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The localization of sound waves moving in a random array of hard scatterers is studied for both
two- and three-dimensional systems using a diagrammatic technique. For d =2 acoustic waves are
found to be localized for all frequencies with the localization length growing exponentially for both
high and low frequencies. For d =3 there are mobility edges at an intermediate frequency and at a
high frequency. Between these mobility edges the sound waves are localized. The connection be-
tween this problem and quantum-mechanical electron localization is discussed.

I. INTRODUCTION

In some recent papers John, Sompolinsky, and
Stephen' (JSS) discussed the localization of phonons near
two dimensions. They used continuum field theory and
renormalization-group techniques to conclude that for
d &2 all states are localized. In these dimensions they
found that the localization length, g, increased as the fre-
quency of the phonons was decreased, e.g. , for d =2, g
grew exponentially as the frequency was decreased. For
d &2 JSS found that at sufficiently low frequencies the
phonon states were extended but at a higher frequency
there was a mobility edge and that all phonon states above
this frequency were localized. All of these results show
that high-frequency phonons are more easily localized
than low-frequency phonons. It should be remarked that
since JSS use a continuum field theory there are physical
parameters in their calculation that are not specified.
Furthermore, these authors do not explicitly calculate
coefficients in their work.

The results of JSS should be contrasted with quantum-
mechanical electron localization, i.e., Anderson localiza-
tion. There one finds that electrons are most easily lo-
calized at low energies since for low energies quantum-
mechanical effects are most important.

In this paper the propagation of acoustical (i.e., sound)
waves in a fluid with a dilute random distribution of sta-
tionary hard-disk (d =2) or hard-sphere (d =3) scatterers
is studied. The problem of wave propagation in a random
media is a subject with a long history. ' Et is still of con-
siderable interest. Here I extend the usual theory by in-

corporating recent advances made on the theory of
quantum-mechanical electron localization. Using a
self-consistent diagrammatic theory the differences be-
tween electron and "phonon" localization are studied in
detail. It is show~ that the connection between these two
types of localization can be simply understood both physi-
cally and mathematically. For low frequencies, defined
more precisely below, I recover the form of the results
given by JSS and give explicit coefficients for the localiza-
tion lengths, etc. These coefficients are important in
determining the experimental consequences of phonon lo-

calization. Further, since the model considered here is
well defined for "all" frequencies I can consider higher
frequencies than those considered by JSS. For d =2 I
find that acoustic waves are always localized and that the
localization length grows exponentially for both high and
low frequencies with a minimum at some characteristic
frequency. For d =3 I find that if there is a mobility
edge for intermediate frequencies then for sufficiently
high frequencies there is another mobility edge where the
waves again become delocalized. The simple physics of
these results will be discussed below.

Experimental systems' where the model considered here
might be realized will be discussed in detail elsewhere. '

Here we only mention that for d =3 sound-wave propaga-
tion in fluids with a suspension of particles is a possible
candidate. For d =2 sound-wave propagation in fluid
films with random impurities appears to be a realistic
candidate.

The plan of this paper is as follows. In Sec. II the
problem of acoustical wave motion in a random array of
hard scatterers is reviewed and it is formulated in terms
of averaged-over-the-randomness Green's functions and
the average of the Green's function squared. Here we also
introduce a multiple-scattering formalism to calculate
these quantities. In Sec. III we calculate the averaged
Green's function to lowest order in the density of scatter-
ers. As is usual for localization due to wave interference
the averaged Green's function will not contain any infor-
mation about localization. In Sec. IV we calculate the
Green's function squared —which is related to the energy
density of a wave —and discuss localization for d =2,3
using a self-consistent diagrammatic theory. In Sec. V we
give the results for d =2,3 and in Sec. VI we discuss these
results and make some concluding remarks.

II. FORMULATION OF THE PROBLEM

In this section I review how the problem of sound-
wave motion on a random array of scatterers is
transformed into a many-body problem.
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A. Basic definitions

The basic problem is to solve the wave equation

(2.1a)
(2.2b)

with

where f(r) is a given function. In terms of a Green's
function Eq. (2.1) is given by

P(r, t) = fdr'G(r, t
~

r')f(r')

in the presence of a random array of stationary hard-disk
(d =2) or hard-sphere (d =3) scatterers of radius a.
Here P is the wave amplitude, V is a d-dimensional La-
placian, and c is the speed of sound in the absence of any
scatterers. For typical hydrodynamical systems P is the
velocity potential and V=V/ is the fluid velocity S.ince
no fluid can flow into the hard scatterers, the boundary
conditions to be imposed on Eq. (2.1a) are that the normal
derivative of P vanish at the surface of each scatterer, "

and

G(r, t (0
~

r') =0,
B,G (r, t =0

~

r') = —c 5(r —r'),
B„G(r,~ [r') (,„~„,=0 .

(2.2c)

(2.2d)

P(r, t &0)=0,

B,P(r, t =0)= c f(r), —
(2.2a)

(2.1b)

where B„denotes a normal derivative. it is important to
remark here that Eq. (2.1b) represents the fundamental
difference between electron and sound-wive localization.
That is, Eq. (2.1a) is identical to the Schrodinger equation
except that its time derivative is of second order. This
difference is of no consequence once we transform to fre-
quency or energy space. It should be noted that in this
paper I sometimes will use the expression frequency of the
electron in place of energy so that the connection between
sound-wave localization and electron localization can be
easily stated. The only real difference between the elec-
tron problem and Eqs. (2.1) is the boundary condition
given by Eq. (2.1b). If the problem of a quantum-
mechanical electron moving in a random array of hard
scatterers was considered (i.e., the quantum-mechanical
Lorentz gas), then for this case one would require that the
wave function itself vanish at the surface of each scatter-
er. For low frequencies it is well known, " and easy to
understand physically, that the Neumann boundary condi-
tion given by Eq. (2.1b) is not as effective in scattering a
wave; the total cross section at frequency E is proportion-
al to" E +' for small E for this case, as is the Dirichlet
boundary condition used for the electron problem. For
Dirichlet boundary conditions" the total cross section is,
e.g., a constant for low frequencies for d =3. This then
already explains the differences between phonon and elec-
tron localization for low frequencies discussed in Sec. I.
For high frequencies the cross sections for Neumann and
Dirichlet boundary conditions become identical so that at
these frequencies the phonon and electron problems be-
come identical. Since the high-frequency limit for the
electron problem is the classical limit where quantum-
mechanical localization effects disappear, the localization
behavior discussed in Sec. I for high frequencies can also
be easily understood. Physically the delocalization at high
energies occurs because the waves are then very localized
objects that can easily propagate between the scatterers.

We next define a Green's function for Eqs. (2.1). If we
imagine a localized disturbance is created at time t =0 at
r then a reasonable initial condition is'

As mentioned in Sec. I, in order to calculate localiza-
tion effects one must consider the energy density of the
injected disturbance which is proportional to the Cireen's
function squared. We define

P(r, t
~

r')=G (r, t
(
r'), (2.3a)

and we will actually be interested in P for a given external
frequency co defined by the Laplace transform,

P~(r
~

r') = dte'"+' "G (r, t
~

r')
0
+~ dE

Gz++ rz(r
~

r') G~: n(r
~

r')
2&

+oo dE PE~r r (2.3b)

with
+

GE =GE+ 0 ~ (2.3c)

Here I have used the convolution property of Laplace
transforms and denoted the internal frequency by the
symbol E. In JSS they denoted E by co.

It is the purpose of this paper to calculate the average
of PF defined by

PF „(r
~

r')= lim fdR Pz „(r
~

r') .
1

N, V
N/V =n

(2.48)

P„k(E)- 1

i m+D (E,co—)k
(2.4c)

Here D(E,co) is an internal frequency, E, and external
frequency, co, dependent diffusion coefficient that

Here I R;;i = 1 —X I denotes the location of the ith
scatterer in a volume V and the bulk limit is taken with n,
the density of scatterers. In defining the average given by
Eq. (2.4a) we have for simplicity neglected all correlations
between scatterers so that overlapping configurations of
scatterers are possible. It will be convenient to work in
Fourier space with an external wave vector k,

P k(E) = f (d(r —r')exp[ i k (r r')]PF—. (r
~

r'—), (2.4b)

where I have used the knowledge that space is homogene-
ous on the average so that P(r

~

r') is a function of
~

r —r'
~

only. Below we show that P k(E) is proportion-
al to a diffusive hydrodynamic pole for k, co+0,
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represents, physically, the diffusion of energy in this
amorphous system. Whether or not a wave at frequency
E is localized is determined by the behavior of
D(E,co~0). For example, in d =2 we will find that for
all E,

D(E,io~O) = incog
—(E)+O(co ) .

kP+:P+
2

(2.5d)

This implies that PE(r, t) does not decay in time and that
it is localized in a spatial region of extent g(E).

Gz(rIr')=&rI G+ Ir'&=&r'IG+ Ir&, (2.5a)

where the second equality is due to the reciprocal relation
for Green's functions. In a wave-number representation
Eq. (2.5a) reads

B. Transformation to multiple-scattering formalism

In order to transform the complicated boundary condi-
tion problem given by Eqs. (2.2) and (2.4) into a standard
many-body problem we use the usual multiple-scattering
formalism. ' ' It is first convenient to introduce an
abstract quantum-mechanical-like notation which is rep-
resentation free. We define bra and ket vectors and
abstract operators, denoted by circumflexes, by, for exam-
ple,

In giving the second equality in Eq. (2.5c) we have defined
the function 4 and have used that from the averaging
there will be an additional factor of the volume since on
the average space is homogeneous.

%"e next define a T1 operator whose matrix elements
are the transition matrix for a scatterer at R,:—1, '

G E(1)=G~o+Gg~oT (-(E)Gs o . (2.6a)

Here G(1) is the Green's operator when there is only one
scatterer present at R1 and Go is the Careen's operator in
the absence of scatterers,

& r
I

G s o I
r( &

=[(E/c+i 0) +V ] '5(r r() .— (2.6b)

Gi =Gi,o+ g G E,oT «)G E,o«)

%'ith this, we can in the usual way ' ' express the X
scatterer ( X~ oo ) Green's operator as

G+( ~) I drdr —iP r+iP' r'G(+)(
(2m)"

(2.5b)

+ g G F oT, (E)G F o(E)Ti—(E)G Eo+
i+j

(2.6c)

With this notation Eq. (2.4) is given by

P (E) J P Pl (277)

(2m-)d

x&p+ IG~+ Ipi+&&pi- IGE- Ip-&

i.e., an infinite series of binary interactions where no two
consecutive T operators can have the same scatterer label.
The advantages of this technique are that it directly in-
corporates the complicated boundary conditions into the
equations of motion and transforms the problem into a
standard many-body or multiple-scattering prob-

4—9, 12—14

The T operators can be straightforwardly calculated by
solving Eq. (2.6a) and using techniques already given in
the literature. s' ' '7 I obtain

where

—:f „Npp (k, co
I
E),

(2~)" & p I
T ( «)

I p(& =e ' ' "
&p I

T'-«)
I p(& .

For d =2,
(2.7a)

II —P I

and for d =3,

(2.7b)+ g e cos(m8) + (+(, + [ag J (pa)H +((g a) —paJ +(p—a)H (g a)], —+, +
g+- H' —'(g+—a)

(Elc+i 0) p, j ( (I—Pa—P()
PI T'-«) Il( =—

I I —I ( I

a p( Ji (p(a) +. + + . + +
Q (21+1)Pi(cosO) +,+,, + [ag-j, (pa)h, +, (g—a) paj, +,(pa)hi—(0 a)] .

2 I=o g+— h' —'(g+—a)
(2.7c)

Here co=i Ez E3= ~ . - ——=2, g
—=—IE/c+iOI, 8 is the angle between p and p(, J (j ) is the ordinary (spherical)

Bessel function of order m, H'~ =H" ' (h —=h~ ') are the ordinary (spherical) Hankel functions of order m, prime
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(2.8a)

denotes derivative with respect to the argument, and P~ is the Legendre function of order I.
For later use we give here some useful limits of the T matrices given by Eqs. (2.7b) and (2.7c). For low frequencies

and wave numbers, Eajc & 1, pa & 1, and pIa & 1, Eq. (2.7b) can be approximated" by (d =2 here)

(pa) +(p&a ) (E—a /c) —2(pIa )(pa)cos8
+ [(p(a) (pa) +2(pIa)(pa)(Ea/c)'cose]+ .

and Eq. (2.7c) can be approximated by (d =3 here)

(p~ T (E) ~p()= [(pu)'+(p)~)' —(«/c)' ——', (p]u)(p~)cos8]
6~

+ (Ea/c)[(pa) (p, a) + —,'(p, a)(pa)(Ea/c) cos9]+ (2.8b)

Also of later use is Eq. (2.7b) in the limit" (d =2 here)

J' (Eajc)
(p~ T —+(E) ~pI) ~p p, //, ——+ y e (+), cos(me),H' '(Ea /c)—

and

[J' (Eale)]
7r 'o [J' (Ea/c)] +[X' (Eajc)]

with F~ the ordinary Neumann function of order M.
For Ea/c ) 1, Eq. (2.8d) is given by' '

(2.8c)

(2.8d)

Im(p
~

T —+(E) ( p) (z z&,
——+ (Ea jc) 1—— 1 0.4321

(Ea/c) ~
0.2137 0.055 73+(Eajc) ~ (Ea lc)

0.000 555 0.023 25

(Ea /c) (Ea /c)'
(2.8e)

For d =3, the analogous results are

l C jI' (Ea/c)
(p ~

T (E)
~
pI) ~q q, gg, ——+ 2

—g (2l+1)PI(cos8) (+),2~' E I=o h('-"(Ea/c) ' (2.8f)

00 [Ji («/c)]'
Im(p

~

T+—(E)
~
p) )~ z~, ——+ g (2l+1)

2mE~ 0
. jI'(Ea jc + yI' Ea c

For Ea /c & 1, Eq. (2.8g) is given by' '
(2.8g)

2E
Im(p I

T +—(E)
I p) I p=Ft =+ 1

4m c
0.8642 0.4163 0.7532

(Ea /c) (Ea /c) (Ea /c)

0.029 85 0.058 62

(Ea/c) (Ea/c)'
(2.8h)

C. Diagrammatic rules X~ (E)= I p(E)+iy~(E), (2.9b)

%'e next give the diagram technique for calculating G
and 4& [cf. Eq. (2.5c)]. Since space is homogeneous, on
the average, 6 is diagonal in the wave-vector representa-
tion and can be written

(p
~

G —
~ p, ) =6(p —p, )G(p, E+iO)

=&(p —pI)[(E/c+~ O)' —p' —&~ (E)]

(2.9a)

where we have defined a self-energy by

which consists of a real part Iz and an imaginary part
yz(E). X is given by the sum of all irreducible diagrams
and the first few of them are given in Fig. 1. The dia-
gram rules for the calculation of X~ (E) are as follows. '
(1) With each directed line segment pI, we associate a
free-particle Green's function

Go(p„E+iO) =[(E/c+iO) —p~]
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(a) (b) (c)

+ ~ ~ ~

happ, (k,culE) =

e-E-

8(e-e& ) +

p„E, p„g,

FIG. 1. First few diagrams that contribute to the self-energy
FIG. 2. Diagrammatic representation of Eq. {2.10a).

(2) An x denotes a T operator and
l

denotes the matrix element (p ~
T,+—(E)

~
p~). (3) When we

average over all configurations of the scatterers, the T
operators are connected by the exponential factors in Eq.
(2.7a). We present the connection by a wavy line. (4)
With each wavy line we associate a factor of n (2m) times
a 5 function of the sum of the momenta entering and leav-

ing the wavy line. The 5 function appears as a result of
the R; integrations of the exponential factors in the T
matrices. (5) Diagrams with the element ~ are not al-
lowed due to the restrictions on the sums in Eq. (2.6c).

Having formulated the diagram rules for the calcula-
tion of G as an expansion in powers of n, we now turn
our attention to deriving an equation for 4. We can
represent the function C&», (k, co

~

E) in terms of the "bub-
ble" diagrams given in Fig. 2. ' Here the directed line
segments denote exact averaged Careen's functions.
Analytically one has

C'», (k, co
~

E)=G(p, E +i 0)G(p, E i 0)[5(—p —p, )+I „(k,co
~
E)G(p&,E +i 0)G(p, ,E —iO)] . (2.10a)

The complete four-point vertex function I » in Eq. (2.10a) can be expressed as the sum of all reducible and irreducible
PP)

diagrams connecting the upper and lower parts of the diagram. The reducible diagrams can be split into two disjoint
parts by drawing a vertical line through the diagram. We can define an irreducible four-point vertex function by U»PP)

that contains only irreducible diagrams by '

,(k,
~

E)=U, (k,
~
E)+fdp'U (k,

~

E)G(p', E + '0)G(p', E —'0)l, (k,
~

E) . (2.10b)

With this Eq. (2.10a) integrated over p& can be written

C&p(k, a)
~

E)=fdp@» (k, co
~

E)=G(p+,E++i0)G(p,E —i0) 1+fdp2U» (k, co
~

E)&&p (k, co
~

E) (2.10c)

Equation (2.5c) is now given by

P„,(E)=f P„e,(k,~ ~E) .
(2~)"

(2.10d)

The first few diagrammatic contributions to U» are given in Fig. 3.
PP2

Finally, Eq. (2.10c) can be written in the form of a generalized Boltzmann equation as, from Eq. (2.9a), '

[ 2Ecolc'+2k p+Xp+ (E—+)—X~ (E )]@p(k,~
~

E)

AG(p+,p, E+,E )+b6(p+,p,E+,E )fdp2U», (k, co
i E)4,(k, co

i
E), (2.11a)

with

b, G (p+,p,E+,E ) =G(p+, E+ +i 0) G(p, E ——i 0) .

(2.11b) (b) (c)

+ ~ ~ ~

In the calculation given below we take E &0. The re-
sult for E ~0 can be obtained from these results.

FIG. 3. First fevv diagrams that contribute to the irreducible
four-point vertex function U» .
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III. THE AVERAGED GREEN'S FUNCTION

&—(E)=~(2m)"(p & +—(E) ~p&= I (—E)+~ y(E') . (3.1)

For future reference we also note that for small k and
co, and small n, the b.G functions in Eqs. (2.11) are ap-
proximately '

In this section we calculate the averaged Green's func-
tions to lowest order in the density of scatterers. The di-
mensionless parameter that is assumed to be small is the
reduced density, na . In this section we also give a use-
ful representation for the self-energies for both low,
Ealc & 1, and high, Ea/c & 1, frequencies.

The leading approximation to the self-energy for
na" & 1 is given in Fig. 1(a), and its analytic value is

suiting equation has the structure of a Boltzmann equa-
tion. We then derive Eq. (2.4c) with D given by its
Boltzmann equation value which we denote by Dz W. e
next examine density corrections to this Boltzmann result.
In particular, the maximally crossed diagrams important
for electron localization ' ' ' are taken into account.
Using the techniques developed by Vollhardt and
Wolfie ' for the electron problem, we discuss the localiza-
tion of acoustic waves for d =2,3. Since the technique is
essentially identical to that given in the literature for
the electron problem I will be very brief,

A. Boltzmann equation results

g G(p,p, E+,E )-—2irr5(p' —E'/c'),

so that we will need '

Xp«) Ip=zr. =r'-(E)
—:I (E)+iy(E)

(3.2) To lowest order in the density the irreducible four-point
vertex function Upp is approximated by its BoltzmannPP2'

value U&&, given by the diagram in Fig. 3(a),

U», (k, ~
~
E)=n(2~)'(p+

~

f +(E

= n(2~)" (p~ Z -'(E) ~p& )p E„. (3.3)

The important part of the self-energy for localization
theory is the imaginary part. Equations (2.8) give y(E)
for d =2,3 for essentially all frequencies.

IV. CALCULATION OF P„,g(E)

In this section P„z(E) is calculated. We first solve Eq.
(2.11a) to lowest order in the density of scatterers. The re-

X(p2 ~T (E )~p (4. la)

Also, to lowest order in the density we can neglect the k
and co dependence in the X's and U functions in Eqs.
(2.11), and we can also use Eq. (3.2). With these approxi-
mations the Boltzmann approximation for @(:—4& ) is
given by the solution of the equation,

2i
2

+2—ik p+2y~(E) 4p(ken ~E)=2no(p E /c ) I+pg(2r—r)"fdp2
~ (p ~

Z (E)p &
~

@ (k ~ ~E) (4.1b)

nA(p) =n~(2m)"(E/c)"

dp2o. p-p2 P pp2 —1 (4.2a)

where

The solution to Eq. (4.lb) for small k and co can be
readily constructed by noting that it is an integral equa-
tion only in the unit vector P=p/~ p ~. Defining the
self-adjoint collision operator,

In giving Eq. (4.2a) we have used the optical theorem re-
lating the imaginary part of the self-energy, y, and the an-
gular integral of Eq. (4.2b). It is this property that leads
to a collision operator that has an eigenfunction, a con-
stant, with a zero eigenvalue which in turn leads to a con-
servation equation for @ and the diffusive pole result
given by Eq. (2.4c). The generalization of this property
for the exact equation given by Eq. (2.11) is the Ward
identity,

0'(P'Pz) =
I ~p I

~«) P2& I

'
I p=p, =« (4.2b) f

dpi',

G(p+,p,E+E )U~~, (k, co
~

E)

Np(k, co
i
E)=5(p —E /c )P-(k, co

~

E), (4.2c)

and P(pp2) is a permutation operator that changes p to
p2 when it acts on an arbitrary function f(p). With this
and defining

=Xq+ (E+ ) —Xp (E ) . (4.3)

F« ~~all k and co, Eq. (4.2d) can be readily solved and
one obtains

Eq. (4.1b) gives

2i +2ik —p nA(p) —P-(k, co
~

E)=2m . (4.2d)

P-(k, co
i
E)=

E [ i co+De(E)k J—
with D~(E) the Boltzmann diffusion coefficient.

For d dimensions,

(4.4a)
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, [&P. In&(p)lp &1
' (4Ab)

5U (0,(o
I

E)=U (0,(o IE) U—,(0,(o IE) . (4.6e)

Dg(E) =—2 C C

5 ~na Ea
J

and for large E, Ea/c & 1, Eqs. (2.8) and (4.4b) give

(4.4c)

Dg(E) =
4na

(4.4d)

For d =3 for low frequencies, Eqs. (2.8) and (4.4b) yield
' 4

3C
Dg(E) =

11m.na 2 Ea (4.4e)

and for high frequencies Eqs. (2.8) and (4.4b) give

D~(E) =
6mna

(4.4f)

For d =2 for small E, Ea/c &1, Eqs. (2.8) and (4.4b)
yield

3

In giving Eq. (4.6b) I have neglected all the (o and k
dependences that are nonsingular for k, (o~O, and I have
used that 5U (k, (o

I
E) is a nonsingular function of k.

If one next examines the intensity corrections to D
given by Eq. (4.6b) then one finds that if a power-series
expansion is assumed then the individual terms are diver-

gent, for (o~O, after some order in the density that de-

pends on the dimension of system. ' Amongst the most
divergent terms are the set of maximally crossed diagrams
given in Fig. 4, which are divergent for

I p+p2 I
~0. It

is this class of diagrams which are assumed to cause local-
ization. These diagrams can be easily resummed by rotat-
ing the bottom line in Fig. 4 180' and relating the result-
ing infinite series to the Boltzmann diffusive pole given
above. ' ' ' For small (o and q =

I p+p2 I, one then
obtains that 5U~„(M denotes maximally crossed dia-

grams) is proportional to a hydrodynamic diffusive pole,
Finally, Eqs. (4.2c), (4.4a), and (2.10d) yield

d —1 ~c
(2m. )

1
(4.5)

[ i(o+Dg(—E)k ]

The results given above are valid only when kl(E) & 1,
where l (E) is a hydrodynamic, E-dependent, mean free
path given approximately by D~(E)=cl(E).

2

5U (0, IE)= ~
( /E)" '

(d —1)

1
X 2—i(o+D~ (E)(p+ p2)

X [I+o (
I p+ p2

' ~) ~ (4.7)

B. Self-consistent diagrammatic theory

1
(4.6a)

t'co+D(E, (o)k—

with

1 1 &d c+
D (E,(o) Dg(E) c~~ E

X Jd pd p2p.p~~G(p, E)~G(p&,E)

We next consider the density corrections to the
Boltzmann diffusion coefficient given by Eqs. (4A). In
particular, we first take into account the set of maximally
crossed diagrams ' ' ' important for electron localiza-
tion. It is first convenient, following Vollhardt and
Wolfle, to approximately solve Eq. (2.11a) and obtain
an equation for D(E, (o) directly in terms of the irreduci-
ble four-point vertex function. Using Eq. (4.3) and tech-
niques already given in the literature, " one obtains

d —3

p (E) (d 1 )K c E
(2n) c

for d =2,3, where y(E)=y~ @~,(E).
Inserting Eq. (4.7) into Eq. (4.6b) and evaluating the re-

sult to lowest order in n yields

1

D (E,(o)

1 d3 (E)
( /E)"

Dg (E) 2(d —1)n'

X d q . (4.8a)
1

i (o+Dq (E)q—

Here qo is a hydrodynamic cutoff on the order of l (E),
where l(E) is the hydrodynamic mean free path. The cut-
off qo is needed because in giving Eq. (4.7) we have as-
sumed that

I p+p2 I /qo & 1. For d &2 the localization
effects calculated here are essentially independent of' qo
while for d & 2 the results are cutoff dependent.

It is important to note that the second term on the
right-hand side of Eq. (4.8a) is still divergent (even after
the resummation given in Fig. 4) for d &2. The self-
consistent theory of localization, for all d, consists of re-

placing the low-density hydrodynamic pole in Eq. (4.7) by
an exact hydrodynamic pole, with D(E,(o) replacing
Dz(E), so that Eq. (4.8a) is replaced by

X5Upp, (0,(o I
E), (4.6b)

where
9

a2 E/c, a3 8——
and

b, G (p,E)=b G(p,p, E,E),

(4.6c)

(4.6d)

p,E,

p E p~E

FICx. 4. The maximally crossed diagrams.



31 LOCALIZATION OF ACOUSTIC WAVES 5753

1

D (E,ro)

1 dy(E)
Dg(E) 2(d 1)a

1
dq

i c—o+D (E,ro)q

(4.8b)

g(E)"

An algebraic equation for D (E,co) is then obtained.
Equation (4.8b) can also be written

d y (E)Dg (E)
D(E, ro) =DJ3(E) —

2
(c/E)"

2(d —1)rr

(4.8c)«q —im DEco

V. RESULTS OF SELF-CONSISTENT THEORY

In this section Eq. (4.8c) is solved for d =2, 3.

A. d =2

For d =2 Eq. (4.8c) is given by

y(E)D&(E) c qoD(E, ru)
D (E,ro) =Ds (E) ln —EQ)

(5.1a)

(a)

localized

FIG. 5. (a) Localization length, g(E), as a function of energy
for d =2. The minimum occurs near Ea/c-0. 9. (b) Regions
of extended states, lined boxes, and localized states, the open
box in d =3.

with

D(E,co~0)= icing (E)+—O(co ) . (5.1b)

Here g(E) is the frequency-dependent localization length
that can be determined by inserting Eq. (5.1b) into Eq.
(5.1a). I obtain

It is easy to show that the solution to Eq. (5.1a) for co~0
is of the form

0.4321 0.2137 0.055 73
2/3 4/3 2x X x

0.000 555 0.023 25

x 8/3 x 10/13 (5.3c)

qo

g(E)=
5m na

3
2 c

exp
3~na2

2

(5.3a)

and for high frequencies these equations give

2

g(E) = exp
1 E

(5.2)
qy(E) c

Defining qo l '(E) with the ——hydrodynamic mean free
path given by Dz(E)=cl(E) and using Eqs. (4.4) and
(2.8), we can explicitly determine g(E) for essentially all
frequencies E. For low frequencies, Ea/c & 1, these equa-
tions yield

In Fig. 5(a) we graph g(E) as a function of Ea/c. The
minimum occurs near Ea /c -O.9.

It should be noted that Eq. (4.4d) for Ds(E) =cl(E) is-
an accurate representation only for Ea/c »1. For a
larger range of energies, Ea /c & 1, one expects that an ad-
ditional factor such as f2(Ea/c) multiplies the factor 4na
in Eq. (5.3b). Similarly, in Eq. (5.5c) for d = 3, one antici-
pates the f3 in Eq. (5.5c) should be replaced by a term
such as [f3 (Ea /c )] . These factors have not been ex-
plicitly indicated in these equations since the value of the
cutoff, qo, is not precisely given in the theory presented
here.

g(E)= exp
'1 7T

47la 8na 2 e
1

f2(Ea /c)
(5.3b)

For d =3 Eq. (4.8c) is

B. d =3

D (E,ru) =Ds(E) 1—3y(E) c
3

q ice/D(E, ru)—

3
3y(E) c=Ds(E) 1— qo—E

3y(E) c
E

im p~o dq
D(E,ru) "o

q ice/D(E, co)— (5.4)
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D(E)=Dg(E) 1 — (na )
9

"'
c

(S.Sb)

For E & E2 and Ea/c & 1, Eqs. (5.Sa) and (2.8) yield
2

D(E)=D~(E) 1 36m—(na .
) f3(Ea/c)

Ea
(5.5c)

with

0.8642 0.4163 0.7352
x'" x'" x'

0.029 85 0.058 62
~ 8/3 10/13 (5.5d)

For a fixed density, E~ and E2 are the solutions of the
equation

t
3y(E) c c

E Dg(E)
(5.6a)

and in the localized region the localization length is again
defined by

D (E,co—+0)=

icing

(E)+O—(co ) . (5.6b)

Inserting this into Eq. (5.4) yields an expression for g(E)
given by

nD~(E) D~(E)~
g(E) = 1—

2c 3cy(E) c
(5.6c)

For E=E1 one obtains

g(E)-(E Ei)—
and for E=E2 one obtains

g(E) (E'

(5.7a)

(5.7b)

i.e., the critical exponents are unity. In Fig. 5(b) we
present the localized and extended states for d =3.

VI. DISCUSSIGN

This paper is concluded with some remarks.
(1) The main results of this paper are illustrated in Fig.

5. For two dimensional fluids we found that sound waves
are always localized with the localization length growing
exponentially for both high and low frequencies. Further-
more, we have given explicitly the coefficient in the im-
portant exponential factor in Eq (5.2) for .essentially all

As already discussed, we expect both a lower mobility
edge, at E*1, and a higher mobility edge, at E2, for d =3.
This of course assumes that the density of scatterers is not
too small. For a fixed density of scatterers the acoustic
wave is extended for E ~ E1 and E ~ E2, and
D (E,O) =D (E) is given by

3

D(E)=Dg(E) 1 — —
qo

3y(E) c
(5.5a)E

Defining qo by D~(E) =cl(E)=cqo ' and using Eqs.
(5.5a) and (2.8), D(E) for E &E~ and Ea/c & 1 is given
by

frequencies. In form our low-frequency results are in
agreement with JSS.'

For d =3 we found that if the density scatterers is suf-
ficiently large then there are two mobility edges. Between
these mobility edges the sound waves are localized and the
critical exponent for the localization length near the mo-
bility edges is unity. In form, the low-frequency results
are in agreement with JSS.

It is important to remark that the high-frequency limit
considered here is an allowable physical limit for the
model defined by Eqs. (2.1). Since we have not specified
the size of the scatterers and since Eq. (2.1a) is wave equa-
tion that should be valid in a liquid down to length scales
on the order of a molecular diameter, o., there exist a
range of frequencies such that Ea Ic & 1 & EcrIc. Finally,
the tendency for delocalization at higher frequencies is
due to the fact that the waves then have a small spatial
extent and can easily propagate between the scatterers.

(2) Although the quantitative features of our results for
high frequencies depend on the assumption of hard
scatterers, it is reasonable to expect that they are qualita-
tively correct for a much larger class of scatterers.

(3) For low frequencies the model considered here, Eqs.
(2.1), is almost identical to the model

B,P(r, t) [ Vo + V(—x)]V' P(r, t) =0, (6.1a)

where V(x) is a Gaussian random function with correla-
tions

( V(x)) =0,
( V(x) V(x') ) =pd5(x —x'),

(6.1b)

(6.1c)

where d is a constant. The only physical difference be-
tween Eqs. (6.1) and the low-frequency limit of our model
is that the white-noise assumption given by Eq. (6.1c) is
equivalent to assuming isotropic scattering. From Eqs.
(2.8a) and (2.8b) it is clear that this is not entirely correct
even for low frequencies. However, the localization prop-
erties of Eqs. (6.1) are identical to those obtained in this
paper for low frequencies. For the electron localization
problem the Gaussian white-noise model is physically
identical to the low-energy limit of the hard scatterer
model since the low-energy scattering is isotropic for Dir-
ichlet boundary conditions.

(4) As was already discussed in Sec. II, the difference
between sound-wave localization and electron localization
in this class of models is due to the difference between
Neumann and Dirichlet boundary conditions. " For low
frequencies —or energies —the scattering due to these
boundary conditions is fundamentally different. For high
energies the scattering becomes identical. Physically this
implies that for high frequencies the diffusion of the ener-
gy density of a sound wave in this amorphous model is
mathematically similar to diffusion in a classical Lorentz
gas.

(5) As for the electron problem, renormalization-
group techniques in d =2+@ dimensions can be used
directly together with diagrammatic technique given here.
One then finds for d =3 (e'=1) the results given by Eq.
(5.7).

(6) It is interesting to note that the presence of scatter-



LOCALIZATION OF ACOUSTIC WAVES 5755

C2
Ceff 21+7TnQ

and for d =3,

(6.2a)

ers renormalize the effective speed of sound in the fluid.
For example, for low frequencies the effective speed of
sound, c,tr, is given by, from Eqs. (2.8), (2.9), and (3.1),
for d =2„

trinsic fluid dissipation, e.g., viscosity, as well as non-
linearities. In terms of the electron problem the analogous
neglected physical processes are inelastic scattering mech-
anisms, which corresponds to dissipation, and electron-
electron interactions, which corresponds to the nonlineari-
ties. We have also neglected classical percolation effects.
All of these must be considered before a reliable experi-
mental prediction can be made.

2 1+(2nna )/3
1+(4nna )/3
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