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Nonlocal response of Josephson tunnel junctions to a focused laser beam
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The effect of a focused laser beam on the critical junction current of a one-dimensional Josephson
tunnel junction is analyzed for both short and long junctions. The laser heating locally alters the
critical current density and London penetration depth, giving rise to a change in the critical current
which is proportional to the local current density of the irradiated region. In addition, the relative
pair phase is modified in a nonlocal manner which gives rise to an additional contribution to the
change in the critical current of the junction. For short junctions, this nonlocal phase modification
contributes two parts to the junction critical current. One has the same spatial dependence as that
of the current distribution itself, while the other is independent of the position of the laser beam.
This latter contribution depends upon the applied magnetic field and is a signature of the nonlocal
effect. For a long junction, the nonlocal phase contribution to the change in the junction critical
current can give rise to dramatic effects when the applied magnetic field is less than a critical value
H_ ="c /(2edA;). In this case the spatial dependence of the laser-induced change in the critical
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current can be qualitatively different from the unperturbed current distribution.

I. INTRODUCTION

Recently, various scanning techniques have been
developed to probe the properties and structures of super-
conducting thin films and Josephson tunnel junctions.!—*
Using a focused low-energy electron beam, Huebener and
his co-workers'>? studied the hot spots in superconducting
thin films and the distribution of the quasiparticle current
in superconducting tunnel junctions. Using a patterned
laser beam, Chi et al.® measured the spatial variations of
the parameters of a thin film, such as the critical-current
density J and the transition temperature T, as functions
of positions. This technique was recently applied to
Josephson tunnel junctions, and the spatial dependence of
the tunneling probability was obtained. Of particular in-
terest to us are the experiments by Chen and his co-
workers* in which a focused laser beam was applied to
Josephson tunnel junctions, and the change of the critical
current was recorded as a function of the beam position.
For low beam powers, the beam-position dependence of
the laser-induced modification of the critical junction
current was found to be in qualitative agreement with the
calculated’® (unperturbed) current distribution. Therefore,
it appeared that the focused-laser scanning technique pro-
vided a direct probe of the current distribution in a
Josephson junction. This agreement led to the idea that
the laser beam changes only the critical-current density J
in the irradiated region leaving the phase-difference func-
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tion ¢ unperturbed.

We believe, however, that the physics involved is more
complicated and reflects the macroscopic quantum prop-
erties of Josephson junctions. Specifically, the Josephson
tunnel junction behaves as a macroscopic quantum system
with the phase-difference function ¢ governed by the
sine-Gordon-type Josephson equation.® Disturbing the
parameter J in a local region can also produce a nonlocal
modification of the function ¢. The effective range of a
phase disturbance is governed by the Josephson screening
length A; which is typically of order of a millimeter, and
in actual experimental situations is much larger than the
beam size (typically about 10 um). Hence, it is important
to study the nonlocal phase response and its effects on the
critical-current measurement. From the mathematical
point of view, a junction is characterized by a set of pa-
rameters: J, the critical-current density; A;, the London
penetration depth; and A;, which also depends on J and
Ar. Assuming that only J is modified locally by the laser
beam, one ignores effects associated with the modifica-
tions of A, and A; which can be important, especially for
long junctions where A; plays an important role.

Indeed, it is not difficult to demonstrate that the simple
assumption that the laser beam changes only the ampli-
tude J but not the phase difference function ¢ can be in-
consistent. Consider a semi-infinite one-dimensional junc-
tion occupying the space y > 0, which is uniformly irradi-
ated by a laser beam. The current distribution of such a
junction is well known’ to be given by
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J(»)=T sind(y)

0 fory <O,
_ (1.1)
2J sech —%J— tanh —{7 fory>0,

when the current is biased at its critical value. Therefore,
the total current flowing through the junction is

L= {"dyJsing(y)=24,7 , (1.2)

and the change of the junction critical current due to the
laser irradiation that modified A; and J is

AJ  AAp

J AL

AL =2AAJ)=A,T (1.3)

To obtain the last equation, we have used the fact that
Ay~(ALJ)~17% and kept the lowest-order terms. On the
other hand, the simple assumption of the current ampli-
tude J alone being modified implies that the junction crit-
ical current be changed by an amount,

AL =AJ fo"’ dy sing(y)=2A;AJ . (1.4)

Comparing this with Eq. (1.3), we see that even if the ef-
fect due to the change of the London penetration depth
can be neglected, there is a difference of a factor of 2.

This example clearly demonstrates the importance of
the nonlocal response of the phase-difference function.
The purpose of this article is to review the results of our
theoretical study of the nonlocal phase modification in
one-dimensional junctions, the effect of this modification
on the critical current and its dependence on the external
magnetic field. :

The outline of the rest of this article is as follows. In
Sec. II, we set up the framework for our calculation by
describing the model and deriving a modified Josephson
equation that includes the effect of the laser beam. Al-
though we explicitly consider junctions irradiated by a
focused laser beam, our approach can also be applied to
cases where electron beams are used.- A few illustrative
cases are worked out in Sec. III, along with discussions,
and Sec. IV contains a brief conclusion.

II. MODEL

We consider junctions with geometry shown in Fig. 1.
The irradiated regions are indicated as the shaded areas.
In Fig. 1(a), a strip of the junction is irradiated while in
Fig. 1(b), a spot of the junction is irradiated. We assume
that the focused laser beam produces local changes in the
junction parameters. That is, in the irradiated regions, the
critical Josephson current density J is reduced by a con-
stant amount, while the London penetration depth A; and
the Josephson screening length A; are increased by a con-
stant amount from their respective unperturbed values.
This approximation is appropriate for beams of dimen-
sions larger than the thermal-diffusion length which is
typically of the order of tens of micrometers. For beams
of smaller size, we believe that the above approximation
still works provided that an effective perturbation of ap-
propriate strength is used.

5827

LASER BEAM

LASER BEAM

W z /
e | ————+]

FIG. 1. Junction geometries considered. (a) A strip of the
junction is irradiated by the laser beam. (b) A spot of the junc-
tion is irradiated.

With these in mind, we first derive a modified Joseph-
son equation that governs the behavior of the phase-
difference function ¢(y,z). We begin with the Josephson
relations:®

99 _4er, H, /tic (2.12)
dy
and
9 — —ten H, /he (2.1b)
and the Maxwell equation,
0H, dH,
—= y 4w (2.2)

y oz TP

Keeping in mind that A; and A; are now functions of
space, combining Egs. (2.1) and (2.2) we obtain

¥ ¥ 1 .. e | O B\
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For a given set of the boundary conditions, the phase-
difference function can be calculated from Eq. (2.3), and
the zero-voltage Josephson tunneling current is obtained
from

I= [ dydzJsing(y,z) .

Here the integration is on the junction area. Since the
focused laser beam modifies A; and A; as well as J, it is
evident from Eq. (2.3) that the phase difference function ¢
will also be modified by the laser beam. As we will see,
this modification is nonlocal and can have a significant
effect on the change of the junction critical current.

In the limit of weak laser intensities, we can separate
the change of the junction critical current, induced by the

2.4)
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focused laser beam, into two parts: one is due to the
modification of the amplitude J while the other is due to
the change of the phase difference function ¢;

AL =AIL+AI,, (2.52)
with

AL = [ dydzAJsing.(y,2) (2.5b)
and ~

Aly= f dy dz J cos¢.(y,2)Ad(p,z) . (2.5¢)

Here J is the unperturbed critical-current density, and ¢,
is the phase difference function when the unperturbed
junction is biased at the critical-current value. We notice
that because of the local nature of AJ, AI; has the same
spatial dependence as the unperturbed-current density
J sing.(y,z), while A, can be quite complicated. A few
cases are discussed in the next section.

III. CALCULATION AND DISCUSSION

In this section we present results for several illustrative
cases in which short, medium-length, and long junctions
are irradiated in different ways. Strong as well as weak
laser intensities are considered so that nonlinear effects
are taken into account. However, for simplicity, we only
investigate one-dimensional junctions in which the width
W <<A;. The applied magnetic field is assumed to be in
the z direction so that

H=H? . (3.1)

A. Short junctions with a strip irradiated

The junction geometry is shown in Fig. 1(a). For a
short junction, L <<Aj, so that the sing term on the
right-hand side can be neglected. Let AA; be the change
of the London penetration depth in the irradiated region
(yo <y <yo+e€). Then Eq. (2.3) reduces to

29 4eH AL
Zyz ='e—ﬁc—L[5(y —yo)—8(y —yo—e)] . (3.2)

This equation should be solved with the boundary condi-
tions

d¢ B 4eHA [

dy O,L— #ic (3.3)

Therefore, ¢(y) is equivalent to the electrostatic potential
associated with two infinite uniformly charged plates.
One with a charge density of —(1/47)(4eHAM; /#ic), is
located at y =y . The other, with the same amount of the
opposite charge, is located at y =yo+€. The solution of
&(y) is well known:

kpy +¢o, O<y <yo
kpy +(kg—kp)yo+do, yo<y <yo+e€
kgy +(kp—kgle+¢o, yo+e<y <L

with kg =4eHMA; /#ic and kg =4eH (Ay + AL ) /fic.
When this is substituted into Eq. (2.4), the critical

o(y)= (3.4)
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current can be obtained by adjusting the integration con-
stant ¢,. The phase-difference functions for the perturbed
and unperturbed cases are shown schematically in Fig. 2.
We note that as long as AA; £0, the function ¢(y) can be
modified in a significant portion of the junction area.

We consider first laser beams with low intensities and
small width so that AJ/J, AA; /A, and €/L <<1. It can
be easily shown that in this case ¢, is unchanged from its
unperturbed value if the junction current is biased at its
critical value. Let ¢(y)=¢.(y)+Ad(y) with ¢.(y) being
the unperturbed solution. Then A¢(y) is given by

0, O<y<yo
4eH AM;
Ap(p)= 177 W —Yo) Yo<y <yote (3.5)
4eH A)\'L
__—_ﬁc €, yo+e<y<L .

One may think that since the modification of the phase
is A@(y) ~(AAr /Ap )e/L), its effects on the current den-
sity will be of the same order and is therefore much small-
er than that due to the change of the local amplitude J
which is of order AJ /J. However, one should also keep in
mind that J is modified only in a small region of length e.
Therefore, its contribution to the modification of the (to-
tal) critical current of the junction would be proportional
to (AJ /J)(e/L), which may be comparable to that due to
the phase modification.

Substituting Eq. (3.5) into Eq. (2.5) and recalling that
AJ vanishes except in the irradiated region, the change of

bly)]

¢(y)/\ /
(b) /

FIG. 2. Schematic drawing of the spatial dependences of the
phase difference function ¢ in a short junction. Solid curves, ¢
when there is no laser irradiation. Dashed curves, ¢ when the
laser irradiation is turned on. (a) A strip of the junction between
y>yo and y <yo+e€ is irradiated. (b) The area of y >y, is irra-
diated.
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the critical current as a function of the beam position y,
can be put into the form

AIc(yo)———AIJ(yo)+AI¢(y0) s (363)
with

Al;(yo)  AJ .

——i—"—:T% sing. (yo) (3.6b)
and
Al AX
——%M= ALL % (—1)"cos |7 —q—)o—] —sin¢c(yo)}.

(3.6¢)

Here @ is the total flux in the junction in units of the flux
quantum ®y=7ic /2e and n is the smallest positive integer
greater than ®/®,. Al; is due to the local modification
of the amplitude J (the critical-current density), while Al
is due to the nonlocal phase modification. It reflects the
increase of the magnetic flux that penetrates the junction
due to the weakening of the superconductivity by the laser
beam. The former has the same spatial dependence as the
current distribution. The latter consists of two terms.
One is independent of the beam position and depends

|
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FIG. 3. Total flux in wunits of the flux quantum,

D /Dy(DPy=7ic /2e) versus (—1)"cos{m[1+ (D /Dy)]}.

upon the applied magnetic field as shown in Fig. 3. The
other has the same spatial dependence as the current dis-
tribution and adds to AI,. Therefore, in this case, the
only unambiguous evidence for the existence of the nonlo-
cal phase modification is the existence of a spatially in-
dependent change of AI,.

For strong laser intensity, the local and nonlocal effects
cannot be separated. To calculate Al (y,), we substitute
Eq. (3.4) into Eq. (2.4) and set 31 /d¢y,=0. This gives the
equation that governs ¢, at critical biases:

kgL
tan |do+ 2 = [sin kB-é—' ~+cos k3%+AkB—§— sin Akgg—i
1-+AJ /0 L el el | e
14+AA; /Ap I |eos kBZ ks y0+2 AkBZ s sz ]
s Lsin |ky L +Aky < |sin |Aky <
T i)
—1
REUNZ SN R el aee ]l e
_ [1+AAL/AL 1 |sin lkB 2 kg y0+2 Asz sin kBZ ] s (3.7)

with Akg=kp—kp. The calculated ¢, can then be used,
along with Eq. (3.4), to obtain the critical current and
hence AI.(yo) from Eq. (2.4). It was found that, as shown
in Ref. 8, the spatial dependences of the laser-induced
change in the junction critical current AI.(y,) and the un-
perturbed current distribution J singy(y) are in good qual-
itative agreement. However, again there exists a
spatially-independent constant shift of I, which depends
on the applied magnetic field and can make the maximum
enhancement of the critical-current different from the
maximum reduction.

In the above examples we have discussed linear and
nonlinear effects produced by changing the laser intensity.
Nonlinear effects can also be important if a laser beam
with a wide width is used. In this case, it is possible to ar-
range conditions in which only linear effects associated

%vith the local amplitude modification occur, and yet non-
linear effects of the nonlocal phase modification become
important. For example, consider a weak laser beam with
a wide width so that all of the junction where y >y, is ir-
radiated. The solution for ¢(y) is shown schematically in
Fig. 2(b). In this case, the junction critical current will ex-
hibit a y, dependence which depends in a nonlinear way
on the nonlocal phase modifications.

B. Short junctions with a spot irradiated

The junction configuration for this case is shown in
Fig. 1(b) with L <<A;. Let the irradiated area be a square
bounded by y =y, yo+e€ and z =z,, zo+€'. Because of
the loss of the symmetry in the z direction, we have a
two-dimensional  problem. Setting  ¢(y,z) =dy(p,2)
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+ Ad(y,z), the modified Josephson equation becomes

2 2 1 Az  3Ag 1 OAL
Pap 0 08 | 1 Ot 384 1
dy dz dy | AL Ody d0z Ap Oz
oA
A
Ap 9y

AL
L [8(y —po)—8(yo—yo—6)]
AL

:kB

X[O(z —zg)—O(z —zo—€')] . (3.8)

Here 8 and © are, respectively, the Dirac delta function
and the Heaviside step function. The boundary conditions
are
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and

_B_Q_O forz=0and L, . (3.9b)

oz

To obtain the second equality in Eq. (3.8), we have
neglected the magnetic field generated by the inhomo-
geneity induced by the laser beam. Again, Ad(y,z) is
equivalent to the electrostatic potential of two strips
of . uniformly charged plates. One has density
—( 1/47T)kB(A)\.L /}‘L ) and is located at (y =)o
zg <z <zg+€'). The other has the same amount of the
opposite charge and is located at (y=y,-+te,
Zp<z<zo+€'). For a strong laser beam, the laser-
induced change of the magnetic field cannot be neglected,
and the “charge distribution” on the capacitor must be
calculated self-consistently.

The electrostatic potential of an isolated dipole strip lo-
cated at a position characterized by (y¢,z,) can be easily
calculated. One obtains

—5 |y —yollZ, 1n(1+Z§)—Zl.ln(1+Z%)+2(tan"122—tan“121)]

+5 |y —vo—€|[Z4In(14+Z3)—Z5In(14+Z2)+2(tan~'Z, —tan—'Z;)] | .

—aﬁ‘izo for y=0and L, (3.92)
dy
]
T 1 | AAL Y —=JYo
»Z 5 > - k 'l -_—
& (¥,2;¥0,20) ar | 2y 5 | €1n -
Here
zZ—z z—z5—¢€
Zy =2 z, =207
|y —=yol |y —vo |
z—z z—2zy—¢€
Z3=—0, Z4=—_9__—
|y —yo—e] |y —yo—e|

The boundary conditions [Egs. (3.9a) and (3.9b)] can be
taken into account by using the method of images. In this
way we obtain

Ad(y,2)=3 [ d(p,z;nL, +yo,mL, +20)
mon
+é(y,z suLy, +yo,mL, —zo—¢€')
—q?(y,z;nLy —yo—€mL,+zy)
—¢,z;nL, —yo—e,mL, —zo—€')] .

(3.10b)

Here m and n are even integers which run from — o to
+ .

Various scanning situations of either fixed y or fixed z
have been considered for junctions in different applied
magnetic fields. The change of the junction critical
current induced by this modification of the phase is calcu-
lated from Eq. (2.5¢). The results® are found to be similar
to those discussed in subsection A. Again, aside from a

(3.10a)

I

spatially-independent component in Al,, the spatial
dependences of AI.(y,z) and the current distribution are
qualitatively the same. However, this does not mean that
the modified phase-difference function is the same as in
the subsection A. They are different, but only within a

. distance of order € from the spot irradiated by the laser

beam. Therefore, it is the “long-range” response of the
phase modification that is responsible for A, and of im-
portance here are the strength and the location of the “di-
pole.” If the beam size is smaller than the thermal dif-
fusion length so that the parameters A, A;, and J are not
constants in the irradiated region, our model is still ap-
plicable, provided we use an effective perturbation of ap-
propriate strength.

C. Long junctions with a strip irradiated

In this case, L is either larger or comparable to A; and
the sing term in Eq. (2.3) cannot be neglected. Thus we
must solve the equation

¢ _ 1 e ], dh

FRRNPY sing + Tic (§2] o (3.11)
with the boundary conditions®

H(L)—H(m:ic’iz (3.122)
and

H(L)+H(0)=2H . (3.12b)
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Here H(y) is the local magnetic field at y including the
applied field, self-field, and field change induced by the
laser beam. The laser beam separates the junction into
three regions. Within each region A; and A; are con-
stants, although their values may be different for each re-
gion. Therefore, the solution for ¢ can be written in terms
of the Jacobian elliptical functions.> We first consider the
case of k < 1. In the presence of the laser beam, the solu-
tion for ¢ can be written as

—-C
2sin"'cn ykl}vl k1|, 0<y<yo
6(y)= 1 2sin~"en | 2=C2 |2 3.13
yi=qesmen | Tk | yo<y <yote€ (3.13)
2Ay
—-C
2sin"len yk—ﬂ.—;s— k% , Yote<y<L .

The case of k >1 can be solved in a similar manner and
will be discussed next. The continuity conditions for ¢
and H =(#ic/4eA)/(3¢/3y) at the boundaries y =y,
and y =y, € require that

-C -C
cn Y0 ,2 k% =cn Yo~ k% , (3.14a)
kyAy kiAs _
—C —C
,1 : Yo ’2 k% _ 1 dn Yo 1 k% )
ArkoAy kaoAy ALk Ay kiAy
(3.14b)
+e—-C e—C
cn Yo 2 k% Yot 3 k% , (3.14¢)
koAl k3A;
and
+e—-C
- 1 —dn rre - 2 k%
ApkaAy kyAy
1 y+e—GCs | ,
= k3| . 3.14d
ApksA, an k3h, 3| (140

Using Eq. (3.13), one can easily show that the two boun-
dary conditions [Egs. (3.12a) and (3.12b)] become

1 L —C3 2 1 —‘Cl 2 49}\,[47\,‘]
- K2 |+ k2| =L g
i 4 T, 3]+k1 dn o, |k Tic
(3.15a)
and
L—-C -C
L dn P lkz|—La Lk
ks k3ky ky kg
_477 26)\,L}\.J
= [ i I. (3.15b)
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Here A, and A; are, respectively, the unperturbed values
for the London penetration depth and the Josephson
screening length, and A} and A} are the corresponding
values in the irradiated region.

To obtain the critical current we first eliminate five of
the six parameters (k,, k,, k3, C;, C,, and C3) using
Egs. (2.14) and (2.15a). I, is then calculated by varying
the remaining parameter to find the maximum value for
the junction current I. This procedure has been carried
out numerically for the case of strong laser powers. For
weak powers, an analytical expression for the modified
critical current can be obtained perturbatively as shown
below.

In the weak-power limit, both AA; /A; and AA, /A, are
small, and one can expand in these parameters. Ignoring
higher-order contributions, we obtain from Egs. (2.14a)
and (2.14b)

Ak, =Ak;=fr(yo) (3.16a)
and
AC,=AC,+fclyo), (3.16b)
with
AA AX
L i J dnacn
AL Ay aC,
Sio)=— (3.17a)
den ddn |{ddn  dn |dcn
ok, 9C, dky ko [0Co
and
AAp
felpo)=— "0~ Cy)
L .
AN AA
L " J dnacn
AL Ay dky
+ (3.170b)
dcn adn_ adn_gl dcn
dky 9C, dky ko | 9C,

Here ko and C, are the parameters corresponding to the
unperturbed case. We have defined Ak;=k;—ky and
AC;=C;—C,. The functions dn and cn are short-
hand notations for dn[(yo—Cy)/kor; | k3] and

en[(po—Co)/kory | k31, Similarly, Egs. (2.14c) and
(2.14d) give

Ak, =Akz+ fr(yo+€) (3.16¢)
and

AC,=AC;+f.(yo+6) . (3.16d)

In the same spirit, Egs. (3.15a) and (3.15b) give
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ddn* 9 dn° ddnt dn* ddn® dn°
——AC;+——AC —— |Ak - ——— |Ak =0 .
ac, ““* 1t 5¢, ‘+! ke ko | ok, R, MM (3.182)
and
fic? ddnt ddn° ddnt  dnt 3dn® dn°
Al= AC;— A e — | |Ak 3.18
Smehikohy | 8Co 23T aC, BT ke Ry AT Tk, kg AR (3.18b)
Here the superscripts L and O indicate that the Jacobian elliptical functions are evaluated at y =L and y =0, respective-
ly. :
Eliminating all the parameters except for Ak; we obtain
fic? 9dn’ |3ddnt dnf ddnt  9dn’
I=— | ——F— — 2 —
A l 8meA ko, J eo+e)—felvo)l 1275 = | =50 == / aC, ' aC,
ddn’ ddn° ddnt  9dn°
— 2
+oro—fp0l | 25850 /1 S8+ 58
_ #ic* ddn® |3dn’ dn® / ddn”  3dn’
8779}\Lk0}\,J aCO ako ko aCO 8C0
0 0 0 L 0
_|,9dn” |ddn” dn’ / ddn +8dn Ak, . (3.19)
9Cy | 2kg ko aC, aC,

If we choose (k(,Cyp) to be the set of parameters which gives the critical current in the unperturbed case, the coeffi-
cient of Ak, vanishes. Therefore, the change of the critical current is given by Eq. (3.19) with the term involving Ak ig-
nored.

For the case of k > 1, a similar calculation gives

fic? dcn® | dcent  cnt dcnt  3cen’
Al = |————— " —fx 2 ——
L= | Smer kon, ‘[f"(y"“) Sl |25 ok ™ ke / ac, ' ac,
dcnt dcn® dcnt  dcn®
. e , 3.20
Lo+ —fi ol 25558 [ 158+ 58 (320
r
with meters (kq,Cy) corresponding to the unperturbed junction
AN, AN, 3dn biased at its critical-current value. This can be achieved
+ X n aC by the method used in Ref. 5. This set of parameters can
Fipo)= A J 0 (3.21a) then be substituted into either Eq. (3.19) or Eq. (3.20), de-
kiYo)= dcn 9dn  9dn | dcn  en ’ pending upon whether k<1 or k>1, to calculate
- -7 AI.(yo). To obtain numerical values for Al (y,), we still
C, 0k dCy | 9k k c'yo c'r0
9Co ko 0 0 0 need two parameters, (AJ/J)(e€/L) and (AAp /Ap )Ne/L),
and which characterize the strength of the laser disturbance.
The situation can be simplified to involve only one param-
fl(po)=— AX, (yo—Co) eter by assuming that the laser beam elevates the local
e’ so Ay temperature’ from T to T*. Using the well-known rela-
tionships'®
AA AA
ot | ?a:n 7A(T) A(T)
dcn ddn  |dcn  cn | ddn N B
aCo ako ako ko 8Co and
Here AL(TY=A (0)/[1—(T/T,)*]'/?, (3.22b)
_ yo—Co | 1 B vo—Co | 1 the parameters AJ and AA; can be calculated in terms of
dn=dn A, %2 P enEen A 7(% . AT =T*—T. Here Ry is the junction resistance in the
° ’ normal state.

Therefore, the recipe for calculating the laser-induced
change of the total critical current of the junction AI.(yq)
in an applied field H is first to calculate the set of para-

It is found that AA; /A, although comparable for most
temperatures, is smaller than AJ /J except for temperature
T >0.9T,. Therefore, for low ambient temperature and
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H/Hg=0 H/Hg=1.0 flected in —AI,(yy). Second, for large applied magnetic

I N =L S/ fields such as H >2H,, the amplitudes of oscillation in
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FIG. 4. Negative of the laser-induced modification of the
junction critical current, —AI,, as a function of the beam posi-
tion yo for various applied magnetic field H are shown as solid
curves. The spatial dependence of the normalized current densi-
ty, sing(y), are plotted in dashed curves. L =4A,.

weak laser intensity, we can neglect AA; .

_ In Fig. 4 we show results for a junction with length
L =4A; in various applied magnetic fields. The solid
curves represent the normalized critical-current change
—AI (yo) (induced by weak laser irradiation between
y=yo and y =yy+e€) calculated from Egs. (3.19) and
(3.20). We have set AA;=0. For comparison, the
normalized-current densities, Jsing(y), for the unper-
turbed junction biased at the critical-current values are
plotted as the dashed curves. If the effect due to the
phase modification was neglected, the solid curves and the
dashed curves would overlap.

We see that although the solid curves do not overlap ex-
actly with the dashed ones, for most applied magnetic
fields the spatial dependences of J sing(y) and — Al (y,)
are in good qualitative agreement. However, discrepan-
cies do exist, and two points are worth noting. First, for
H/H,=0.25, 0.5, and 0.75, the large current densities on
the left-hand edge of the junctions are not significantly re-

edge is significantly smaller than that on the left-hand
edge. The amplitude is a decreasing function of y,. In
general, we found that the amplitude can be either an in-
creasing function or a decreasing function of y depending
upon the applied magnetic field. For a field such that
0I,/0H >0 (<0), the amplitude of oscillation in
—AI (yy) is a decreasing (increasing) function of y,.
Only when H has values which give 0, /0H =0 is the
amplitude of oscillation uniform.

These discrepancies are more significant in a longer
junction. In Fig. 5 we plotted the results for a junction of
length L /A;=10, in various magnetic fields. Again, the
solid curves are the laser-induced changes of the junction
critical current —AI.(y,) calculated from Egs. (3.19) and
(3.20). The dashed curves are the current distributions of
the junction unperturbed by the laser beam. The
discrepancies described above are evident.

In Fig. 6, the normalized critical current is shown as a
function of the applied magnetic field H in units of H,.
For magnetic fields H/H_ =1.25, 1.75, and 2.25, we have
dl,/0H <0. In the corresponding curves for —AI.(yg)
shown in Fig. 5, the amplitudes of oscillation increase
with yy5. On the other hand;, for H/H,=1.5 and 2.0,
dI./08H >0, and the solid curves shown in Figs. 5(g) and
5(i) have oscillation amplitudes which decrease with y,.

The fact that for applied magnetic fields smaller than
H_, the large junction-current density near the left edge of
the junction does not show up in the —AI.(yy) curves can
be understood as follows. Consider a long junction such
that L >>A;. When the applied magnetic field satisfied
H, > H >0, the magnetic field and the tunneling current
deep inside the junction vanish due to the Meissner effect.
The current is concentrated on the edges of the junction.
For H =0, the total currents carried by the left-hand edge
equals that by the right-hand edge and is given by 2A,J.
For H=£0, the total current carried by the left-hand edge
is reduced from its maximum value to 2A;J —(c /4m7)H to
assure the Meissner effect. The total current carried by
the right-hand edge is unchanged to maximize the total
current flowing through the junction. When a strip of the
left-hand edge is irradiated, the maximum current that
can flow through the left-hand edge of the junction is re-
duced. However, as long as it is still larger than
2A;J —(c/4m)H, the value required to maintain the
Meissner effect, the total current carried by the left-hand
junction, will be 2A;J —(c /4m7)H, and the total junction
critical current will be unchanged. Therefore, the large
current density on the left-hand edge will not be reflected
in —AI.(yy). On the other hand, if the laser beam is irra-
diated on the right-hand edge of the junction, the max-
imum total current which can flow through the right-
hand junction is reduced. This in turn will further reduce
the total current flowing through the left-hand of the
junction to maintain the Meissner effect. Hence the junc-
tion critical current is reduced.

When the laser intensity is increased, we expect non-
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FIG. 5. Spatial dependences of the normalized J(y) and —AI.(y,) for a junction with L /A;=10.

linear effects to appear. It is interesting to see if these can
modify the result significantly. The laser-induced modifi-
cation of the total junction current when a strip of the
junction at yo <y <yo € is irradiated by a laser is shown
in Figs. 7 and 8. The ambient temperature is taken to be
zero and €/L =+;. The solid curves correspond to the
case of weak laser intensity. They are reproduced from
those shown in Figs. 4 and 5. The dotted curves corre-
spond to the case of strong laser intensity when the junc-
tion films are driven into a final state of temperature

T 1 I
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FIG. 6. Normalized critical current as a function of the ap-
plied magnetic field in units of H,="#c /2ed A, for a junction of

L/A;=10.
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FIG. 7. Comparison of the spatial dependenccs of —AI.(yo)
for cases of low laser power (solid curves) and high laser power
(dotted curves). The parameters used are L /A;=4, €/L =%

and the elevated temperature T,=0.76T.. For details, see text.
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FIG. 8. Comparison of the spatial dependences of —AI(yo)
for cases of low laser power (solid curves) and high laser power
(dotted curves). The parameters used are L /A; =10, /L = %,
and the elevated temperature Ty=0.76T,. For details, see text.
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Ty=0.76T.. Hence AJ/J=—0.46 and AA; /A; =0.23.
The dotted curves have the same qualitative behavior as
the dashed curves.

D.. Semi-infinite junction

As a last example, we consider a semi-infinite junction
located at y >0. A laser beam irradiates a strip of the
junction between yg and yo+€. In this case, the boundary
condition Eq. (3.12b) has to be replaced by ¢(y— «)=0.
Therefore, Egs. (3.19) and (3.20) cannot be used to calcu-
late the change of the critical junction current induced by
the laser beam. However, the same method used in sub-
section C can be adopted here.

Before we consider the effect of the laser beam, let us
first briefly review the results for an unperturbed junction.
The general solution for ¢(y), as mentioned before, can be
expressed in terms of the Jacobian elliptical function

. y—Cy
¢(y)=2sin"'cn Ko ké} . (3.23)
The boundary condition ¢(y— o0)=0 also implies
d¢/dy |, ,=0. This requires ky=1 and hence
1=f0°° dy J sin(y)
o y=Co y—Co
=_2fo dy J sn 1|cn . 1‘
o y—Co y—Co
=—2f0 dy J sech ; tanh N ’
Co
=—2JA;sech |[— | . (3.24)
Ay

When Cy=0 and ky=1, the tunneling current has its
critical value,
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|1, | =2JA, . (3.25)

Now we turn on the weak laser beam to irradiate a region
between y, and yg-+¢€, and calculate the modification of
the critical current.

The Meissner effect requires

and hence k3;=1. The total junction current is therefore
given by [from Eq. (3.12a)]

[

= H(y=0

I o (y )
ﬁcz 1 _Cl 2

B k2| . 3.26)
8med Ay ki | koA, ‘] (

For weak laser power, we adopt a perturbative method.
Expanding the parameters (k;,C;) with respect to their
equilibrium values (kg,Cy) and keeping the leading terms,
we obtain

#c?
=——Ak,{=2JA Ak, . 3.27
| AIc(yo) 87re7kL 7\1 1 J 1 ( )
Here we have used the facts that
C,
— k=1,
dn kl}\,J 1 ]

and its derivatives with respect to both C; and k, vanish

“at (C,=0, k,=1). The dependence on y, is implicitly in

Ak, which must be calculated from Egs. (3.16a), (3.16c),
and (3.17a). After the details are worked out, one finds

Al (yg)
—in, — k00— feyote)
AAL AT | € Yo Yo
~— — 2% | = sech? | = |tanh |=— |,
AL 7|7, sec N an .
yo>0. (3.28)

To obtain the last equality, we have assumed € << A;.

The spatial dependence of —AI.(y,) is therefore not
identical to that of the unperturbed-current distribution
Jsing(y) given by Eq. (3.24), although qualitatively they
have the same behavior.

As a check, one can show that Eq. (3.27) gives the
correct result in the limit when the width of the beam is
large so that the whole junction is under laser irradiation.
Replacing € by dy, and integrating from y,=0 to
Yo=o0, one obtains the total AI, to Dbe
I.(AAp /Ap +AN;/Ay). This, to the lowest order, is just
—A(2JA;) as expected when the relationship of

ANp /Ap~—2AN;/Aj—AT /T

is used. The functional form is also found in excellent
agreement with the AI_.(y,) curve for the junction of
L/A;=10 and H =0. ‘

VII. CONCLUSION

We have studied the nonlocal response of one-
dimensional Josephson tunnel junctions to a focused laser
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beam. Its effect on the critical junction current was calcu-
lated as a function of the laser-beam position and the ap-
plied magnetic field. For short junctions (L <<A;), the
nonlocal effect is proportional to AA; /A;. When the am-
bient temperature T << 7, and the laser intensity is low
enough so that AA; /A; <<AJ/J << 1, the nonlocal effect
is negligible. In this case, the measured laser-induced
change of the junction critical current as a function of the
beam position y,, —AI.(yg), is proportional to the
current distribution of the junction when it is unperturbed
by the laser and biased at its critical-current value. When
the ambient temperature is high or the laser intensity is
strong so that the effective temperature of the irradiated
region T;>0.7T,, nonlocal effect becomes important.
Under these conditions, —AI.(y,) has a term which has
the same spatial dependence as the current distribution
plus a spatially-independent term. Since, for a short junc-
tion the amplitude of oscillation in AT,(y,) contributed
by the local modification of J by the laser beam is uni-
form, the spatially-independent term contributed to —AI,
by the nonlocal phase modulation will make the peak
height different from the dip size, and hence the presence
of this feature is a signature of the existence of the nonlo-
cal phase modulation.

For long junctions, the nonlocal phase response can
have dramatic effect when the applied magnetic field does
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not exceed the critical value H, =%c /(2edA;). Specifical-
ly, for H between zero and H,, the calculated spatial
dependence of the laser-induced critical-current change
—AI (yo) is relatively insensitive to the applied magnetic
field and is qualitatively similar to the current distribution
for H=H,. Therefore, —AI.(y,) does not reflect the
current distribution near the left-hand edge of the junc-
tion, which depends upon the applied field strongly.
Furthermore, the amplitude of oscillation in —AI,(y,) for
H > H, is found, in general, not to be uniform in space.
It can be either an increasing function of y, or a decreas-
ing function of y,, depending upon the applied magnetic
field. Therefore, the detection of the nonlocal phase
modulation induced by a focused laser beam should be
easy in a long junction.
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