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Nuclear quadrupole interaction due to point defects in aluminum:
Effect of host lattice structure
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The electric field gradients (efg s) at the first four near-neighbor sites in Al caused by a vacancy,
substitutional Mg, Si, Ga, Ge, In, and Sn impurities, and an interstitial positive muon have been cal-
culated. The perturbed core as well as conduction-electron densities around the point defects are
calculated self-consistently using the spherical solid model based on the density-functional theory.
A critical discussion of the contributions to efg's from the bound and scattering electrons is given.
The contributions to the efg s due to strain caused by the size difference between the host and im-
purity atoms are calculated by using an oscillatory form for the displacement field. Our theoretical
results are in good agreement with available experimental data for all the alloys at all near-neighbor
host sites.

I. INTRODUCTION

The electric field gradients (efg's) caused by impurities
at near-neighbor host atom sites in cubic metals derive
contributions from two main sources: the "valence ef-
fect" is due to the perturbation produced by the impurity
on ambient electron distribution, and the "size effect" is
due to the strain caused by the mismatch between host-
and impurity-atom size. Although these two effects are
intimately related to each other, for the sake of calcula-
tional convenience, they have been treated separately.

Kohn and Vosko' and Blandin and Friedel showed
that at large distances from the impurity, the valence-
effect efg can be expressed in a simple form:

q "(r)= a(k~)5n, (r),
8m.

3

where a(kF) is the Bloch enhancement factor' due to the
orthogonality of the conduction-electron states with host
cqre orbitals. 5n (r) is the electron density at the asymp-
totic region and is given by the well-known Friedel formu-
la. ' Kohn and Vosko' were able to explain many quali-
tative features of efg's as a function of distance from the
impurity, using the simple expression in Eq. (1). Howev-
er, as, new experimental data on efg's at first- and second-
nearest neighbors became available, it became apparent
that the asymptotic formula is not valid at the first few
near neighbors. Furthermore, the efg's in many alloy sys-
tems were found to deviate from cylindrical symmetry—
contrary to the prediction from Eq. (1).

The next pioneering step in the development of the
theory of efg was taken by Sagalyn and Alexander.
These authors used the preasymptotic expression for efg
derived earlier by Jensen et al. along with a new size-
effect contribution to calculate the efg's at the first two

near-neighbor sites in Cu alloys. Their prescription en-
ables them to calculate the asymmetry in the efg tensor.
With the help of two adjustable parameters [the Bloch
enhancement factor a(kF) and a coupling parameter A, for
strain in size-effect efg], Sagalyn and Alexander (SA)
provided a satisfactory explanation of efg's in Cu-based
alloys. The size-effect efg was calculated by drawing an
analogy between the efg tensor and elastic tensor and by
representing the displacement u (r) of a host atom, a dis-
tance r from the impurity in elastic continuum theory as

u (r) =Dr/r (2)

The original prescription of SA, with minor modifica-
tions, is still used by many authors to study efg's in
cubic-metal alloys. Successful as they are, basic problems
still remain in the SA procedure. For example, (1) the va-
lidity of the preasymptotic form of efg at the first few
near neighbors is uncertain. (2) The method for evaluat-
ing the amplitudes and scattering phase shifts entering the
expression for preasymptotic charge density adds further
to the ambiguity. (3) Use of Eq. (2) to express the dis-
placement of host ions implies that all host atoms around
a given impurity must move in the same direction. This
is known to be incorrect from both first-principles and
computer-simulation studies. '

The next major study in the theory of efg was carried
out by the present authors. " We derived an exact expres-
sion for the valence-effect efg that is valid at all distances.
The perturbed electron densities around the defect was
calculated self-consistently by using the jellium model and
the density-functional theory. For the strain contribution,
we used an oscillatory form in contrast to that in Eq. (2).
This theory was later applied by us' to study efg's in
many Al-based alloys. We refer the reader to this paper
which contains all the details of our methodology as well
as an in-depth critique of earlier theories in this field.
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This paper differs from our earlier calculations' in the
following respects: (1) The perturbed electron densities
around point defects are calculated in the spherical solid
approximation' based on density-functional theory. '

The spherical solid model goes beyond the jellium model
where the host ions are smeared to form a homogeneous
distribution of positive charges. . Thus, the effect of a
discrete host lattice on electron perturbation due to im-
purities is lost. In the spherical solid model, the host ions
are replaced by pseudopotentials. The potentials of all
atoms at a given distance from the impurity are then
spherically averaged and added to the effective potential
acting upon the electrons. This is a simple way to take
into account the periodic nature of the host lattice. The
use of this model in explaining the systematics of muon
Knight shifts in many metallic hosts has been recently
demonstrated by Manninen. ' (2) We have also studied
the relative contributions of bound impurity orbitals and
scattering electrons to valence-effect efg. (3) A critical
discussion of the use of an oscillatory form for the dis-
placement field as opposed to Eq. (2) is also provided.

In Sec. II we outline only the essential steps of our
theory needed to understand the efg results discussed in
Sec. III. A summary of our conclusions and possible
courses for future theories on efg are given in the conclud-
ing Sec. IV.

II. REVIEW OF THEORY

In a fcc metal, the principal axes of the valence-effect
efg q' and size-effect efg q' tensors overlap. Thus, the to-
tal efg can be obtained by adding the corresponding prin-
cipal components of q" and q', namely,

nI(r) and nH(r) are the electron density distribution,
respectively, around the impurity and host atom located
separately at the origin. Z,rr=Z(oo) is the screening
charge of the defect. q» is referred to as the principal
value of the efg. In situations where the efg does not pos-
sess cylindrical symmetry, another quantity q, the asym-
metry parameter, is necessary to completely describe the
efg tensor. By definition 0&g&1. The location of the
impurity atom in our calculation defines the origin of the
coordinate system.

The electron density, n, around the host or impurity
atom is composed of both core (bound) electrons nb and
conduction electrons n„. Thus,

n (r) =- nb(r)+ n„(r) .

Similarly the number of electrons Z(r) contained in a
sphere of radius r around the origin consists of bound as
well as scattering parts:

Z(r)=Zb(r)+Z„(r) .

Thus, the valence-effect efg q" in Eq. (4) derives contribu-
tion not only from the difference between the valence-
electron structure of host and impurity atoms, but also
from their differences in core configurations. Of course,
the core electrons are much more localized than the
valence electrons and may not affect efg's at host atoms
far from the impurity. However, it is not so obvious that
the core contributions at the first-nearest-neighbor site
due to interstitial impurities or heavy substitutional im-
purities will be negligible.

To calculate n (r) around the impurity or host atom in
the spherical solid model, we express the external pertur-
bation,

q =q'+q' . (3)
n,„,(r) =A 5(r) +n oe(r —Rws),

This, however, does not hold for the third-nearest-
neighbor host atom. In this case it is necessary to add all
six Cartesian components of q" and q' and then diagonal-
ize the resultant to obtain the principal components of the
tensor q. This can be achieved by using the a-function
technique and rotation matrices. However, if either q" or
q' in Eq. (3) is vanishingly small for the third-nearest
neighbor, the above procedure is not necessary. In the fol-
lowing we outline the salient features of the calculation of
q and q

A. Valence-effect efg, q"

Assuming the induced electron density to be spherically
symmetric around the impurity, we have shown"' that
the valence-effect efg can be given exactly by the equa-
tion,

where A is the atomic number of impurity (host) atom
and no is the average valence-electron density of the host
metal. Rws is the Wigner-Seitz radius for the host. The
ccirresponding electron density,

n(r)= g ~
g;(r)

~

I
OCC

(10)

is calculated by solving the Hohenberg-Kohn-Sham equa-
tion' (in Hartree a.u.):

p2
+ V,tr g;(r) =e;g;(r) .

g; is the wave function of the ith occupied electron with
eiigenvalue e;. The effective potential V,rr is given by

qadi(r) = a(kF) 5n (r)+ 3 [Z ff Z(r) j (4)
8' 3
3 4~r V,g(r) = V„(r)+V„,(r)+ V»(r) . (12)

where

5 n (r)=nz(r) n~(r), —

Z(r)= f 5n(r')d r'.

The electrostatic potential V„ is obtained by using Eqs.
(9) and (10) and solving the Poisson's equation. The
exchange-correlation potential V„, is obtained from the
computed charge density by using the local-density ap-
proximation. ' The spherical solid potential' V„ is given
by
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V„(r)= J d 0g co(
~

r —R,
~

)

e(r' —Rws)+ drno (13)

The components of the symmetric, traceless efg tensor

q,&, linear in the strain components e,j, are given by '
1

eq,, =5,, (F» —F&2) e;,' ——g&kk +2(1 5,J)F4—4E,J,
k

(14)

where
F
J's are components of a fourth-rank tensor. For a

fcc host, these are given, in the point-ion model, ' as

18v'2A, e
+~i —Fi2 = —3+44 =

Ql

where aL is the lattice constant and A, is the strain-
coupling parameter needed to compensate for the fact that
a solid is idealized by point charges. The elastic strain
tensor is given in terms of the displacement field,

BQ ()'Ll .
E - + (16)

2 Bxj. Bxg

Thus, the computation of q,j requires a knowledge of the
displacement u.

We had earlier proposed for u an expression,

u (r) =D cos(2kFr + P)r/r

The choice of this form was ad hoc. It was proposed for
the following main reasons: (1) It has an oscillatory form,
thus enabling different host atoms to move either inward
or outward depending on their distance from the impuri-
ty. As mentioned earlier in this paper, this is a desired
feature which Eq. (2) lacks. (2) The simplicity of the
form in Eq. (17) enabled us to carry out much of the
strain-induced efg calculation analytically. (3) It has a
form analogous to Friedel oscillations in screening elec-
tron density. (4) No other convenient form for u exists.
Comparison of the efg results' using Eq. (17) with that
using Eq. (2), clearly indicates that the former yields efg's
in much better agreement with experiment.

The choice of 2kF as a scaling factor, however, has no
fundamental justification. This scaling factor perhaps
should be more characteristic of the lattice than that of
the electron. In this paper, we have therefore studied the
dependence of our efg results on the choice of this factor.
Therefore, we write

where co(
~

r —R„~ ) is the bare-ion pseudopotential cen-
tered at the vth nucleus and the summation excludes the
atom at the origin. For Al, we have used Aschroft's
form' for co(r) with the core radius of 1.12ao. Equations
(10)—(12) are solved self-consistently.

B. Size-effect efg, q'

A, , the strain-coupling parameter. The quality of the sys-
tematic agreement of calculated and experimental efg's
and asymmetry parameters does not get affected. The
phase factor P is obtained from equilibrium conditions'
and D is obtained by fitting the displaceInent of the first-
nearest neighbor with either experimental or ab initio cal-
culations based upon lattice statics. Again, we should
point out that in the final expression for strain efg, it is
the product XD that appears. Thus, the use of a precise
value for D is not important in our calculation of efg sys-
tematics. It is for these reasons that we refer to our calcu-
lations as having only one adjustable parameter in prac-
tice.

To guide us in the choice of the scaling factor b in Eq.
(21), we discuss a recent calculation of the lattice displace-
ments and energies around a dipolar defect by Dick. In
an attempt to go beyond the continuum theory of elastici-
ty, Dick used the long-wave strain limiting form and a
Debye model to study the defect-phonon interaction. He
obtained analytic expressions for the displacement and
strain field around the defect. In the asymptotic limit, the
displacement has oscillatory terms, such as,
cos(g~ —3n./4) and cos(gz —m /4), where

48m.

1+ ~ «~/Cii)'"
1/3 r 1

(C /C» )'~

(19)

Here, a& is the first-nearest-neighbor distance and C44
and C&t are elastic constants. The suffixes t and 1

represent transverse and longitudinal mode, respectively.
Substituting for Cq4, C& ~, and a

~
values ' corresponding

to Al, Eq. (19) gives, in a.u. ,
r

0.962
0.507 (20)

2(1 5 ))
18 2i, uv

3
"v

aI. rv

X,XJ
X

r

For the scaling factor b in Eq. (18) we have used values
0.962ao ' and 0.507ao '. We should again caution the
reader that the defects studied by Dick are not the same
as ours in this paper. The choices in Eq. (20) are only for
guidance. The encouraging result is that the nature of
agreement between calculated and experimental efg's are
not sensitive upon this choice. Using Eqs. (18) in Eq. (14)
we obtain for the vth-nearest neighbor,

u(r) =D cos(br +P)r/r (18)

It will be shown in the following section that a different
choice of b in Eq. (18) only results in a different value for

Diagonalizing q~, the principal components of q' are ob-
tained. The net efg is given by
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FICx. l. Induced electron density distribution Bn„(r) [Eq. (5)]
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A. Electronic structure

In Figs. 1 and 2 we plot the induced charge density
around a Ge and Ga impurity atom in jellium (solid line)
and spherical solid model (dashed line), respectively. The
induced densities in these figures are shown relative to the
ambient host densities. Note that in Ge, the spherical
solid model result does not differ very much from the jel-
lium result, whereas for Ga impurity, the two results
differ substantially from each other up to the third-
nearest-neighbor site. For other defects such as a vacan-
cy, p+, Mg, Sn, and In, the differences between the spher-
ical solid and jellium model results are similar to that of

In this paper, we determine A, by fitting our calculated
efg to experiment at the fourth-nearest neighbor around a
monovacancy. Qnce A, is obtained, we keep it fixed for all
impurities, i.e., we treat A, as a property of the host. In
our earlier calculation, we varied A, from one impurity to
another. In this regard, the present investigation also pro-
vides an improvement over our earlier calculations. '

III. RESULTS

Ge in Fig. 1.
In Figs. 3 and 4 we show the spatial dependence of the

screening (scattering) charge, Z„(r) for Ge- and Ga-
impurity atoms in the spherical solid (dashed curve) and
jellium (solid curve) model, respectively. Since the valence
difference between Ge and Al is + I, Z„(r) asymptoti-
cally approaches this value in Fig. 3. In Fig. 4, Z„(r)
asymptotically approaches zero since Ga and Al are iso-
valent. A comparison between Figs. 3 and 4 reveals that
while Ge is screened at a shorter range, the screening ra-
dius for Ga is much larger. Thus, an isovalent impurity
may provide a larger perturbation on the host electronic
system than a heterovalent impurity. Froxo Figs. 1—4, it
is evident that the host lattice structure (modeled by a
spherical solid approximation) may have significant influ-
ence on the valence efg through Eq. (4) in certain impuri-
ty cases such as Ga while in other situations, the jellium
model may be adequate.

In Figs. 5 and 6, we plot the bound and scattering elec-
tron densities around Si- and Sn-impurity atoms, respec-
tively, for distances relevant to the efg calculation. The
electron densities from bound states are vanishingly small
compared to the scattering electron densities for distances
as small as first-nearest-neighbor distance. For interstitial
impurities, since the nearest-neighbor distance decreases,
the importance of the bound charges is expected to in-
crease.
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FIG. 2. 5n„(r) around Ga in Al. The rest of the legend is
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System

Vacancy

NN

1
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4

Pure
jellium

—0.015
0.000

—0.004
—0.001

qi( (A )

Spherical
solid

—0.005
—0.004
—0.002
—0.002

TABLE I. Comparison of q ~~
between the pure jellium model

and the spherical solid model for impurities in aluminum. NN
denotes nearest neighbor. The a(kF) values are taken from Ref.
3.

a
FIG. 5. Comparison of the bound charge 6nb(r) (solid line)

with the scattering charge 5n„(r) (dashed line) for the substitu-
tional Si in Al. The bound part is magnified 100 times for clari-
ty.

Mg 1

2
3
4

—0.039
0.029

—0.020
0.006

—0.040
0.027

—0.019
0.007

B. Valence- and size-effect efg

In Table I we compare the valence-effect efg at the first
four near neighbors around vacancy, Mg, Si, Ga, Cie, Sn,
and p defects. We note that in general the jellium model
yields valence-effect efg's that are comparable to those ob-
tained from the spherical solid model, except in a few ex-
ceptional cases.

In Table II we present the results of valence- and size-
effect efg. To determine the size-effect contribution, we
need to know the value of three parameters, D and b in
Eq. (18) and A, in Eq. (21). Due to a lack of adequate in-
formation on the displacements of near-neighbor atoms
around the point defects, we have used the changes in the
lattice constant upon alloying (1/a)da/dc as a guide to
obtain the values of D in Eq. (18). The reader is referred
to Ref. 12 for a detailed discussion of this procedure. We
should again remind the reader that the results in Table II
are not sensitive to the precise choice for D since the
size-effect efg expression contains the term AD. And A, is,
in our present calculation, an adjustable parameter. For
the parameter b in Eq. (18), we have used the value of—10.962ao . We obtain the strain-coupling parameter by
fitting our calculated efg with experiment at the first-
near-neighbor site due to a vacancy. This yields a value of
A, = —6.7. Keeping this value of A, , we have calculated the
valence-, size-effect, total efg and asymmetry parameter at
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1

2
3

1

(octahedral interstitial)

0.095
—0.030
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—0.009

—0.089
—0.048

0.018
—0.008

0.150
—0.040

0.030
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0.126
—0.031

0.020
—0.006

0.180
—0.042

0.033
—0.011

0.273

0.077
—0.022

0.015
—0.007

0.090
—0.024

0.015
—0.006

0.124
—0.030

0.020
—0.009

0.114
—0.030

0.019
—0.006

0.151
—0.035

0.024
—0.010

0.162

0.08-

~4 0.04'
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O.OO '

5

r InQ
FIG. 6. Comparison of 6nb(r) with 6n„(r) for Sn in Al. The

rest of the legend is the same as in Fig. 5.

I

the first four near-neighbor sites due to a vacancy M S'
g~

Cza, Ge, In, and Sn impurities, and interstitial p+. The
overall agreement between theoretical and experimental
e g's is good. For the asymmetry parameter, however, the
agreement can be best described as semiquantitative.

In order to examine the sensitivity of the computed
efg's to the choice of the parameter b in Eq. (18), we have
repeated the calculations presented in Table II by taking
b =2kz ——1.85ao ' and b =0.50ao . The overall agree-
ment between theoretical and experimental efg's remains
satisfactory. As an example, we present in Table III a
comparison of calculated efg's using three different values
of b with experiment for the case of an Al-vacancy sys-
tem. The corresponding values of A, obtained by fitting
the first-nearest-neighbor efg are also given in Table III.
Note that the values of A, increase significantly as the
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0
TABLE II. Valence, size, and total efg in A for impurities in aluminum. Only the largest com-

ponent of the efg t'ensor is shown in each case. A, = —6.7 for all.

Expt. 'Theory
1 GQ

a 8c q =q "+q'System

Vacancy —0.283
—0.174
—0.079
—0.063

0.36
0

0.72
0.39

0.280 0.65
0

—0.280
—0.178
—0.078
—0.062

0.003
—0.004

0.001
0.001

—0.100

0.093
0.069

0.236
0.165

—0.075
0.047

0.07
0

0.05
0

0.95
0.57

0.1950.216
0.138

—0.056
0.050

0.020
0.027

—0.019
—0.003

0.099

0.065
0..033

0.03
0

Si —0.148
—0.090

0.042
—0.021

—0.038
—0.022

0.015
0.004

—0.110
—0.068

0.027
—0.025

0.52
0

0.81
0.90

0.282—0.042

0.057
0.025

—0.070
0.066
0.030
0.024

—0.115
0.042
0.023
0.027

0.228

0.029

0.03
0

—0.045
—0.024
—0.007

0.003

Ga 0.04
0

0.04
0.04

0.045

1

2
3
4

0.03
0

—0.062
—0.030
—0.010

0.004

—0.132
0.036
0.020
0.028

0.045 0.35
0

0.30
0.17

0.328
0.031
0.040
0.048

—0.070
0.066
0.030
0.024

—0.057
—0.030
—0.009

0.003

0.30
0

—0.148
0.057
0.031
0.034

0.180
0.050
0.034
0.056

0.08
0

0.07
0.06

—0.091
0.087
0.040
0.031

In 0.060

0.266
0.050

0.37
0

0.77
0

0.61
0.23

0.570
0.395
0.186
0.163

0.645
0.430
0.198
0.158

—0.075
—0.035
—0.012

0.005

Sn 0.39

0.138

p+ fi ——0.025
(octahedral interstitial)

0.180.162 0.395 0.557

are studied. (3) An oscillatory form for the displacement
of host near neighbors is used to mimic observed features
in lattice relaxation. A critical discussion for using this
form to calculate size-effect efg and the dependence of

values of b decrease. However, the overall agreement
remains less sensitive, although showing steady sign of
deterioration as the parameter b approaches zero.

TABLE III. Comparison between efg's calculated for the
Al-vacancy system and using three different values of the pa-
rameter b [see Eqs. {18)and {20)].

IV. SUMMARY

In this paper we have presented the most exhaustive
theoretical investigation of efg systematics to date due to
several point defects in Al. The present study is an im-
provement over all earlier calculations ' in several
respects: (l) The valence-effect efg is calculated using an
exact expression valid at all distances from the defect site.
(2) The perturbation on the host conduction-electron dis-
tribution due to defects is treated self-consistently using
the density-functional theory. The effect of impurity core
states as well as the effect of host lattice structure on efg

Theory
b =0.96 b =O. SO

A, = —6.70 A. = —16.20
b =1.85

A, = —2. 10
Expt.Nearest

neighbor

—0.280
—0.178
—0.078
—0.062

—0.280
—0.161
—0.067
—0.052

—0.280
—0.187
—0.083
—0.067

1

3
4

0.280

0.093
0.069

'Experimental values are taken from Ref. 4.
bf|refers to the fractional displacement of the first NN. The first NN in Al-p+ is displaced outward
by 2.5 /o.
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efg's on various parameters entering the size-effect calcu-
lation is provided. (4) Only a single parameter A, is used
to explain efg's at four near-neighbor sites due to eight
different impurities. This has to be compared with pub-
lished results where the value of A. has varied by
several factors in a given alloy system.

In spite of the above achievement, our theory does not
match the same sophistication as that evident in experi-
mental studies. It is desirable to formulate a theory
where (a) the size and valence effect can be unified, (b) the
relaxation of the host near-neighbor positions and induced
electron densities can be calculated self-consistently, (c)
the perturbation of the host core electrons due to the pres-
ence of the electric field gradient can be incorporated in a
self-consistent manner, and (d) all these effects can be uti-
lized to calculate efg and asymmetry parameter g up to
four near neighbors. Clearly, this poses a difficult chal-
lenge for the theorists, equipped with even the fastest

computer presently available. No formalism is known to
these authors at present which can take into account the
above features. Until such a procedure is available, we
can draw comfort from the statement that from model
calculations, it is possible to achieve a satisfactory under-
standing of efg systematics in cubic-metal alloys. We are
presently trying to improve upon our theoretical model by
incorporating the role of antishielding effects and elim-
inating the use of strain-coupling parameters by doing a
direct lattice sum for the size-effect calculation.
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