied! —*
a new microscopic theory of the interacting electron gas
at metallic densities. The theory can be validly used over
the complete range of momentum transfer q and energy
transfer w. It treats static and dynamic correlations in a
unified way and strictly conserves particle number,
momentum, and energy.

In Refs. 3 and 4 we examined contributions to the
structure factor S(q,w) for large momentum transfers
q > kr (kg is the Fermi momentum) and for metallic den-
sities greater than r;=4. We found that there are two
quite distinct types of corrections to the random-phase ap-
proximation® (RPA) for the structure factor. Further-
more, these two types of terms can be treated as approxi-
mately independent of each other.

The first type of term was labeled class A in Ref. 4.
These terms involve strong Coulomb scattering between
pairs of excited electrons or holes. It was found that these
terms alone lead to fine scale peaks in S(q,w) as a func-
tion of w for fixed q. The other type of term, denoted as
classes B, C, and D in Ref. 4, actually include contribu-
tions larger than the class-A terms, but these contribu-
tions all vary smoothly with @ and contain no fine-scale o
structure. They account for most of the overall relaxation
of the main peak in S(q,®).

It is interesting to note that the class-B, -C, and -D
terms can be well approximated by a standard local-field
construction in which one averages over hole momenta.®
However, if one attempts to carry out an analogous ap-
proximation for the class-A terms, one finds that all the
fine-scale peaks in « become smeared out as a conse-
quence of averaging, and one is left with an S(q,») con-
sisting of a single smooth peak.

There are several advantages in treating the class-A
terms quite separately from the other terms. First, one
can demonstrate clearly that the observed fine-peak struc-
ture can be directly associated with this class of terms.
Second, as noted, all except the class-A terms can be well
approximated by a local-field construction, meaning that
the approximations that can be validly employed are
markedly different for the two types of terms. Third, our
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published results for the class-A contributions can be
readily incorporated into any independent calculation of
the other correction terms to the RPA. Of these correc-
tions it is the Hartree-Fock terms’ which are the most im-
portant, at large values of the momentum transfer q.

The main disadvantage of including only the class-A
terms is that a minor ambiguity is encountered when one
wants to compare the position of the calculated peaks in
S (q,w) with the experimentally observed multipeak struc-
ture; in retaining only the class-A terms one neglects al-
most all the overall relaxation effects, so that the centroid
of the resulting main peak will, by construction, coincide
with that of the RPA peak instead of being centered on
the observed peak. For the momentum-transfer range
1.5< q/kp <3, it is well known that the RPA peak is lo-
cated about 2er above the fully relaxed peak (er is the
Fermi energy). Thus in comparing the calculated peaks
with the observed structure we must rigidly shift all our
curves in Refs. 2—4 towards lower w by approximately
2€p. Since this almost rigid shift is nearly the same for all
q in our range, only a single parameter is introduced.
Furthermore the value of this energy-shift parameter is
independently known to be approximately 2er. Introduc-
ing this single shift in energy leads to good agreement be-
tween theory and experiment.*

In the present paper we incorporate the dominant
class-B, -C, and -D contributions into our calculation,
thus removing this remaining uncertainty.

II. THEORY

A. Hartree-Fock local field

The largest single contributions to the overall relaxation
of the RPA peak in S(q,w) at large q come from the
Hartree-Fock series of terms for a particle-hole pair’ (Fig.
1.
At large q all other terms contributing to the overall re-
laxation tend to be suppressed in comparison. This is be-
cause the dynamic dielectric function behaves like
1+0(kr/q) when the characteristic energy transfers are
of order gk >>w, (®, is the plasma frequency). There-
fore, only the leading Coulomb terms survive in both the
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FIG. 1. Hartree-Fock contribution IT"(q,®) to the polariza-
tion function II(q,w). The solid lines represent self-consistent
single propagators G and the dotted horizontal lines are bare
Coulomb interactions V.

particle-hole interactions and the single-particle self-
energies. These leading terms are the Hartree-Fock con-
tributions.

The remaining unscreened terms are small, simply be-
cause they involve Coulomb interactions through which
momentum ¢ must be transferred. Each such interaction
J

_ kg sy g, |- 2ka
P(k,q,0) DOk q.0) kz, ( 1) DO(k,g,0)

Here V(k)=4me?/k? is the bare Coulomb interaction,
n(k,q)=ny—ny.q where ny is the particle occupation
number in the state k. The denominator function is

DV(k,q,0)=w+€ex—€x1q > (3)

where €, =#?k?/2m is the single-particle kinetic energy.
The fully iterated solution of Eq. (2) may be written

P(k,q,0)=n(k,q)/D(k,q,0), ‘ (4)

where the denominator D (k,q,) is the solution of anoth-
er integral equation

D (k,q,0)=D"(k,q,0)

_ V| Dkqw)
+ kzl V(k kl)n(kl,q) D(kl,q,a)) 1].

(5)

One obtains a self-consistent approximation for the solu-
tion of this equation by replacing the interaction
V(k—k,) by {( V), its average over the Fermi surface.”8

With this approximation Eq. (5) can be solved for
D(k,q,w), from which the self-consistent Hartree-Fock
polarization IT"F(q,w) can be' determined using Egs. (1)
and (4).

Dharma-wardana and Taylor demonstrated that to a
good approximation their fully iterated ITHF(q,w) could
be represented by a simple expression
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contributes a factor of 1/¢% (In Ref. 4 we concentrated
on the class-A terms even though they are small because
they alone contain the fine scale structure effects.)

Dharma-wardana and Taylor’ have examined the terms
in Fig. 1 and calculated the fully iterated Hartree-Fock
ladder series of unscreened Coulomb interactions between
a particle and its hole. In their approach one writes down
the integral equation for the full Hartree-Fock proper po-
larization function IT"F(q,w) and then approximately
solves it using a straightforward iterative procedure.

;I‘he proper Hartree-Fock polarization function is given
by

Mm% (q,0)=— 3 P(k,q,0) , (1)
k

where the vertex function P(k,q,w) is the solution of the
integral equation

n(ky,q) DO(k,,q,0)
P(k;,q,0)— ———P(k,q,0) ————— )
1,9, D(O)(kl,q,w) q,0 D(O)(k’q,w)
[
Rell%q,)
RelT"F(q,w)~ 2
e )~ Rl q ) /4
V(kg) ImIT%q,o)
4 1+ V(kp)Rell%q,w)/4
(6

ImITH¥(q, )~ ImI1%g,e)
’ [1+V(kp)Rell%q,0)/4]* ’

where I1%q,) is the familiar Lindhard polarization
function® for a noninteracting particle-hole excitation.

Using the standard local-field construction the
Hartree-Fock vertex function can be written

_ A%k, k9;q,0)
T 14+V(q)G(q,0)1%q,0)

where G (q,w) is a dynamic and complex local field given
by

G(q,0)=V"Yq)[1%q,0) ' —11"F(q,0)~ '], (®)

A¥F(k,,k9;q,0)

@)

and A%ky,k9;q,) is the noninteracting particle-hole ver-
tex corresponding to I1%q,).

B. Dynamic structure factor

We now combine the results we have obtained for the
static and approximately local contributions to S(q,®)
with the contributions of the class-A terms previously
determined in Refs. 3 and 4. Using the notation of Ref. 4
we identify the approximately local part of the vertex
function with its Hartree-Fock counterpart

A[Gl(k,kY;q,0)=APF(k,k%q,0) . )

Next we recall the effective interaction for pairs of par-
ticles and pairs of holes
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where o is the spin index. The electron-electron effective
interaction consists of a pair of dynamically screened in-
teractions together with the infinite ladder sum of un-
screened Coulomb interactions starting at third order.

When the momentum g is large compared to kp, we
find that the dynamic screening terms in Z°° are
suppressed to order kr/q in comparison with the corre-
sponding Coulomb terms.* Therefore, at large ¢, we ap-
proximate =° by (see Fig. 2)

'E”(w)zTe'e(co)—V , an

where T°“(w) is the dynamic T matrix, defined as the
]

X*(q,w)

2zf

X

01,0

where the truncated terms are of higher order in E"[G].
The structure factor is then

» XSC(q’w)
1—V(@Q)X*“(q,»)

S(q,m)=_llm[ (14)
m

III. RESULTS AND DISCUSSION

In Fig. 3 we show our S(q,w) calculated for r;=3.2,
and the structure factor data of Priftis, Boviatsis, and
Vradis!® for lithium. Both functions are plotted for fixed
q as functions of . Since we have included relaxation ef-
fects in the present calculation, the curves may be com-
pared directly.

We note that within experimental uncertainty there is a
marked correspondence between the pairs of curves over
the range 1.8 < q/kr <3. As in Refs. 3 and 4, we find no
evidence in our calculations of any peak or shoulder locat-
ed around w/€r=2.5 in the experimental observations at

= e e e

FIG. 2. Contributions to the electron-electron effective in-
teraction Z°°. The horizontal dashed lines represent the bare
Coulomb interaction V, the solid lines are the self-consistent
dressed single-particle propagators G. The intermediate propa-
gators are restricted to be above the Fermi surface.

A‘°°[G] (ky,k93q,0)+4 z z [ —
2

=nl

:al,oz[G] k17k2k2,q,

!

solution of the Bethe-Goldstone ladder equation

T “0)=V+V T*(w) . (12)

Q>
o+ D €p— D € +in
h e

The subscript 4 on the kinetic energies €, denotes hole
states while e denotes electron states. Q> is the Pauli
projection operator® ensuring that intermediate excitations
are above the Fermi level. The hole-hole effective interac-
tion Z* is defined analogously to Egs. (11) and (12), with
Q<=(1—Q ) replacing Q~.

The proper polarlzatlon function X*°(q,w) can be ex-
panded in powers of =

dk® . dk?

27

AIOC[G](kl’k 1,90 )

AP Gl(ky,k95q,0) + , (13)
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FIG. 3. Dynamic structure factor S(q,®) (solid line) calcu-
lated for density #;=3.2. The points are the experimental data
from Ref. 10 for lithium.
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FIG. 4. Dynamic structure factor (solid line) for ;=2 com-
pared with the RPA result (dashed line).

q/kp=2.45 and 2.74. We have argued that kinematic
constraints exclude the possibility of a simple two-
plasmon excitation in this region. We have previously
speculated* that a possible mechanism for this peak would
be in the excitation of a single plasmon accompanied by
an interband electron transition assisted by an umklapp.
This explanation is consistent with the peak’s position and
furthermore would only operate over the narrow momen-
tum transfer range 2.3 < g /kp < 3, as observed.

In Fig. 4 we present our calculated results for S(q,w) at
ry=2. As previously noted"!! it is difficult to use the
published data of Platzman and Eisenberger'? for Be in
any direct comparison with our calculated curves for the
following reason. If one assumes that only electron-gas
effects contribute to their results in Ref. 12, it is straight-
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forward to show that the data contain an internal incon-
sistency. The experimental S(q,w) curves are not nor-
malized, but one can normalize them so that the f-sum
rule is exactly satisfied. One can then immediately obtain
the static structure factor S(q) which markedly differs
from the S(gq) obtainable!! from Monte Carlo data. For
example, at g/kp=1.76 the value of S(q) from the
Platzman-Eisenberger S(q,w) is compared with the
Monte Carlo value of 0.95 (our results give 0.96). A pos-
sible explanation of this inconsistency is that lattice ef-
fects are significantly contributing to their experimental
results.

Although we have employed a formalism!® for which
the sum rules are automatically satisfied, it is of interest
to check the validity of our numerical approximations by
observing to what extent the various sum rules are violat-
ed. We find the f-sum rule at r, =2 is satisfied in our nu-
merical results to better than 7%. This is consistent with
our numerical accuracy which is of the order of 5%.

The relative peak positions in Figs. 3 and 4 are almost
unaltered compared with our previous calculations,! ~* al-
though in some instances there are some small quantita-
tive changes. This is a reflection of the influence of relax-
ation and also of an improvement in our numerical accu-
racy.

In conclusion, we note that incorporating the overall re-
laxation contributions into our calculation leads to struc-
ture factors which conform to the sum rules and which
are in good agreement with the available experimental
data. Our curves show a great deal of fine structure as a
function of w which is consistent with the observed data.
It would be useful to have measurements performed with
better resolution to completely test our detailed predic-
tions. The effects we have analyzed become more pro-
nounced as the density is lowered. It would be of interest
to have data at densities below r;=3.2 for momentum
transfers g /kg > 2.
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