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Subharmonic frequency locking in the resistive Josephson thermometer
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Phase-locked oscillatory solutions are examined as a basis for the dc impedance of the resistive su-

perconducting quantum-interference device Josephson thermometer. The calculations are based on
the resistively shunted junction model in the limit 2mL, I, /40) 1, where L, is the loop inductance
and I, is the junction critical current, and for a junction resistance large compared with the external
shunt resistance. An algorithm for representing frequency entrainment in (v, cu) space (drive ampli-
tude, frequency) leads to zones with rotation number p/q having the form of leaf-shaped regions
joined and overlapping at their tips. High-resonance zones are very thin and locally similar. No
chaotic behavior has been observed. The model can simulate the "rising" curves of dc impedance as
a function of drive amplitude.

INTRODUCTION

In a series of experiments carried out by Soulen and
Giffard' and by van Vechten et al. it was found that the
dc impedance of a resistive superconducting quantum in-
terference device (SQUID) is a very complicated function
of the SQUID parameters. Much analytical work has
been done in order to describe this dependence; see Soulen
and Giffard, ' Peterson, Wiesenfeld et al. , and Sanders.
Here we put forward a new form of parameter-space rep-
resentation, relating the measured data to high-resonance
frequency-locked solutions of the mathematical model for
the resistive SQUID. The frequency-entrainment zones in
(tc,co) space display a characteristic form consisting of
overlapping leaf-shaped regions. High-resonance zones
turn out to be very thin. In addition, these thin zones are
similiar in shape, at least locally. By means of the numer-
ically observed similarity in shape we are able to relate the
profile of the zones to the measured data for the dc im-
pedance (see Soulen and Giffard').

DEFINITION OF RESONANCE ZONES

We consider a rf-biased resistive SQUID consisting of a
SQUID ring and a tank circuit (see Soulen and Giffard'
and Wiesenfeld et al. ). The SQUID ring is characterized
by a Josephson junction, an inductance L... and a small
resistor R. A dc bias current Ip is fed through the resis-
tor R. The Josephson junction is characterized by the
Josephson relations

4p .
VJ —— p, IJ I, sinQ, ——

2~

where VJ is the voltage across the junction, P the
quantum-mechanical phase difference across the junction,
I, its critical current, IJ the current through the junction,
and Np the flux quantum. The capacitance of the Joseph-

son device (a point contact) is neglected because of the
small surface area involved. With a mutual induction M
between the tank circuit and the SQUID ring and an ac
current I~ sin(Ot) in the tank circuit, we arrive at the fol-
lowing differential equation for the phase difference P
across the junction:

PP+(1+y cosP)/=a sinP+tcco —cos(cot +2vrri),

where time has been rescaled so that t =~,t,jd,

2+RI,
toe = CO=

4p

Ip m, L,,a= , P= , y=I, R
cl.s
R

with Ic proportional to M and I~ (see Wiesenfeld et al. ).
Rl is the zero-voltage (subgap) limit of the tunneling
resistance for the Josephson point contact. y thus defined
represents only the inductive back-emf reflected from the
external inductance L„and does not include considera-
tion of the coherent normal current in the point contact.
Typical values are co=250—10000, P=10, and y=l.0.
By a p:q resonance solution of the driven Josephson equa-
tion (1) we denote a solution P such that

P p =P(0)+2mq, (2a)

2 tr =P(0) .

We always assume p and q to be relatively prime. Values
of P(t), P(t) are computed approximately by integrating
the differential equation (1) using an adaptive numerical-
integration routine. To obtain a p:q resonance solution,
(2a) and (2b) are then solved by successive linearizations
(Newton s method in combination with a so-called simple
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shooting method, using partial derivatives as calculated in
the adaptive integration). In view of the jumps and dips
in the solution, extreme accuracy is called for. Tolerances
of 10 or less have been used. The external phase g is
introduced as a numerical convenience, so that the initial
value P(0) may be set at a common fixed value in a region
where the solution is particularly smooth. Therefore, we
put P(0)=go, a prescribed value. The two unknowns in
(2a) and (2b) are then P(0) and one of the parameters a, P,
y, ~, co, or g; all other parameters must be prescribed.

Observe that a p:q resonance solution P is frequency
locked with respect to the external ac frequency co in that

(P) = lim =—co,P(T) —P(0) q (3)
T—+oo T p

where (P) is the dc-averaged voltage used for represent-
ing the dc impedance of the resistive SQUID thermome-
ter.

If g is varied between 0 and 1, a region of solutions is
found in (t~, co) space; it is bounded by maximum and
minimum values in co for any fixed value of ~. If we plot
the set of all pairs (v, co) for which a p:q resonance solu-
tion exists, we find that it depends on the value of the pa-
rameters a, /3, and y, but not the phase shift q nor on the
prescribed value of P(0). This bounded region of stable
resonances in the (~,co) plane is called a p:q resonance or
entrainment zone, resembling in shape a branch of a
cactus plant. By defining a resonance zone as a set in the
(tt, to) plane the underlying idea of frequency resonance is
emphasized.

As an example of an entrainment zone in the (Ir, ~)
plane consider the 7:2 resonance zone shown in Fig. l.
The root of the zone is at co=37.6943, at —, times the fre-
quency of the autonomous system. The striking shape is
immediately evident. The leaves numbered A, B, . . . are
regions of subharmonic frequency entrainment in (sc, co)
space, within which a stable (and an unstable) frequency-
locked solution of specified p:q resonance are found.
Where the tips of the leaves overlap, two stable p:q reso-
nance solutions can be found; these are distinguished by a
different content of higher harmonics. At the borders the
stable solution and the unstable one coincide. Outside
these boundaries no p:q resonant solutions are found. The
osci11atory character of the 7:2 resonance solutions in-
creases at each new leaf. The overlapping tips of the
leaves correspond to the inclusion of successively higher
harmonics of the drive frequency in the Fourier content
of the solution as a. increases. In crossing the "jump" re-
gions where 1+ycos(P) &0, P rises to high values (volt-
age spikes) during a cycle of the drive voltage cos(cot).
The number of these spikes encountered during a drive
cycle increases with ~. The subharmonic selection criteria
(2a) and (2b) permit solutions of this type, since they do
not discriminate against aliasing. In view of its definition
no period-doubling effect takes place in the p:q entrain-
ment zone. In the parameter regions we have examined,
as a is increased, the system evidently absorbs more drive
energy in the form of higher harmonics of the drive fre-
quency, rather than in period-doubling subharmonics of
the relaxation limit cycle or the drive cycle. This has been
checked by plotting solutions at a number of cuts through

DRIVE AMPLITUDE
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FIG. 1. The 7:2 resonance zone for a=11, P=0.01, and

y = 1.5. Within each lettered region denoted A,B, . . . there ex-
ists at least one pair of frequency-locked solutions with winding
number 2, one stable, one unstable. At the border of the leaf-

shaped regions the stable and the unstable ones meet. The line
a-b for ~=0.9 is the set of solutions displayed on the 7:2 reso-
nance line in Fig. 2. Although the zone commences for small a.,
in the manner of Arnold's regions of resonance (Ref. 10), its
form for larger ~ is distinctly different. The horizontal axis is in
units of RI, (rf voltage amplitude); the vertical axis is in units of
co, . Inset illustrates the resistive SQUID loop.

the branches. In addition, a search for a 14:4 resonance
solution at higher ~ values did not result in new solutions.
Thus, the case (1) seems to have characteristics different
from the model considered by Goldhirsch et al. and Oc-
tavio where P=l and y=0.

Alternative definitions are possible. For instance, one
obtains analogous leaves in the physically relevant (a,K)
plane by interchanging the role of co and a in the above
definition. However, the underlying idea of resonance is
obscured in such definitions. On the other hand, one now
obtains the well-known Shapiro steps in the (a, (P))
characteristics. The width of a zone at height ir corre-
sponds to the size of the step. For some work and ideas
on the size of such steps see Allen. However, our zones
seem thinner than the prediction of Allen, which de-
scribes a simpler model of locking.

RESONANCE ZONES AND ($)
For any resonance solution P in a p:q entrainment zone

formula (3) relates ( P ) and its computation to the
resonance-zone patterns.

First, we might use these resonance zones to obtain
values of (P) as a function of a., using (3) directly. The
computation, which is already complex for moderate
values of p, becomes increasingly laborious at higher
values when high precision is sought in evaluating (P).
At a minimum, the differential equation must be integrat-
ed three or four times between t=0 and t =2vrpjro (the
number of Newton iterations with an approximate Jacobi-
an matrix).

Second, one might compute (P) by averaging a numer-
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ical solution. In this case one integrates P from t=0 up
to some value t =T, approximating P on [0, T] in the
least-squares sense by a linear function. The slope of this
straight line is the approximation to (P). Clearly, if we
perform this process for a point in the parameter space
corresponding to a p:q resonance solution, then the length
T of the integration interval must be at least as large as

the period 2~p/co of the p:q resonance solution. If not,
one simply overlooks part of the solution and the result
may be incorrect. In practice, the length of the integra-
tion interval should be a multiple (at least 10, and often a
higher multiple) of the period 2np/co

If Fig. 1 were extended to higher values of co, we would
find additional zones corresponding to the rational-
number subharmonics; these would appear above the 7:2

resonance zone. This spectrum of resonances may be cal-
culated instead by the least-squares averaging procedure.

As an example consider the computation by this algo-
rithm of ((()) for the model (1) with a=11.0, @=0.01,
@=1.5, and Ir=0.9. Since the ratio (P)/a is commonly
defined as the "dc impedance" of the device, we give the
results for ((() ) /a in Fig. 2. Where the line a =0.9 in the
(ir, co) plane intersects a leaf zone we find a linear-slope re-
gion as a consequence of relation (3). Hence, by comput-
ing the points where the border of a leaf zone intersects
the line ~=0.9, an independent check on the zone width is
possible from comparison with this averaging procedure.
This has been done for four linear-slope regions as indi-
cated in Fig. 2. In particular, the 7:2 resonance zone and
the line Ir=0.9 have the segment a bas in-tersection, cf.
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FIG. 2. dc impedance (P) /a vs co for (1) with a= 1 1, P=O 01, y = 1.5 with le=0 9 The value of (. P. ) is computed as the slope of
a linear least-squares approximation to a solution. Some resonance zones are indicated, many others are visible. At intersections with
zones the linear relation (3) must hold true (linear-slope regions). This gives some impression about the possible numerical error in the
computations. Note that a-b shows the same set of 7:2 solutions that are indicated on the resonance zone in Fig. 1. In fact, this plot
approximates the rotation number as a function of co. Note the characteristic infinite slope at the end of the phase-locked regions. In
the curved (non-phase-locked) parts of the plot, the linear average of the (P) solution to (1) is computed after a "run-in" period, to
eliminate transients; the rotation number is not assumed rational in the averaging procedure. The horizontal axis is in units of co„ the
vertical axis is in units of R.
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SIMILARITY OF RESONANCE ZONES-

Roughly speaking a solution P of the differential equa-
tion (1) grows like at. Hence, for a p:q resonance solution
we have approximately

(4)

With co=4000.0 and a=2.0 we arrive at p/q=2000.
Such values of p/q are too large for performing numeri-
cal experiments on even a minor scale. Consequently, nu-
merical experiments have been performed for values of
p/q up to 400. We choose y & 1, because the asymptotic
formulas of Sanders cover the case y & 1 already.

The experiments suggest the following conclusions:
(1) The p:q resonance zones for large p/q are very thin

indeed. In one experiment, the width of a 400:1 resonance
zone is approximately 10 relative to the resonance fre-
quency 3080.0. The accuracy in the numerical approxi-
mations is only slightly better.

(2) Locally in p/q numerical results satisfy in good pre-
cision

—cop.q (a, g )=p(a ),
p

(5)

where p/q is large. Here co~.~(a,g) denotes the resonance
frequency of the p:q resonance solution for the parame-
ters ~ and g. The function p depends neither on p, nor q,

Figs. 1 and 2. Each of the linear-slope regions in Fig. 2
corresponds to a subharmonic Shapiro step in the (a, (P) )

plane, i.e., in the I- Vcharacteristic curve of the system, as
it would be "seen" with a sweep of the drive frequency.

The deviations in the linear-slope regions, e.g., in the
4:1 resonance zone, are due to numerical noise (truncation
at time T, accumulation of errors on the rather long in-
tegration interval). This has been checked explicitly for a
few cases. The computational results suggest a width of a
p:q zone proportional to ( P +q)

The sample shown in Fig. 2 approximates the rotation
number of a flow as a function of co. As such it shows the
typical behavior at the ends of the 'phase-locked regions
(the linear-slope regions), where it takes off with an infi-
nite derivative. A simple example showing the same
characteristics is discussed by Guckenheimer and
Holmes. "

The conclusion seems to be that the approximation of
( P ) in the neighborhood of a p:q resonance solution with
large p is necessarily expensive with both algorithms
described above. In most cases the computation will be
too expensive. Asymptotic formulas might offer a useful
alternative, but the existing asymptotic results of Sanders
for (P) have not been proved to be valid for y ~ 1. Here
we emphasize that the existence of the leaf-shaped zones
is not restricted to y ~ 1. Later we shall give an example
for y=0.8.

It is not known either whether an arbitrary solution
tends toward a resonance solution as time tends toward
infinity. En any case, numerical experiments suggest that
this is indeed the case, but numerical evidence cannot be
conclusive in this case.

o 0.0
K
5.0

I 33 2
49:3
16:1

46:3

FIG. 3. Five resonance zones are drawn in one figure as indi-
cated for a=2, f3=0.1, and y=1.02. The similarity in form is
obvious in this case. Usually, the 16:1 resonance zones are al-
ready threadlike. Note that these are not curves, but regions of
finite width; however, they are so thin that they can only be
represented by curves. Axis units are as in Fig. 1.

A CONSEQUENCE OF THE SIMILARITY
OF THE RESONANCE ZONES

We now use two tentative conclusions from the preced-
ing section —very thin resonance zones, and similarity in
form —as assumptions in order to relate these zones to
measured data for (P). Suppose we ask for the value of
(P) along the line ro=co~=constant. In view of (3) we
know the value of (P) along this vertical line at intersec-
tions with resonance zones. A physically plausible model
describes a solution as one that stays on a resonance cur ~e

for a considerable time before it is perturbed to a neigh-
boring (stable) curve of nearly indistinguishable form. So
suppose (P)„ is given. Then, because the solution stays
for a long time on a p:q„resonance solution, we have in
view of (3)

nor r), at least for p/q large, but it does depend on ct, P,
and y. Of course, for a =0 the relation (5) holds true ex-
actly. Since for p/q large the entrainment regions are so
thin this relation implies that all high-resonance zones are
simi1ar in shape, at least locally. An example is given in
Fig. 3, where a 16:1,a 33:2, a 49:3, a 47:3, and a 46:3 reso-
nance zone are drawn in one figure. The similarity is ob-
vious in this case. The relation (5) has been checked nu-
merically for several sets of parameter values. The simi-
larity relation (5) suggests that the set of all high-
resonance entrainment zones is locally a dense set.

(3) There seems to be no chaotic behauior of solutions of
(1) in the parameter region covered. Indeed, chaotic
behavior would imply intersection of zones and vice versa,
contradicting the similarity property stated above. In this
respect Eq. (1) behaves differently from the one con-
sidered by (among others) Goldhirsch et al. and Octa-
v10.
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