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The dynamical behavior of arbitrarily configured, interacting quantized vortex filaments is inves-
tigated by means of numerical experiments and analytical estim'ates. Several prototype situations of
interest in the theory of superfluid turbulence and critical velocities are considered. It is shown that
if a vortex loop approaches a surface to within a critical distance, a localized cusplike deformation is
generated which drives the vortex into the surface at a well-defined point. If the vortex is reconnect-
ed to the surface in this limit, the two ends which now terminate on the surface quickly move apart.
The entire process can be well approximated by making a simple reconnection at the critical dis-
tance. A similar process is found to occur when two vortex filaments try to cross, with two cusps
developing which bring the lines together at a point in such a way that a line-line reconnection
naturally ensues. More complicated versions of the reconnection process occur when a vortex ter-
minates on a flat surface which contains a pinning site in the form of a local protrusion. Such a
vortex is captured by the pinning site when it approaches to within a critical distance. Once a vortex
is pinned, it requires a finite flow velocity to free it from the pinning site. At the depinning velocity,
the vortex reconnects to the flat surface and moves off. An analytical depinning criterion involving
both normal and superfluid velocities is derived, and found to be in good agreement with the numer-
ical experiments.

I. INTRODUCTION

The appearance of quantized vortex lines in superfluid
He leads to hydrodynamic phenomena considerably more

complicated and interesting than the simple potential flow
considered in the Landau two-fluid model. Beginning
with the work of Feynman, ' the phenomenological
description of quantized vortices as classical vortex fila-
ments subject to an effective frictional force has become
highly developed. This phenomenology has led to physi-
cally transparent and quantitatively accurate treatments
of vortex arrays in the rotating superfluid and of quan-
tized vortex rings. ' It is noteworthy, however, that
many of the most fascinating phenomena involving quan-
tized vortex lines have remained poorly understood. In
the case of channel flow, for example, it is known that
there exists a critical velocity above which the superfluid
enters a turbulent state consisting of a dense, random tan-
gle of quantized vortices. ' It has not been understood
how these singularities are generated, or what determines
the critical velocity. Similarly, it is not known how the
rectilinear vortex arrays found in rotating helium are es-
tablished. Many other phenomena, such as vortex pinning
and the trapping and release of ions by vortices also raise
interesting questions. Some progress has been made on a
few of these problems, e.g., fully developed superfluid tur-
bulence, "' thermally activated dissipation near the A,

point, ' and ion trapping, ' but even here, basic questions
remain unanswered.

Considering that literally hundreds of experimental
studies have been published on these and related phenom-
ena, the lack of substantial theoretical development which
characterizes this field is surprising. It seems, in fact,
natural to extend the vortex filament phenomenology.

which has been so successful in dealing with geometrically
simpler situations to these more complicated problems for
which the three-dimensional dynamics of interacting
quantized vortices plays the central role. The present pa-
per initiates a systematic approach along these lines.
First, the proper method of determining the three-
dimensional motion of quantized vortex filaments is re-
viewed. It will turn out that this motion can be broken up
into a locally induced part which depends only on the in-
stantaneous local configuration of the vortex line, and a
nonlocal correction which is often small. Exceptional
configurations can develop in *hich a vortex filament ap-
proaches a boundary or another vortex very closely, and
nonlocal terms suddenly become very important. Detailed
calculations are presented which make it plausible to as-
sume that such situations result in the essentially instan-
taneous reconnection of the line to the boundary or to the
other vortex. In this way, one obtains a greatly simplified,
yet still quite accurate, model which embodies the entire
hydrodynamic problem in the dynamics of one or more
three-dimensional topological line defects. The rules of
the game are then elementary: The motion of a particular
point on a line depends only on the shape of the line at
that point; and interactions between lines or between a line
and a boundary occur only when a very close approach
takes place and a reconnection is made. Once this basic
intuitive picture has been absorbed, it can be embellished
in various ways.

It will be shown in this and subsequent papers that our
approach is useful on several levels. The identification of
topology-changing reconnections as a crucial feature of
the line dynamics makes it possible to develop plausible
qualitative explanations of the various phenomena men-
tioned above. Rigorous dimensional analysis of the refor-
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mulated problem is sometimes possible, and yields an ex-
planation of many observed functional dependences. Fi-
nally, the line-singularity description can be used as a
basis for developing analytical models, or it can be embo-
died in numerical simulations to yield quantitative predic-
tions which can be compared with experiment. The em-
phasis in this series of papers will be on the computational
approach, which makes up in power what it lacks in
eIeg ance.

As an initial application of our approach, various as-
pects of the vortex pinning problem will be investigated.
Preliminary reports on some of these results have ap-
peared previously. ' ' Other problems will be treated in
subsequent papers.

The numerical codes that have been developed to work
out the implications of the theoretical ideas reproduce the
fully nonlocal, three-dimensional motion of arbitrarily
configured vortex filaments. In the calculations discussed
here, a frictional force acting on the vortex core is always
included. Aside from being appropriate to the superfluid
He situation, such a term has a salutary effect on the sta-

bility of our numerical algorithms. It is to be noted that
this frictional force represents a classical dissipative
mechanism quite different from, and in fact much simpler
than, the viscosity of an ordinary fluid. In the long run,
therefore, vortex filaments in the superfluid have a dif-
ferent fate from those in a classical fluid. In the short
run, however, and as long as the core structure of the vor- .

tex filaments does not become an issue, they behave iden-
tically. Thus, a number of our results are directly relevant
to classical fluid dynamics where the subject of three-
dimensional interacting vortex filaments is of considerable
current interest. Indeed, in a recent paper devoted to this
topic, Siggia' has also identified the collapse to a point of
two interacting lines which is discussed in Sec. III B. In-
terestingly, his idea of what happens at the end of such a
collapse differs from ours. On this level there may very
well be profound differences between quantized and clas-
sical vortices.

q

FIG. 1. Global and local views of a vortex filament.

properties of a classical vortex filament. Discussions of
the underlying quantum-mechanical justifications of this
model (such as they are) can be found in various review
papers. ' We shall be concerned with developing its
large-scale implications.

Our attention will largely be confined to the limit whe're

ao is small compared to other characteristic distances in
the problem such as the radius of curvature 8 of the fila-
ment, or the distance between filaments. It is only in this
limit that the details of the core structure cease to matter,
and the procedure of treating quantized vortices as classi-
cal objects is justified. In this limit, too, vortex dynamics
takes a relatively simple form ' which we shall now
describe briefly in terms of its applicability to quantized
vortices.

A. Vortex filament in an infinite fluid

II. MOTION OF A QUANTIZED VORTEX LINE

A vortex filament can be constructed by defining a thin
core passing through the fluid (Fig. 1), and requiring the
fluid velocity v(r) outside the core to have zero curl and
divergence, while the line integral a.=fv dl around the
core is assumed to have some nonzero value. It is predict-
ed theoretically and observed experimentally that vortex
filaments with the particular value ~=A/m4 can occur in
superfluid helium, where h is Planck's constant and m& is
the mass of the helium atom. The core radius ao of these
quantized vortices is found experimentally to be of order
10 cm. Outside this core region, the superfluid velocity
field u, has a classically well-defined meaning, and can be
described in terms of ideal fluid mechanics. At finite
temperatures, the scattering of elementary excitations by
the vortex will exert a frictional force f per unit length on
the fluid near the vortex core. The effect of this addition-
al term can also be incorporated into a simple vortex-
filament formalism. On this level, the quantities ~, ao,
and f appear as phenomological parameters describing the

If there are no extraneous forces acting on a vortex
core, it must move with the fluid. Thus, the velocity field
associated with the vortex filament acts back on the core
itself to generate the motion of the filament in almost a
purely kinematic way. The velocity produced at a point r
in the fluid by a vortex filament in the absence of boun-
daries is given by the familiar Biot-Savart expression:

where the curve described by the vortex line is specified in
the parametric form s =s(g, t) and s~ refers to a particular
point on this curve. Equation (1) assumes that the vortex
is infinitely thin, and only applies when

~
s~ —r

~
&&ao.

Thus, in attempting to determine the velocity at a particu-
lar point r=s on the vortex, one finds that the integral
diverges as s~~s. Exactly how this divergence is healed
by the finite core structure is a subtle and much-discussed
problem in classical hydrodynamics. Furthermore, such
discussions are not directly transferable to the case of
quantized vortices where the physics of the core is quite
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different. A simple expedient for de@ling with this diffi-
culty is to obtain the desired information experimentally.
The first step is to note that the propagation velocity of a
quantized vortex ring is observed to obey the expression
for the velocity of a classical vortex ring,

z 8R
s(ring) = —ln

4~ R e1/4ap
(2)

provided ap is treated as an adjustable parameter. Here, K

is the quantum of circulation, R is the radius of the ring,
and z is the normal to the plane of the ring. The value of
ao is found to be about 1.3X 10 cm, increasing slightly
with increasing temperature. ' The second step is to con-
sider a particular point s on the ring (Fig. 2). The contri-
bution to s which arises from those parts of the ring for
which s& —s

~

&&ao can be evaluated by carrying out the
integral of Eq. (1) over the path indicated in Fig. 2:

s(nonlocal) = —in[cot( 4 ~ P+ ) cot( 4 ~ P ~
)] .

8~ R
(3)

Subtracting Eq. (3) from Eq. (2), and approximating
tan(P/4) by 1/4R, one obtains the local contribution aris-
ing from a curved-line element acting on itself,

z
s(local) = —ln (4)

4n R e "4a,

This applies to both quantum and classical vortices, with
the difference that, for the former, ao must be interpreted
as a quantum-mechanical cutoff parameter rather than a
simple core radius.

Equation (4) provides the local contribution to the velo-

city of an arbitrarily curving vortex, provided that
R » l »ap. The nonlocal contribution is obtained by
carrying out the integral of Eq. (1) over the rest of the fil-
ament and any other filaments which may be present. In
order to express Eq. (4) in more generally useful form, we
note that associated with any point on the curve s(g, t)
there exists a triad of mutually perpendicular vectors s',
s", and s'&s" pointing along the tangent, the principal
normal, and the binormal, respectively (Fig. 3). The
prime denotes differentiation with respect to the instan-
taneous arc length, g. The magnitudes of the vectors in
the triad are 1, R ', and R ', respectively, where R is
the local radius of curvature. The expression for the fric-
tionless motion of a vortex filament in an unbounded
fluid then becomes

s= s'Xs" ln
4w

K ' S&
—S &dS&

4~ ~ ~s, —s~

(5)
where the prime indicates that the local element is to be
omitted from the integral.

B. Boundaries

If boundaries are present, Eq. (1) must be supplemented
by an additional velocity field v, b. This field is deter-
mined by solving V v, b, VXv, b

——0 subject to the boun-
dary condition

(v, b+v, ) n=0,
reflecting the requirement of zero flow into the boun-
dary. For situations where v, at the boundary is ade-
quately represented by Eq. (1), the calculation of u, b is
straightforward in principle although it may be difficult
in practice. A particularly obvious and useful case is that
of a plane surface, where v, b is just the field of an image
vortex constructed by reflecting the filament into the
plane and reversing its direction (Fig. 4).

Special consideration must be given to the situation il-
lustrated in Fig. 5, where the vortex filament terminates
on the boundary. Two problems arise here. The first is
that Eq. (1) is correct only if the integral is taken over
closed contours. This can be dealt with by continuing the
filament into the surface in some way, taking the line in-
tegral of Eq. (1) over both the real and continued vortex.
The boundary correction u, b must, of course, be deter-
mined from the v, field generated by the entire vortex,
and the apparent arbitrariness which arises in v, because
the vortex can be continued in various ways is removed

I II
S X S

S

FIG. 2. Nonlocal {top) and local (bottom) contributors to the
motion of the point s. The division is purely forrnal, and nei-

ther part can exist by itself.

s(g, t}
FIG. 3. Triad of vectors characterizing the instantaneous lo-

cal configuration of the curve s(g', t).
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tional boundary conditions corresponding to additional
flow fields. Common examples are flow through a tube
or flow around an annulus. For want of a better word,
such fields will be referred to as applied fields and denot-
ed by vs, a

The total motion of the vortex filament is now
described by

2(I+ l )'~
so —— s' &(s" ln

I

FIG. 4. Image vortices required to generate the boundary
field v, , q of a plane surface.

when this v, b is added. The second problem is that one
must consider how to treat the divergence of Eq. (I) as
s&~sb when sb is on the boundary. In order to keep
things simple, it will be assumed that the surface curves
only slowly on the scale of ao, from which it also follows
that the filament enters the surface normally. The surface
in the neighborhood of sb can then be approximated as a
plane, and the image construction shown in Fig. 5 suffices
to determine the local contribution to s at the special
point sb [i.e., it is obvious from symmetry that Eq. (4) ap-
plied to a local element constructed as in Fig. 5 takes care
of both the divergent self-induced and the divergent
boundary-induced contributions at sb arising from the ele-
ment itself. The effect of the rest of the vortex on sb can
be handled as before].

One final consequence of the presence of boundaries
needs to be noted. If they are such as to make the fluid
multiply connected, it becomes possible to specify addi-

FICi. 5. Construction of the local element for a surface point
sb. Note that the velocity of sq is always along the surface.

(si —s) Xds&
+up b(s)+tlg g(S),

4~ ~ ~s, —s~3

which is to be interpreted in the manner detailed above.
In brief, the velocity of a given point s on the vortex will
have a direct local contribution arising from the curvature
of the element passing through s, a boundary correction
arising from this element, a nonlocal contribution from
real vortex elements not passing through s, a boundary
correction to this nonlocal contribution, a nonlocal contri-
bution due to vortex filaments continued into the boun-
daries, a boundary correction to this fictitious nonlocal
contribution, and a term arising from any applied fields
which may be present. Points where a vortex terminates
on a boundary must be treated by use of the construction
of Fig. 5, in which the first two terms of the above list
combine to reproduce the result of Eq. (4).

C. Friction

A zero subscript has been added to the notation in Eq.
(7) to denote the fact that it does not contain any dissipa-
tive effects. However, the elementary excitations of su-
perfluid He are strongly scattered by quantized vortices.
Thus, if there is a net relative velocity between the gas of
elementary excitations and the vortex, an "external" fric-
tional force f per unit length will be exerted on the fluid
in the neighborhood of the core. It can be shown from
general momentum-conservation arguments applied to the
fluid outside the core that such a force generates an addi-
tional motion of the vortex

s'X f
sy =

ps&

which is such that the momentum flux due to the external
force acting on the core region is transmitted out into the
fluid as a reaction force. Since the normal excitation-gas
fluid is assumed to respond. independently from the super-
fluid field v„Eq. (8) does not contain the total density,
but only the density p, =p —p„which remains after the
effective mass density of the normal fluid has been sub-
tracted out.

Although f is not very well understood theoretically, it
has been measured to a high degree of accuracy in experi-
ments on rotating helium. The result, when expressed in
our notation, is

f/vp, =a(v„—so)q —a's'X(v„—so),

leading at once to

sf =as X(v~ —so) —a s X [s X (v„—so)]
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where the second term on the right reflects the fact that
the vortex is not a symmetrical scatterer, and it is as-
sumed that there is no force acting parallel to the line.
Here, the normal fluid velocity v„ is the average drift
velocity of the excitation gas. Table I gives the
temperature-dependent prefactors a and a', which reflect
the strength of the frictional interaction between the vor-
tex core and the normal fluid.

It is important to note that so in Eqs. (9) and (10) 1s not
the actual velocity of the vor'tex, but the velocity [Eq. (7)]
that the vortex would have in the absence of friction.
Similarly, v„ is not the velocity of the normal fluid in the
neighborhood of the core, a quantity which is subject to
vortex dragging effects, but rather the undisturbed veloci-
ty away from the core. As it happens, Eqs. (9) and (10)
are precisely what is needed for our purposes, and the ex-
perimental values of a and a' can be utilized directly,
without worrying about their microscopic interpretation.
For further discussion of a and a', as well as detailed
references, the reader is referred to the recent review arti-
cle of Barenghi, et al.

D. Qualitative considerations

The instantaneous motion of a given point on a quan-
tized vortex is now given by

s =so+as'X (v„—so) —~'s'X [s'X (v„—so)],
where so is calculated from Eq. (7). Although this
description is an idealization which, for example, neglects
the thermal fluctuations of the quantized vortices, it
represents a well-tested phenomenology which it has long
been believed gives an adequate description of the dynam-
ics of quantized vortices. Equations (7) and (11) being
nonlocal and nonlinear, their brute force application to ar-
bitrarily configured, multiple vortices in the presence of
nontrivial boundaries leads to excessive complications
which only hide the interesting physics. Fortunately, Eqs.
(7) and (11) are amenable to a number of straightforward
approximations which lead to great simplifications at a
very modest cost in accuracy.

The most important point to note is that, with rare ex-
ceptions, the local term in Eq. (7) completely dominates

the nonlocal term and the boundary corrections. The lo-
cal term is of order (~/4n. R) ln(R /ao), R being the radius
of curvature at the point in question, while the nonlocal
and boundary corrections are of order ~/2mb„where b, is
some characteristic distance such as the distance to the
nearest other line, or the distance to the nearest boundary.
Consequently, the ratio of the local to nonlocal terms in

Eq. (7) is

local ——ln(R/ap) .
nonlocal

(12)

Since ao is of microscopic dimensions, ln(R /ao) is
characteristically of order 10. Provided that A)R, it
then follows that, to an accuracy of order 90%, Eq. (7)
can be replaced by

so ——I3s Xs +u. . .

where

(13)

K c(R)
ln

4~ ap
(14)

with c a constant of order 1. In the expression for /3,

(l+I )'~ has been replaced by R, a procedure which
takes some account of nonlocal corrections from near-
lying parts of the line. Since it affects the logarithm only
marginally, R can further be replaced by its characteristic
value (R ) to make P a constant.

Equation (13) is known as the localized induction ap-
proximation in classical fluid dynamics, ' although we
shall refer to it simply as the local approximation. Its
90% accuracy sets the standard to which we shall in gen-
eral aspire. The approximation fails only when 6 be-
comes very small, as occurs when lines try to cross each
other, or when they approach a boundary closely. The in-
teresting new physics which arises when this happens will
be explored in Sec. III. In addition, the local approxima-

TABLE I. Friction coefficients.

T (K)

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.05
2.10
2.15

0.006
0.012
0.023
0.036
0.052
0.073
0.098
0.127
0.161
0.21
0.29
0.36
0.50
1.09

0.003
0.006
0.011
0.014
0.017
0.018
0.016
0.012
0.008
0.009
0.011
0.003

—0.030
—0.27

FICx. 6. Motion of a curving vortex. The lengths of the ar-
rows reAects the speed with which the vortex filament is moving
at that point.
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tion becomes logarithmically less accurate as the scale of
the problem is reduced [Eq. (12)], and becomes meaning-
less in the limit (R ) —+ao. Equation (13), interpreted in
the light of Fig. 3, readily lets one visualize the complicat-
ed motion experienced by a randomly curving vortex (Fig.
6), each point of which moves along the local binormal
with a velocity inversely proportional to the local radius
of curvature. It should be noted that we do not consider
situations in which large numbers of vortices are preferen-
tially oriented, thus giving rise to important nonlocal ve-
locities extending over macroscopic distances. This, of
course, is characteristic of rotating helium, where all of
the vortices are aligned in the same direction. The extent
to which vortex correlations play a role in other situations
is not known. Presumably such effects could be incor-
porated into the formalism by interpreting v, , as a mean
field which includes the averaged long-range effects of
other vortices.

Turning now to the friction term, one notes that over
much of the range of interest, a' is small compared to a.
In any case, the a' term in Eq. (11) usually generates only
a minor correction to so, and it is generally an excellent
approximation to set a =0. As an additional simplifica-
tion, v„will here be treated as a specified, most often con-
stant, field. In real life, of course, the frictional force acts
back on the normal fluid and v„may need to be deter-
mined as part of the solution.

Since o, &&1 except near the A, point, the short-term
vortex motion is usually only weakly affected by the fric-
tion. Nevertheless, the friction term is fundamentally im-
portant in that it gives rise to both growth and decay of
vortex line length and in general plays the dual roles of
driving force and dissipative mechanism. One can
readily see from Eq. (11) that if the normal-fluid wind
blows sufficiently hard in the direction of the self-induced
vortex velocity, the vortex will balloon out as in Fig. 7(a),
leading to an increase in line length. If, on the other
hand, the relative motion generates a normal-fluid
headwind, the vortex will collapse inward as shown in
Fig. 7(b), resulting in a loss of line. Writing out the equa-
tion of motion in the local approximation,

If R &Ro, only line loss can occur, higher curvature re-
gions such as kinks and bumps damping out preferential-
ly. Regions for which R &Re can grow, provided the lo-
cal binormal is properly oriented. Qualitatively, therefore,
one has the picture of line length being pumped up at
large scales and decaying away at the small scale end,
somewhat analogous to a situation often found in classical
fluids. Depending on the details of the problem, a vortex
system subject to a driving field can disappear entirely,
reach a stationary state where the vortices remain fixed,
exhibit limit cycle behavior, or enter a topologically self-
sustaining "turbulent*' state.

III. RECONNECTION

The preceding section describes a complete procedure
for determining the motion of quantized vortices. Subject
to certain reasonable restrictions and approxi. mations, ar-
bitrarily complicated vortex configurations can be treated
to any accuracy one pleases, or followed for any length of
time desired. While the whole procedure of adding up the
various contributions to the vortex motion at every point
on the vortex is certainly a tedious one, it can easily be
implemented numerically (see the Appendix). Once the
relevant computer codes have been developed, numerical
experiments can be performed which make previously ob-
scure situations transparently clear. The insights
developed from such studies often suggest simplifying ap-
proximations which permit one to attack still more com-
plicated problems, or which can serve as the basis for the
development of analytical models. It is with this aim that
we now investigate the question which was left unresolved
in the preceding section, namely, how to deal with those
exceptional situations where filaments try to cross each
other or to approach a boundary, and the nonlocal correc-
tions suddenly become very important. All calculations in
this section were carried out using the full nonlocal
dynamics of Eqs. (7) and (ll). The friction coefficients
were typically set at o;=0.10 and 0.'=0. Further discus-
sion is given in the Appendix.

s =ps' X s"+v, ,+as' X (v„—v, ,—ps' Xs"), (15)

one can, for a given value of the driving field
~

v„—v, , ~,
identify a marginal radius of curvature

(16)

FIG. 7. Line gain and loss mechanisms. In (a)
v„—v, ,—ps'Xs" is pointing out of the plane of the figure, in
(b) it is pointing into the plane.

A. Interaction of a vortex line with a plane

Many of the features we wish to isolate can be deduced
by looking at the simple case of a vortex loop interacting
with a plane boundary. The qualitative expectation is that
the image field will act most strongly on that part of the
loop nearest the boundary, retarding it as in Fig. 8. The
self-induced motion of this part of the loop now develops
a component into the boundary, causing the loop to ap-
proach more closely and increasing the image effect. A
runaway phenomenon thus develops, connecting the loop
to the boundary in an irreversible fashion.

In general, the boundary-generated field will compete
with other sources of vortex motion in determining the
fate of the vortex loop. If, for example, the loop in Fig. 8
is aimed away from the surface, or is distorted in a way
which makes it rotate away from the surface, the self-
induced motion can prevail and carry the loop away be-
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proaches the boundary, it is possible to identify a charac-
teristic critical distance 6 within which the image field
becomes dominant and forces a reconnection. A crude es-
timate for 6 is obtained by asking how close the vortex
loop has to approach before its boundary-induced motion
becomes comparable to its self-induced motion. This
leads to

b, =2R/ln(cR /ao), (17)

l

I

!
I

!
!

I

!

!
!

FIG. 8. Side view of a vortex ring travelling parallel to a
plane boundary. The part nearest the surface is retarded by the
boundary field.

fore it is trapped by the surface. Similarly, the loop may
be shrinking because of friction with the normal fluid,
and thus escape reconnection. Since, however, the image
field increases in a highly nonlinear way as the loop ap-

where, for consistency with later usage, 6 has been de-
fined as the critical distance between the loop and its im-
age. Confirmation of this estimate and, indeed, of the
very usefulness of the critical-distance idea can be ob-
tained by studying particular examples in detail. In this
spirit, we consider the starting configuration shown in
Fig. 9(a). This fourfold distorted ring is supposed to
represent the case of a vortex which is randomly twisted
over a length scale comparable to the average radius of
curvature, a situation which characteristically arises in
problems of interest to us. The motion of the bottom part
of this loop in the absence of boundary effects is shown in
Fig. 9(b). If the initial loop position is moved in close to
the boundary, this behavior is modified only slightly [Fig.
9(c)]. Even a small further decrease of the distance be-
tween the loop and the boundary, however, leads to an en-
tirely different development [Fig. 9(d)], which by now can
be recognized as a reconnection event. It is clear not only
that there is a well-defined critical distance inside of
which the boundary traps the vortex, but also that a vor-
tex loop outside this distance is only weakly affected by
the boundary.

Values of b, computed with this particular configura-
tion for various scales are plotted as triangles in Fig. 10.
They are seen to be in reasonable agreement with Eq. (17).

X

0.4—

0.2— x

X

L-

WYXXXYYXXYXYXYYEX/i
I

(O'
R (cm)

IO too

(c)
FIG. 9. Dynamics of a four-lobed loop near

perspective view of the initial configuration is
(b)—(d) show side views looking along the y axis.
mation is provided in the text.

a surface. A
shown in (a);
Further infor-

FIG. 10. Critical distance at which reconnection is initiated
as a function of scale. Triangles, interaction of a four-lobed
loop with a plane boundary; circles, line-line crossings. Other
numerical studies yield equivalent results. The dashed line
represents the prediction of Eq. {17).
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Different configurations and conditions will of course
yield somewhat different values of b„as the other exam-
ple plotted in Fig. 10 shows. What is important to note,
however, is that 5 is generally considerably smaller than
the other characteristic dimensions in the problem. The
general viewpoint one needs to cultivate, therefore, is that
quantized vortex motion is practically unaffected by the
presence of boundaries until a vortex happens to approach
a boundary very closely, in which case a reconnection
occurs. The exact value of b, is usually not very critical.

It is interesting to consider the fate of the vortex singu-
larity once it becomes involved in a boundary-induced
runaway. Detailed numerical studies, such as the one
displayed in Fig. 11, show that in fact such an event gen-
erates only a mild pathology in the form of a small, local-
ized cusp connecting the vortex loop to the surface. The
explanation for this is that although the image field in-
creasingly pulls the vortex loop along the boundary, the
self-induced velocity into the boundary of the distorted
loop grows even more rapidly. Hence, the vortex singu-
larity impacts the boundary at a well-defined limiting
point. References 15 and 34, where the loop is qualita-
tively pictured as running off to infinity along the surface,
are in error on this issue, although none of the conclusions

XXXVXXVXXXV
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reached there are affected.
The behavior demonstrated in Fig. 11 is generic: Ex-

cept for the singular case of a vortex ring normally in-
cident on a perfectly flat boundary, all vortex loops ap-
proaching the boundary sufficiently closely will develop a
small cusp connecting them to the boundary. The cusp
wi11 be generated quickly compared to the overall motion
of the vortex, and can often be thought of as occurring in-
stantaneously when the vortex reaches the critical distance

The runaway process can be followed by explicit calcu-
lation down to dimensions on the order of the core radius.
In Fig. 11, for example, it has been followed until the vor-
tex is 3 A from the surface. At this level, the finite-core
structure becomes important, and what happens next
presumably involves quantum-mechanical issues or, in the
classical case, computational problems, which cannot be
satisfactorily treated at present. We now make the very
plausible, but admittedly ad hoc, assumption that in this
limit the vortex singularity reconnects to the surface in
some reasonable manner as shown very schematically in
Fig. 12. The reconnected vortex then undergoes a charac-
teristic further development (Fig. 13) in which the two
ends of the now reconnected vortex move apart, eliminat-
ing the runaway cusp in the process. The perspective
view of Fig. 14 shows exactly how this happens: a helical
distortion forms at the reconnection point and propagates
outward. The whole process again happens rapidly, and
from the point of view of the long term behavior of the
vortex, the whole runaway, reconnection, and outward
propagation process can be replaced by making a crude
reconnection when the vortex first penetrates inside the
critical distance A.

To sum up, a detailed examination of how a vortex loop
interacts with a plane boundary leads to the conclusion
that the vortex is practically unaffected by the presence of
a boundary until some part of it comes within a distance
-R/1n(cR/ao) of the surface. When such a critical con-
figuration occurs, the image field grabs the vortex and
pulls out a small cusp connecting the vortex loop to the
surface. It is assumed that when the vortex core touches
the surface, the vortex switches over to terminate on the
surface. The two ends of the singularity then move apart,
and all the small scale details of how the reconnection was
made become irrelevant. The end result is that the vortex
singularity has undergone a discontinuous change in its
topology. It is important to emphasize that although the
ultimate switching of the singularity to the boundary is
introduced ex cathedra, the formation of the reconnection
cusp is a macroscopic phenomenon which can be calculat-
ed within the vortex-filament formalism. In this sense,
the reconnection phenomenon arises as a feature of classi-

FIG. 11. Front and side views of a loop capture event. The
top pair show the initial and final configuration of an initially
planar four-lobed loop. The middle and bottom figures show
the development of the cusp at a magnification of 25 and 625,
respectively. The size of the loop is 2.5& 10 cm and its initial
distance from the plane is 3&10 cm. In the final configura-
tion it has approached to within 3 X 10 ' cm.

NÃYYYYYYYY/YYXYYY/////P, &/8/P/PWPP/PPEPWZz

FIG. 12. Highly schematic view of what is assumed to hap-
pen when the core touches down.
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cal vortex-filament dynamics, and the conditions under
which it occurs can be predicted.

B. Interaction of a vortex line with another line

LLLLLLLLL%%%%%%

FIG. 13. Front and side views showing the separation of the
two vortices after the microscopic reconnection has been made.
The top and middle figures shows the development at a magne-
fication of 625 and 25 respectively. The bottom figures show
the final configuration. The reconnection is made using the fi-
nal configuration of Fig. 11.

In the typical three-dimensional vortex problem, the
dynamics is dominated by the self-induced velocity dis-
cussed in Sec. IIA, and is adequately described by the lo-
cal approximation. It is clear, however, that this approxi-
mation breaks down when two filaments approach each
other so closely that the nonlocal fields become important.
A typical encounter (Fig. 15) will involve only a small seg-
ment of each line, and the characteristic distance for
strong interaction will again be given by Eq. (17). We
now ask exactly what happens in such an encounter.

The discussion of the preceding section already gives
the answer for a particular case. If, for example, in Fig.
8, one promotes the image vortex to the status of a real
vortex, eliminating the boundary, then the development of
the two symmetrical vortices will be identical to that of
the original vortex and its image. One can conclude that
if two oppositely oriented vortex loops brush by each oth-
er sufficiently closely, a cusp connecting the two will

develop, leading to a reconnection at the microscopic lev-

el, and a subsequent moving apart of the reconnected.
lines. In order to gain insight into the more general situa-
tion of Fig. 15 without becoming lost in an infinite num-
ber of special cases, the behavior of a vortex ring as it ap-
proaches an initially straight vortex line has been studied
systematically. Figure 16 shows the initial configuration,
the configuration of closest approach, and a subsequent
configuration for various types of crossing attempts. The
initial relative orientation between the two filaments as
they encounter each other can be varied from 0' to 180' by
varying the initial ring position, thus allowing one to in-
vestigate the characteristic behavior of vortex lines as they
try to cross at various angles.

The top row of Fig. 16 is closely analogous to a surface

FIG. 14. Perspective view of the two ends moving apart in a
solitonlike motion after the microscopic reconnection. FIG. 15. Crossing encounter between two vortex filaments.
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(0)

FIG. 20. Construction for treating a vortex interacting with a
hemispherical pinning site. The problem is equivalent to that of
a symmetrically extended vortex interacting with a sphere.

FIG. 19. Perspective view of two lines initially at right an-

gles, reorienting each other to produce the reconnection cusp.

line-line crossing will lead to a topology-changing recon-
nection of the two lines. As in the case of the line-surface
interaction studied in the preceding section, the motion of
the lines is only weakly affected until a critical distance b,
is reached, at which stage the reconnection is initiated, en-
tirely within the context of the hydrodynamic description.
One sees in Fig. 10 that 6 deduced from the numerical
line-line studies also agrees well with the estimate of Eq.
(17). Again, it is plausible to assume that an actual recon-
nection occurs when the two lines have approached to
within some microscopic distance such as the core size.
Following the subsequent development, one finds that the
final stage of the process looks very much as though a
crude macroscopic reconnection had occurred at the dis-
tance A.

The cusplike instability of interacting vortex lines has
also been found by Siggia' in an independent investiga-
tion, and the reader is referred to Ref. 18 for a detailed
analysis based on a somewhat different point of view.

C. Interaction of a vortex line with a sphere

The field v, ~ generated when a vortex is near a sphere
can be written down analytically, making this a suitable
case for studying effects which arise when a vortex in-
teracts with a nonplanar boundary. One of the most in-
teresting of these is a vortex-capture phenomenon which
is a complicated version of the process investigated in Sec.
IIIA. The circumstances under which a vortex line wi11
be captured by a sphere or equivalently by a hemispherical
protrusion on a plane boundary (Fig. 20) are of interest in
relation to the problem of ion trapping on vortex lines' '

and the problem of vortex capture by a pinning site,
respectively.

To find v, ~, the boundary value problem of Sec. II 8 is
solved using the integrand of Eq. (1) as the source of a
field dv„& arising from the element ds~. The resulting
velocity potential is

b sing b'
d+b out= 4' sir „, s r in+1

if the line element lies outside the sphere, and

a sing " s, P„(cos8)
'

tt

d@b in= dsJ. (19)
4m r „, r n+1

if it lies inside the sphere. Here, P„are the associated
Legendre polynomials, b is the radius of the sphere, and
the various other quantities are defined in Fig. 21. The
total boundary field is obtained by summing over the en-
tire vortex, including the dashed extensions shown in Fig.
20. The resulting v, b is then added to the bare vortex
field and the applied field as in Eq. (7). A point terminat-
ing on the sphere, for which v, and v, b are both diver-
gent, must be treated according to the construction of Fig.
5.

In line with the central interests of the present paper,
we shall concentrate on the pinning-site version of the
capture problem. The specific case we choose to consider

!
i&

S(
!

!

!

FIG. 21. Coordinate system for locating a point r with
respect to a particular line element ds~ and the sphere. The ori-
gin is at the center of the sphere, the polar axis is determined by
the position of ds&, and the azimuthal axis by the direction of
ds~. Note that the axes change as one moves along the vortex.
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FIG. 22. Boundary field generated by the pinning site.

is a vorex et x extending between two smoot planes, one of
which contains the pinning site. The boundary ie
to move the me aroun eh 1' d the sphere this effect decreasing
away rom the sphere (Fig. 22). Again, it is clear that the

field acts to distort the line such as to generate a
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away. In the absence of other disturbances to s, an imtia-
1 strai ht vortex will therefore undergo an elegant
inward-spiralling motion (Fig. 23) wh'ci h is one of the
characteristic features of dissipative relaxation for quan-
tized vortices. When the vortex gets close enough, a cusp

1 d t b the boundary field of the sphere, causing
the vortex to approach the sphere infinitely c ose y a a
well-defined point (Fig. 24). The qualitative similarity to
the behavior studied in Sec. IIIA is clear, although the

FIG. 24. Pinning reconnection and su seqse uent motion. Here
o.=0.3, to show the trapped vortex coming to equilibrium more
quickly. Shown are sequential configurations of the vortex.

icated. Asgeometrical details are somewhat more comp icate .
before, the on y p ausi e a1 1 'bl ssumption is that some kind of
reconnection to e ato the attracting boundary occurs as the vor-
tex approaches the surface infinitely closely. The su se-
quent development ig.(Fi . 24) obscures the details of this
process an eaves ed 1 the vortex attached to the pinning site.

If there are absolutely no disturbing effects, a vo ex i-

tured eventua y. ompe
'

11 . C eting sources of vortex motion

FIG. 23. Capture of a vortex in the absabsence of external dis-
turbances. In this calculation, b =10 cm, p pthe to lane (not

—3 d =0.1. Shown are sequential config-shown) is at 10 cm, an o.=
urations of the vortex as it spirals in.

FIG. 25. Capture of moving vortices by a pinning site. Here
D =10 cm, a=0. 1, and v„=0.03 cms

dPaths of vortices s ar ingf '
t t' g slightly further out and avoi

'

g p-
ture are also shown.
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FIG. 26. Capture width of a hemispherical pinning site
versus applied velocity. Here -b =10,D = 10 cm, o.=0.1.

such as applied flow fields, velocities arising from neigh-
boring vortices, or self-induced motion due to curvature in
the filament, will, however, disrupt this capture process.
Because the effect of the pinning site decreases rapidly
with distance, even very small disturbances will drastical-
ly alter the behavior seen in Fig. 23. For any given situa-
tion, there will now be a specific region around the pin-
ning site such that, if the vortex enters it, it will be cap-
tured. Otherwise, it will escape. Figure 25 illustrates the
typical behavior when the. vortex is swept towards the piri-

ning site by an applied field. Note that, although the
magnitude of u, , in this calculation is only» of the
characteristic velocity (~I4vrD) ln(D/az) of the problem,
the view of Fig. 23 is already inappropriate. Rather, the
vortex is now flushed past the pinning site by v, , and will
be captured only if it happens to pass sufficiently close so
that. the pinning site boundary field can grab it. Lines
which pass by outside this critical distance are only weak-

ly affected.
It is obvious from Fig. 25 that for the situation of a

moving vortex, one can define an effective capture diame-
ter o. The typical variation of this quantity with U, , is
shown in Fig. 26. As one would expect, 0. is only slightly
larger than 2b at high velocities, and increases only very
slowly as U, , is reduced.

As always, the aim of our numerical calculations is to
provide physical insight and suggest reasonable approxi-
mations. What one can conclude from the present section
is that vortex filaments will be captured by localized pro-
trusions through a reconnection process similar to that
studied in Secs. IIIA and IIIB. A vortex moving past
such a pinning site will be trapped if it passes within some
critical distance of the site. Because the field generated by
the protrusion is of short range, its effective capture width
will at inost be a few times its geometrical width, under
experimentally realistic conditions. It should be noted
that, although a hemisphere is probably a good prototype
of the kind of pinning site which occurs in real life, the
same approach can be used to investigate the effect of
more gentle bumps or more extreme spikes. Such exten-
sions are straightforward, and will be investigated only as
necessary.

IV. PINNINQ

A vortex terminating on a plane boundary is free to
wander about under the influence of its self-induced velo-
city as well as various applied and boundary-generated
fields which may be present. In the preceding section,
however, we saw that a protuberance can capture such a
vortex The boundary fields responsible for this process
will in general act to keep the end of the vortex pinned to
the protuberance even when quite large velocities are ap-
plied to the vortex. The occurrence of pinning in super-
Auid He has been appreciated on the phenomenological
level for a long time and has been studied in several exper-
iments. Moreover, it has repeatedly been speculated
that pinned vortices play an important role in the initia-
tion of superfluid turbulence. " ' Vortex pinning
also arises in other areas, such a superAuid He, supercon-
ductivity, neutron-star physics, and classical hydrodynam-
ics. The case of He, however, is by far the simplest since
the interaction between the vortex and the pinning site is
entirely determined by ideal fluid dynamics. Thus, the
formalism developed above can be used to treat vortex
pinning from a more fundamental point of view than is
usually possible, i.e., as a dynamical consequence of the
equations governing the superAuid velocity field.

A. Pinned vortex subject to pure superflow

What happens when a pinned vortex is subjected to an
applied velocity v, , tending to sweep it off its perch. We
consider the geometry of Fig. 27, where the vortex extends
between two symmetrically placed hemispheres of radius
b protruding from planes spaced a distance D apart. In
what follows, the origin is defined to lie at the center of
the bottom pinning site, the z axis is taken to run normal-
ly from the bottom to the top plane, and v, , ( oo ) is taken
to point along the +x or —x direction. The applied field
is assumed uniform far from the pinning sites, and takes
the usual form for flow around a sphere near the pin-
ning site. For simplicity of comparison, many of the pro-
totype calculations in this section have been done using
the particular values D =2&10 cm, b =10 cm, and

FIG. 27. Geometry for symmetrical pinning calculations.
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a =0.10, a relatively large pinning-site radius being
chosen to make graphical display more convenient. The
behavior obtained is, however, representative and changes
in only relatively minor ways (which will be discussed) as
these parameters are changed. Allowing for the obvious
rescaling of distances, times, and velocities, a vortex in a
1-cm channel does not act very differently from a vortex
in a 100-A channel. If the initial vortex configuration has
reflection symmetry about the center plane (dashed line),
1 wi aw't 'll 1 ays maintain this symmetry, and the prob em is
then equivalent to a pinned vortex the upper end o w ic
terminates on a smooth plane a distance D/2 away. "
Figure 28 shows the development of such a vortex from
an initially vertical position when a velocity field v, ~ is
applied. What one sees here illustrates the general fact
that a pinned vortex of arbitrary initial configuration will
spiral around in a complicated, often very elegant pattern
until it comes to rest in a stationary configuration in-
dependent of initial conditions. The spiralling-in
phenomenon arises from the action of the friction term,
and as e is made larger, the vortex settles down more
quickly.

Loosely speaking, the vortex remains pinned because
any a emp ott t f the line to move downstream in response

whichto v, , induces curvatures near the pinning site w ic
cause the vortex to move around the pinning site. The re-
sulting distortions propagate back up the vortex and, in

artnership with the dissipative effect of a, generate the
characteristic spiral motion seen in Fig. 28. It is to be em-
phasized that no supplemental constraints or "pinning
forces" have been introduced into the formalism —the pin-
ning phenomenon arises entirely within the context of the

FIG. 29. Stationary configuration for various driving veloci-
ties. Here D/2=1. 0&10 cm, b =1.0)&10 cm. The values
of v, ,(ao ) are 0.00, 0.17, 0.34, 0.51, and 0.68 cms ' into the
plane of the figure. Only the bottom half is shown.

ideal-fiuid equation. To achieve its final, steady configu-
ration, the vortex eventually adjusts itself to assume s=
everywhere. It seems the most rewarding to the intuition
to think of the vortex as adjusting its local curvature self-
consistently so that its locally self-induced velocity exactly
cancels out all the other contributions to s.

given the symmetrical geometry of Fig. 27, the final
configuration will lie entirely in the y-z plane bisecting
the pinning sites, a situation in which all contributions to
s lie along the x axis. Figure 29 shows how the stationary
configuration varies with vs, a~ ~ I. s vs, a. s v is increased,
the vortex becomes more and more highly curved, in order
for its self-induced velocity to cancel the applied velocity.
S dditional curvature is required in the neighborhooome a

r of theof the pinning site because v, , at the y-z bisector o e
pinning site is greater than U, , ( ao ), and because the field
of the image line becomes large near the boundary.

It is apparent from Fig. 29 that stationary configura-
tions of this type do not exist at arbitrarily high driving
velocities. Glaberson and Donnelly have pointed out
that if one ignores the complications which occur near the
pinning site and treats v, , as constant over the entire
channel, then the vortex shape needed to provide a sta-
tionary configuration is just the arc of a vortex ring such
that [see Eq. (2)]

K
V ln

4+R
8R
1/4ap

(20)

Vs g

FIG. 28. Response of an initially straight pinned vortex to an
applied velocity field. Here D /2= 1.0 &( 10 cm,
b = 1.0)& 10 cm, and n =0.10. The applied fie d is
v„( oo ) =0.50 cm s ' in the direction shown, somewhat less
than the critical velocity for depinning. Only the bottom hal is
shown.

L

It is not difficult to see that this works only for R )D/2,
implying a limiting applied velocity,

4D
Vg pIII ln i /4

Qp
(21)

above which a stationary configuration is impossible. For
channel shapes more complicated than the parallel-plate
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geometry in Fig. 27, D should be interpreted as the small-
est characteristic dimension across the channel. Obvious-
ly, a limitation similar to Eq. (21) must apply to our re-
sults. Actually, since the applied field is constant over
virtually the entire channel, it may in fact seem that our
results should be practically identical to those given by the
argument of Ref. 43. Things, however, are not quite so
simple, and the ability of the present approach to il-
luminate what is actually going on near the pinning site
leads to a point of view which differs significantly from
the heuristic considerations of Ref. 43.

As pointed out before, a stationary configuration re-
quires a balance between the various contributions to s.
However, as v„(oo) is increased, the vortex terminating
on the sphere approaches the plane part of the boundary
more and more closely and the image vortex begins to be-
come important. The field of the image vortex can only
be balanced out by an increase in the curvature of the vor-
tex near the pinning site. Eventually, a critical distance is
reached at which a balance can no longer be achieved, and
the stationary configuration becomes dynamically unsta-
ble. The nature of the instability by now offers no
surprises. Figure 29 was generated by increasing u, , ( oo )

in steps, waiting for the vortex to settle down to its sta-
tionary state each time. Upon passing through v, „;„(and
the associated neutral-stability configuration), however,
the image field suddenly achieves victory and pulls out a
version of the by now familiar reconnection cusp (Fig. 30).
In this version, the vortex approaches the plane boundary
in a fashion which again makes it reasonable to suppose
that a reconnection to the plane occurs when the core gets
close. Again, such a reconnection leads to a rapid separa-
tion of the vortex from the pinning site (Fig. 31); and,

FIG. 30. Reconnection cusp pulled out by the image vortex
when the critical depinning velocity is reached. The 0.68 cm s
stationary configuration of Fig. 29 becomes completely unstable
when U, {oo ) is increased to 0.69 cm s '. The point terminating
on the hemisphere moves into the surface, with the vortex paral-
lel to the surface (antiparallel to its image) at contact. The flow
direction is along the axis marked by an arrow.

FIG. 31. Development of the vortex after a reconnection to
the bottom plane has been established. The Bow direction is
along the axis marked by an arrow.

again, the net effect is as though a crude reconnection had
occurred when the vortex line came within a critical dis-
tance of the plane boundary. More complicated pinning
site geometries will lead to the same kind of behavior.

One concludes that beyond v, ~;„ the vortex undergoes a
depinning reconnection to the plane —it jumps off the pin-
ning site and is free to move away. This result may seem
unsurprising from our present perspective, but it is at
variance with the interpretation which up to now has been
attached to u, ~;„, namely, that above v, ~;„, a single pinned
vortex begins to act as a continuous source of vorticity.
This speculation, which has repeatedly been advanced as
an explanation for the onset of superfluid turbulence, ' is
not supported by our work, nor is it in good agreement
with experiment. While it appears quite likely that vortex
pinning and depinning play an important role in deter-
mining the detailed phenomenology of the transition to
turbulence in superfluid helium, other mechanisms such
as line-line and line-boundary reconnections are probably
an equally important part of this very complicated pro-
cess.

Accurate calculations of the vortex depinning velocity
for the geometry of Fig. 27 have been performed as a
function of b and D. The results, shown in Fig. 32, pro-
vide a useful standard against which more approximate
calculations, analytical models, or analogous situations
can be compared. It is found that U, ~;„can lie significant-
ly below the value predicted by Eq. (21), and that it de-
creases logarithmically with the size of the pinning site.
The latter effect is due to the increasing relative impor-
tance of nonlocal effects as the scale of the problem is re-
duced: At smaller b, the vortex cannot come around so
far on the pinning site before yielding to the image field.
The variation of the critical configuration with b/D and
with the overall scale reflects this fact, as illustrated in
Figs. 33 and 34.

By analyzing the idealized case of Fig. 27, it is possible
to develop a rather neat and useful approximate expres-
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FIG. 34. Critical configurations for 2b/D =0.10, with D/2
having values of 1, 10, and 10, proceeding counterclock-
wise. The flow direction is into the plane of the figure.
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sion for the depinning velocity in pure superflow. In the
absence of normal-fluid motion, stationarity requires
s=0. From Eq. (7),

asyagX a'scrag'

D/2 (cm)
FIG. 32. The points show numerically calculated values of

the critical depinning velocity in units of ~/2+D. The solid lines
represent the predictions of Eq. (29) for various values of b in
cm. The dashed line is the prediction of Eq. (21).

where position on the line is now denoted by a general pa-
rameter g not necessarily equal to the arc length. The ef-
fect of the line on itself is here being treated in the local
approximation, so that /3 has the meaning of Eq. (14).
The local approximation has, however, been refined in
that the effect of the vortex extended into the boundary
(Fig. 35) is explicitly included as v, b(g). Referring to the
figure, it is clear that the part of the extended vortex run-
ning from 0 to 3 makes very little contribution to v, b

while the part running from —oo to 0 contributes a field
which tends to sweep the vortex off the pinning site in the
same direction as v, „and- which becomes large as 00 in-

y =%%%%%%%%%X~ 0. t%%i%%%iiiiiiiiiie
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FIG. 33. Critical configurations for D/2=10 cm, with b
having values of 10, 10 ', 10, and 10 cm, proceeding
counterclockwise. The flow direction is into the plane of the
figure.

—C)

FIG. 35. Geometry for the calculation of the depinning velo-

city. The flow direction and the x axis are into the plane of the
figure.
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creases. It is this term which causes the depinning insta-
bility.

If v„(oo ) is in the x direction, as is assumed in Fig.
35, the stationary vortex lies in the y-z plane bisecting the
sphere. It is then convenient to let g=z and write

s = (y (z), z ),
vq b +v~ g = vq(z)x .

A trivial integration then gives

2= —sin00+p ' J . v, (z')dz' .
(yi2+ 1 )

1/2 b sin80

(23)

(24)

(25)

That is, the y component of the tangent to s starts at a
negative value —sin00 at a point z =b sin90 on the sphere
and increases, causing the vortex line to curve upward.
The line must meet the D/2 symmetry plane vertically,
1.e.,

D/2
psin8o= t . u, (z)dz . (26)

The trick now is to find a reasonable analytical approxi-
mation to v, (z). We write

K sin00
v, (z) =v, , ( oo )—

4mz
(27)

The first term is just the applied flow field, ignoring the
localized modifications due to the pinning site; the second
is the field contributed by a straight vortex section which
runs from —oo through 8 to 0 as shown in Fig. 35, and
which we take to represent the dominant effect of the vor-
tex extending from —oo to 0 in the figure. Equation (26)
then integrates to give the condition on sin00,

(

b cos00K sinop
ln (28)v, ,(oo)=

ao

K
Ug pi II 1n

ap
(29)

This formula combines the three relevant size parameters
in an appealingly simple way. Moreover, it gives an al-
most embarrassingly good fit to the numerical data, as il-
lustrated in Fig. 32.

B. Effect of normal-fluid flow

The case of pure superflow considered in the preceding
section illustrates most of the important features of the
pinning phenomenon. Experimentally, however, v„ is an
independently adjustable field, forcing one to consider
what additional features arise from its presence.

where we have set (R ) =D/2 in p, and have neglected b
compared to D/2.

The maximum possible value of v, , (oo ) in Eq. (28) can
be identified as the depinning velocity. Curiously, as long
as b/ao »1, this occurs when both sinOO and cos00 are of
order 1. For example, if b/ao ——10, sin80-0. 80, and
cose0-0. 60. If b/ao ——10, the corresponding values are
0.95 and 0.31. Within the kind of accuracy we are shoot-
ing for, no significant additional error is then made by
concluding

A problem to be faced immediately is what to take for
v„(r). Since the normal fluid behaves as a classical
viscous fluid, it might be appropriate for the geometry of
Fig. 27 to assume the usual parabolic flow profile

6(v„)
D2

z(D —z), (30)v„(z)=

with a suitable correction which makes v„(r) go to zero
on each pinning-site surface. On the other hand, the situ-
ation addressed in real life is more likely to be one where
many other vortices are present, ' in which case v„
will be almost constant except very near the walls. Since
this latter case is also more directly comparable to the
considerations of the preceding section, we first consider
what happens when v„ is constant. The boundary condi-
tions'on each pinning site are satisfied heuristically by
multiplying v„by the factor 1 —exp[ —(r b)/b],—where
r is the distance from the center of the pinning site. It is
granted that neither of these is strictly correct, but the
vortex responds primarily to v„ integrated across the
whole channel. Hence, refinements such as making v„go
to zero very near the walls or adopting a more realistic
velocity variation near the pinning site have little effect.

Turning now to actual numerical experiments, it is
found that when a normal flow is applied (v, , being kept
at zero), an initially pinned vortex will spiral around in a
manner analogous to that illustrated in Fig. 28, until it
again reaches a stationary configuration. Such configura-
tions are similar to those observed in pure superflow, ex-

cept that the vortex no longer lies at right angles to the
driving velocity (Fig. 36). Moreover, the stationary con-
figuration now depends on the friction constant a as well
as v„. Finally, it is found that the vortex actually no
longer lies in an exact vertical plane, but deviates from
this by a small amount.

An approximate analysis of Eq. (11) provides some il-

luminating insights. Assume that the vortex does indeed
lie in a vertical plane, e.g., as in Fig. 27. Then sp has no z
component, and Eq. (11) gives

rr (s,' ) v„
Spx (30a)1+a (s,')

SPy =—
I

asz Un

1+a (s,') (30b)

if v„ is taken along the x direction and a'=0. One would
conclude from this that the plane described by the vortex
lies at an angle /=tan '(as,' ) to the flow direction, and
that whereas in pure superflow the vortex adjusts its con-
figuration to balance out an applied motion u, ,
=v, (oo), in this case it adjusts itself to balance out an
applied motion as,' v„/[I+(a s,' ) ]'~ . In actual fact, of
course, s,' must change from 1 at D/2 to some lesser
value as the vortex curves down to meet the pinning site.
The resulting deviation from a planar configuration gives
rise to a small sp„ leading to some further readjustments.
The end result is essentially that of Eqs. (30), but with s,'

assigned an approximate effective value of 1. One there-
fore expects that v„will generate a vortex configuration
similar to that generated by an effective superfluid veloci-
ty,
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but rotated so as to lio ie at an angle,

y= tan-'a (32)

Vs, pin

2a u„;„+&(1 )
2 2 1/2

Pl, pill

1+(x
(33)

where both v
(~/

vs, pin and Un are express d

to

w,

the statement tha u = 1
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to be important for pinmng phenomena. Also, it is found
that if the two pinning sites are shifted so as not to be
directly opposite each other, the depinning velocity is
lowered.

V. DISCUSSION

It is a reasonable working hypothesis that flow phe-
nomena involving quantized vortices in superfluid He
can largely be understood in terms of classical vortex
dynamics, slightly modified to reflect the simpler proper-
ties of the quantized vortex. Since the nonlinear dynamics
of three-dimensional vortices interacting with boundaries
and with other vortices is not particularly easy to visual-
ize, nor amenable to analytical treatment, the use of nu-
merical simulation is essential, both to educate the intui-
tion and to achieve quantitative predictions. In pursuing
such a program, one finds it necessary to introduce certain
straightforward ideas which have not previously been
raised in the He context. The present paper has aimed to
clarify these basic ideas and to justify them as far as pos-
sible.

To be more specific, a recently introduced, successful
theory of homogeneous superfluid turbulence treated the
dynamics of the vortex tangle in the local approximation,
but added the at the time ad hoc idea that whenever two
lines try to cross, they undergo a reconnection. The dis-
cussion of Sec. IIIB shows that the nonlocal interaction
between two vortex lines generates a reconnection essen-
tially identical to that assumed in the theory. To general-
ize the homogeneous turbulence theory to the case of flow
through a channel, the notion was later introduced that a
vortex line near a boundary will reconnect to the boun-
dary. The discussion of Sec. III A shows this idea to be
correct. The channel flow theory, which applies only to
the case of ideally smooth channel walls, predicts the ex-
istence of a critical velocity below which the turbulence
cannot be self-sustaining. The calculations, however,
showed a strong sensitivity to pinning, and, indeed, recent
experiments" '" have indicated that the initiation of su-
perfluid turbulence involves initially pinned (remanent)
vorticity in an essential way. The investigation of Sec. IV
is a first step toward understanding these more complicat-
ed phenomena. There is, in fact, a suggestive qualitative
similarity between the depinnirig velocities discussed here
and the observed critical velocities for pure superflow and
counterflow. Quantitatively, however, the observed criti-
cal velocities are about an order of magnitude greater than
those predicted by Eq. (33), implying that they cannot be
understood simply in terms of the depinning of an isolat-
ed vortex. The logical next step will be to consider the
dynamics of an assembly of interacting pinned vortex
lines, an interesting project which may cast further light
on the nature of remanent vorticity and on the initiation
of superfluid turbulence.
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APPENDIX

The purpose of this section is to describe the methods
by which the numerical computations are carried out.
The discussion applies to the vortex-tangle calculations re-
ported previously ' as well as to the calculations
presented in this paper. The methods were developed heu-
ristically, without reference to similar programs written
by others and without much knowledge of the arcana of
numerical analysis. There is no claim that they represent
the state of the art either in sophistication or efficiency.
The reliability of the codes was tested by comparing them
against analytical results for the propagation of quantized
vortex rings, and the rotation of vortex waves on a
straight line. It was found that these properties can be
calculated to very high accuracy if desired, and that accu-
racy on the order of a percent is obtainable with relatively
modest computations ranging from one up to a hundred
minutes of IBM 3081 CPU (central processing unit) time.
In general, the main factor limiting the speed of the calcu-
lations is not the degradation of accuracy as the time steps
are increased, but the sudden onset of numerical instabili-
ties.

The configuration of vortices in a given problem is
given by specifying a single string of points, indexed from
i =1 to i =i „. As many as 10000 points have been
used in some of the vortex-tangle simulations. Associated
with each point i are three spatial coordinates. Because of
the frequent reconnections and interpolations necessary in
some of the computer experiments, it is quite inconvenient
to maintain sequential labeling of the points along each
vortex. Instead, the label i + of the point to which the
line goes next and the label i —of the point from which
the line comes are also specified for each i. Reconnec-
tions and interpolations can then be effected by switching
these pointers. In addition, each i carries a label which
flags special points such as a point terminating on a pin-
ning site, a special entry point on a closed vortex loop,
and so on. This device chops the string of points into in-
dividual vortices and lets the program deal with the end
points in whatever special way is required.

As the vortex configuration develops dynamically, it is
necessary to add or remove points according to specific
resolution requirements. For some problems, such as the
vortex-tangle simulations, only a relatively narrow range
of scales is of interest and it is sufficient to use the same
resolution everywhere. In the kind of calculations done in
this paper, however, it often proves advantageous to use a
resolution criterion which varies along the vortex. For ex-
ample, in the reconnection calculations of Sec. III A,
points are continuously interpolated so that they are very
close together (I—b, /5) in the reconnection cusp region,
and much farther apart (I-R/5) far from the plane.
The actual procedure used to interpolate between two ad-
jacent points i and i + is to find the mean vector curva-
ture s"=(s;"+s;"+)/2, and to place the new point on the
midpoint of the arc generated by drawing a circle of ra-
dius R =

~

s"
~

' through the two points, the plane of the
circle being defined by s" and 1=s;+—s;. This produces
a smooth interpolation which is exact for points lying on
a circular arc.
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Generation of the vortex motion requires finding three
kinds of contributions at every point: the locally self-
induced motion ps'Xs", the rest of the ideal-fluid motion
consisting of the sum of nonlocal, boundary-generated,
and applied fields, and the additional motion generated by
friction [see Eqs. (7) and (11)]. To initiate a time step, the
first task performed in the program is the evaluation of
the nonlocal, boundary-generated, and applied fields, here-
after referred to simply as the nonlocal fields, to the ex-
tent that these are of interest. A straight-line element
running from point j to j+ will contribute

b,uii(s;) = 2c+6 b

2'(4ac b)—(a +b +c)' a'

X(s —s )X(s + —s )J i J+ J (A 1)

to the velocity at point i, where a =
f si —s;

f

b =2(sJ —s;) (si+ —si), and c =
f sj+ —sj f

. This ex-
pression is summed over all real, image, or continued vor-
tex segments not contiguous to i. If pinning site boun-
dary corrections are to be considered, the gradient of the
series given in Eqs. {1S)or (19) (as appropriate) must be
summed for each ' line element sj+ —sj and added to
u„&{s; ). The applied field u„(s; ) is then added to com-
plete the first task. Naturally, this sequence, which must
be carried out for every i, is quite time consuming. Accu-
rate nonlocal calculations are therefore practical only for
relatively simple vortex configurations such as those con-
sidered in the present paper. The vortex-tangle calcula-
tions reported in Refs. 49 and 50 were carried out'in the
local approximation using a reconnection ansatz. If a
nonlocal calculation is really necessary, large amounts of
computer time can usually be saved at a modest cost in
accuracy by (a) counting nonlocal contributions only from
within some vicinity of the point of interest, and (b)
evaluating the nonlocal terms only every few time steps.

The second task performed in the program is to deal
with the local term ps'Xs". The quantities s,' and s;" are
evaluated by passing a circle through i —,i, and i +.
Qne obtains

~s;= —y;(s;+ —s, )X(s;—s, ),
where

(A7)

pi(di ci +di Ci )At ~ (AS)

Here, p; has the value (i~/4n. ) in[2(l+ I )'~ /e'~"ao j for a
fully nonlocal calculation, the value (~/4m) 1n((R )/ao)
for a calculation in the local approximation, and the value
1 when working in dimensionless units.

The explicit forward integration of Eq. (A7) is numeri-
cally unstable. A distortion with a wavelength of twice
the point spacing should, according to Eq. (15), undergo
the retrograde rotation illustrated in Fig. 39. The naive
difference equation, however, generates the linear dis-
placernents shown and therefore causes the amplitude of
the wave to grow at each step. To handle this difficulty, a
modified hopscotch algorithm ' is adopted. First, s; is
replaced by its forward value s;+b,s; on the right-hand
side of Eq. (A7) at every other point of the vortex, leaving
the neighboring s; and s;+ points at their present value
(Fig. 40). The result is an implicit equation which has the
solution

A2 —A) & A2
As 21+2 i

where

(A9)

A] = 7 (isi+ —si )

A2= —pi(s;+ —s( ) X (s; —s; ) ~

(A10)

(A 1 1)

The set of points left behind is then moved forward in an
explicit step, using the now-known forward values of the
neighboring points (Fig. 40). The initial values of y; are
used for both operations. On the next time step, the order
in which the points are taken is switched. In practice, j.t
was found that the accuracy and stability of the algorithm
was improved by dropping 3 i from the denominator of
Eq. (A9). To obtain the total ideal-fluid displacement
b,s;, the nonlocal term v„&(s;)b,t can either be added ex-

s,' =d;+1++d; 1 (A2)

8"=c+1 —c 1

where

l~2

f1+i +l l+
f

(A3)

(A4)

with

+
c;

f a+I+ —a I
(A5)

1

I

theoret ica I

1+l + l ~1+ .1
2 l+1 —(l~ I )

(A6)

Here, I+ ——s;+ —s; and I =s; —s; . The explicit form
of the difference equation for the ideal-Quid motion now
takes the form

= calculated

FIG. 39. Numerical instability wave on a vortex line. The
end-on view at bottom right shows the amplification of the in-
stability in an explicit calculation. The friction term a opposes
this tendency.
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FIG. 40. Hopscotch sequence. (a) implicit step using forward
values of points to be evaluated and present values of neighbor-
ing points; (b) explicit step using present values of remaining
points and forward values of their neighbors.

+0.0768

plicitly, or taken into the explicit-implicit loop just
described. The latter is usually more advantageous since
in most situations the self-induced motion and u„~ tend to
cancel.

The final task is to take account of the frictional
motion. To do this, As; computed in the previous two
steps is converted into a velocity so(s )=5s /At and an
explicit forward step is taken using Eq. (11), where s,' is
evaluated according to Eq. (A2).

The procedure described above generates the real
dynamical behavior of the vortex configuration. For
problems such as vortex pinning, where one is interested
in computing some final stationary state involving a wide
range of scales and a varying resolution criterion, it is
much faster to use a time step which varies according to
length of the line elements along the vortex. In this way
the vortex can be made to relax quickly to its final state,
but in a manner which no longer represents its real
motion.

We now turn to the question of how well these pro-
grams actually work. This will be discussed in terms of a
few illustrative examples. Let us first consider a vortex
ring in the absence of friction. It is found that as the
point spacing and time steps are made small, the propaga-
tion velocity of the ring reaches a well-defined value
slightly exceeding that predicted by Eq. (2). This offset,
interestingly enough, arises from the fact that the nonlo-
cal contribution is evaluated by summing over straightline
elements according to Eq. (Al). If the local line element
is held fixed in length, and the spacing of the rest of the
points is decreased, the nonlocal term [Eq. (3)] is ap-
proached exactly. If, however, the local line length ele-
ment is a1so decreased in length, the increasing relative ac-
curacy of the nonlocal term must compete with the fact
that it diverges as the local element goes to zero. The out-
come of this competition is a draw which adds a small
constant to the 1ogarithm, giving

s(ring)= z ln
8R

(A12)
'ITR e Qo

I

0 0.50 J.O
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FIG. 41. Computed propagation velocity of a vortex ring of
radius 1.0/10 cm, in the absence of friction. Shown is the
fractional deviation of the velocity from Eq. (A12) as a function
of distance traveled, for various time steps. If a friction term
+=0.10 is added, the propagation becomes completely stable for
aH three Ats.

Although such a small correction is insignificant to the
physics, it is important in judging the accuracy of the al-
gorithm to remember that it is structured to approximate
Eq. (A12).

The major characteristics of the program are displayed
in Fig. 41. Looking at the computed propagation of a
vortex ring, one observes a constant deviation from the
analytical result of Eq. (A12), and the eventual develop-
ment of an explosive instability. As the time step is de-
creased, the deviation goes rapidly to zero, and the insta-
bility is pushed out to 1onger times. Using reasonable
time steps, it is not difficult to propagate the vortex ring
to a distance of a hundred radii with essentially perfect
accuracy.

Figure 41 shows that the hopscotch algorithm does not
eliminate the instability entirely in the absence of friction.
The error wave shown in Fig. 39 still grows, albeit very
much more slowly. We now recall from Sec. IID that the
dissipation term will cause small scale deformations to de-
cay preferentiaHy. That is, the error wave in Fig. 39 wil1
decrease in amplitude as it rotates, provided the frictional
term outweighs the error growth rate. Indeed, if cz is
nonzero, one can always find a At below which the calcu-
lation becomes absolutely stable. If this value is exceeded,
the instability rapidly makes it appearance. When the cal-
culations of Fig. 41 are repeated with a dissipation of
a =0. 10, the calculation is absolutely stab1e for
b, t =8 X 10 s and smaller, and unstable for
b.t =16&&10 s. The deviation of the calculated velocity
from Eq. (A12) is 11.8%%uo when b, t =8X10 " s, 2.5%
when At =4&10 s, and 0.6% when ht =2&10 s.
This is representative of the behavior found at all scales
and point spacings: The errors are always of order 10%
just below the stability limit, and rapidly become insignifi-
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cant as b t is reduced further.
The stability limit itself has been studied numerically,

and can be described roughly by

At-yl' R 4/13 (A13)

where I is the smallest point spacing. Here, y-1 for
a=0. 10 and decreases slowly as a becomes smaller. In
most calculations, the program uses Eq. (A13), with a
suitably chosen'y, to continually adjust its own time steps
and stay well within the stability limit. It is easy to see
from Eq. (A13) that the number of time steps required to
generate some characteristic motion, such as propagation
of the ring through a distance equal to one radius, is al-
most independent of the ring size. Merely changing the
scale of the problem does not affect the cost of the calcu-
lation. It is equally obvious, however, that improving the

resolution (decreasing I) for a given calculation is very ex-
pensive, the cost increasing as I

Many other studies of the program's performance have
been done. To quote one final example, we have investi-
gated the behavior of a sinusoidal wave of very low ampli-
tude on a straight line. Theory shows ' that the sine
wave undergoes a retrograde rotation with an angular fre-
quency,

zk 2
ln

4m kao
(A14)

where k is the wave number of the distortion and y is
Euler's constant. Even with a relatively crude resolution
kl-0. 25, the calculations match Eq. (A14) to within
0.1%, and are stable for many revolutions, provided b, t is
chosen properly.
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