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Many of the observations of the static Jahn-Teller effect for orbital triplets in cubic symmetry
correspond to tetragonal or trigonal distortions —as predicted by linear coupling theories —but in a
number of cases orthorhombic distortions or coexisting inequivalent minima of the adiabatic poten-
tial energy are observed. In the present paper we investigate systematically a number of possible
theoretical explanations for these observations. Assuming that the dominant terms in the vibronic
Hamiltonian are the linear vibronic couplings to eg and t2g vibrational modes, we study the influ-

f

ence of many other effects within a perturbative approach. The minima of the adiabatic potential

energy for a triplet in cubic symmetry are first calculated to lowest order in all the coefficients for
quadratic nonlinear vibronic coupling and cubic anharmonicity. This is used to determine the condi-
tions for orthorhombic or coexisting inequivalent minima to occur. Then a perturbative approach to
the problem of multilevel coupling is developed and applied to the case of a T2g level vibronically

coupled to another level. In lowest order, the effect of interlevel coupling is to introduce terms for-
mally analogous to nonlinear vibronic coupling terms in the single-level problem. The conditions for
having the various kinds of distortions are.given and discussed in each case. The influence of in-

duced linear vibronic coupling to another vibrational mode is then considered and it is shown that
distortions other than tetragonal, trigonal, or orthorhombic may occur. Finally we calculate the ex-

act eigenvalues of the vibronic Hamiltonian with spin-orbit coupling to a spin of 2, including the

lowest-order nonlinear vibronic couplings and anharmonicities, and discuss the role of spin-orbit

coupling.

I. INTRODUCTION

The Jahn-Teller effect' (JTE) occurs because an orbital-
ly degenerate state of a molecule or crystalline defect is
unstable against an asymmetric distortion which lowers
the energy and removes some of the degeneracy. The ef-
fect results from a linear coupling of some vibrational
modes to degenerate electronic orbital states (vibronic cou-
pling). A general theory of the JTE cannot be formulated
and the standard approach consists in considering every
system separately (for reviews, see Refs. 2—6). A particu-
larly difficult case is the study of a state with threefold
orbital degeneracy in cubic symmetry. In the case of a
T2g orbital state in O~ symmetry, the symmetric part of
the direct product T2g T2g is A &g +Eg + Tzg. Thus, a
T2g triplet couples in first order to vibrational modes of
a~g, eg, and t2g symmetries. Since the linear coupling to
a &g modes simply redefines the zero for the amplitude of
these modes, the system is usually referred to as the
T2g (es+t2g) problem. It should be noted that the sym-
metric part of the direct product is the same for a T&g,
T2„, or T» orbital state in O~ symmetry. For 0 and Td
symmetries, the same holds if all subscripts g and u are
dropped. Finally, in the case of T~ symmetry, we obtain
for the symmetric part TgTg:T T:Ag+Eg+
as well as for T symmetry but without the subscripts g
and u. Thus, all five cubic point groups have very similar
properties. In this paper, we shall discuss the T2g orbital
state in O~ symmetry. A complete theoretical study of
such a system is rather involved since, in addition to the

linear coupling to eg and t2g vibrational modes, one must
consider the effects of nonlinear vibronic coupling and
anharmonicity, of interlevel, multimode, and even spin-
orbit coupling.

Experimentally, many triplet systems have been investi-
gated using various techniques. In a number of cases,
only the dynamj. c effects of the Jahn-Teller coupling have
been observed, ' but we found reasonably persuasive
data of static JTE with tetragonal ((100)) distortions in
eight cases, ' trigonal ((111)) distortions in seven,
and orthorhombic ((110)) distortions in six. ' '

Furthermore, the coexistence of two stable minima of the
adiabatic potential energy (APE) of different symmetry
occurs in the relaxed excited states (RES) of most Tl+-like
impurities in the alkali halides, as shown by the observa-
tion of a double A band (AT and Az) corresponding to
the T~„~'A &g emission. A stable tetragonal distortion
in the RES is believed to be responsible for the AT band
in most cases, whereas the Az band would be caused by a
distortion of different symmetry (for a review, see Ref.
37). In general, the two coexisting minima of the APE
are of tetragonal and trigonal symmetry, but one of
the bands is believed to be caused by an orthorhombic
minimum '" for KI.T1+ and KBr:In+.

On the theoretical side, the first attempt to cope with a
static triplet in cubic symmetry was by Van Vleck in
1939 who considered only the linear vibronic coupling
term in the Tseg and the Tt2g problems separately. He
showed that linear coupling to an eg (or a t2g) vibrational
mode results in tetragonal (or trigonal) distortions. Dur-
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ing the next 30 years, the problem of a static triplet in cu-
bic symmetry remained an exclusively linear one. Opik
and Pryce" studied in detail the linear Tzz(ee+tqe)
problem and calculated the effect of spin-orbit coupling in
the cases of tetragonal and trigonal distortions for a spin
of —,'. Liehr discussed the topology of the APE surfaces
in great detail. Vibronic eigenstates were also calculated,
first for weak vibronic coupling, then for only tz&

modes, ' only e~ modes, and finally in the Tqz(e~+tzz)
case for almost equal linear vibronic coupling to both vi-
brational modes. If the linear vibronic coupling to ez
(or t2~) vibrational modes is much stronger than the one
to t2s (or e~), tetragonal (or trigonal) distortions corre-
spond to a deep minimum of the APE. In this case, the
inclusion of higher-order terms in the vibronic Hamiltom-
an is not likely to change the symmetry of the system.
However, if tetragonal and trigonal linear Jahn-Teller sta-
bilization energies are comparable in magnitude, although
still only & 100& and &111& distortions can occur, per-
turbations may cause distortions other than pure tetrago-
nal or pure trigonal.

Since the early 1970s, several explanations for the ob-
served distortions that are inconsistent with linear cou-
pling theory have been presented. However, since the vi-
bronic Hamiltonian for the T2z(e~+t2~) problem con-
tains four quadratic nonlinear coupling terms and three
cubic anharmonicity terms, in addition to the two linear
vibronic coupling ones and the two harmonic potential-
energy contributions, the general conditions for the APE
to admit orthorhombic or coexisting inequivalent minima
have never been formulated. Some authors studied the in-
fluenceofone, ' two, ' three, ' orallfour quad-
ratic nonlinear coupling terms in the vibronic Hamiltoni-
an (but without the anharmonicities), or considered the ef-
fects of anharmonicity ' (but without nonlinear coupling).
These authors have shown that the inclusion of almost
any one of the nonlinear coupling or anharmonic terms al-
lows orthorhombic stationary points to become absolute
minima of the APE under some restricted conditions, if
the two linear Jahn-Teller stabilization energies are com-
parable. Furthermore, &111& and & 100& as well as &111&
and &110&, or even & 100& and &110&, minima can coexist
in some cases. However, the inclusion of all seven
nonlinear coupling and anharmonic terms simultaneously
has never been analyzed. The influence of spin-orbit cou-
pling has been studied for tetragonal and trigonal distor-
tions in the linear coupling case."s 3 " The effects of
spin-orbit coupling have also been shown to be partly re-
sponsible for the coexistence of inequivalent minima of
the APE for Tl+-like impurities in the alkali halides, us-
ing the a ~zt ~„electronic configuration. ' ' ' ' ' Fi-
nally, the distortions arising from the vibronic coupling
between two levels have been calculated. However, the
complicated forms of these exact solutions make it diffi-
cult to see whether interlevel couplings can stabilize
orthorhombic or coexisting minima.

In this paper, we attempt a more systematic and more
general discussion of the problem of an orbital triplet in
cubic symmetry with the restriction that linear vibronic
coupling is dominant, as it is assumed to be in virtually all
systems exhibiting the Jahn-Teller effect. We start with

II. T2g@ (eg+ t2g) PROBLEM

We consider a Tz~ state of a defect or impurity in Oh
symmetry. The orbital states are denoted by

I g&,
and

I g& and transform as yz, zx, and xy, i.e., as the Tzz
irreducible representation of O~. The direct product is

&2g(3T2 3] +E +y')

where the symmetric part is 3"+Ee+Tze. Therefore,
one has six time-reversal even and three time-reversal odd
orbital operators. Using the coupling coefficients for
the group O~, one obtains

100
~= I&&«I+ In&&nI+ Ik&&PI = o 1 o

001

transforming as

—1 0 0
8'g —— 0 —1 0

0 0 2

V3 0 0
and@', = 0 —~30

0 0 0
(3)

transforming as Eg and

the exact solution for the stationary points of the APE for
linear vibronic coupling. In Sec. II, we determine the
lowest-order influence of all quadratic nonlinear vibronic
coupling terms and cubic anharmonicities. Then, we use
a general perturbative approach (Appendix) to investigate
the problem of interlevel vibronic coupling (Sec. III). It is
shown that, in second-order perturbation theory, interlevel
coupling introduces terms in the vibronic Hamiltonian
which are formally analogous to the quadratic vibronic
coupling terms discussed in Sec. II. Then, in Sec. IV, we
go one step beyond the usual one-mode approximation by
adding to the linear T2e(e~+t2e) problem an induced
linear vibronic coupling to another mode of a&z, a", e~,
t&~, or t2& symmetry. The various extensions to linear
coupling are treated perturbatively, which is consistent
with the usual approximation in dealing with the Jahn-
Teller effect. This approach treats similarly all of the ad-
ditions to linear coupling which are usually neglected, and
thus provides a consistent perspective of the behavior of
an orbital triplet in cubic symmetry. Furthermore, the in-
dividual results can be combined to represent a more gen-
eral situation. In Sec. V we derive the general form of the
adiabatic potential energy with spin-orbit coupling to a
spin of —,, including all nonlinear vibronic couplings and
anharmonicities. The effects of spin-orbit coupling are
discussed. Section VI concludes this paper with a discus-
sion of the various mechanisms which can lead to
orthorhombic or coexisting inequivalent minima of the
APE.
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and

000 001

010

001, w„= 000
010 100

(4)

This Taylor expansion has been implicitly assumed by all
of the authors who studied the effects of some of the non-
linear coupling or anharmonic terms. Equations
(7)—(12) contain all quadratic nonlinear vibronic coupling
constants (N; ) and all cubic anharmonic terms (3;). The
matrix for the vibronic Hamiltonian is [see Eqs. (2)—(6)]100

000
transforming as T2s, all of which are Hermitian and
time-reversal even orbital operators. The three remaining
Hermitian and time-reversal odd orbital operators are

g i —ge+ ~3g~

gi g—e ~~g~

g&+2ge

(13)

and

0 0
w„= o o

0 i

0 —i 0
i 0 0
0 0 0

0 0 Oi'
i, —Wy —— 0 00

0 —i 00

~ 1

Following Opik and Pryce, it is convenient to use a vari-
ational principle to determine the stationary points of the
APE. The ground-state wave function is assumed to have
the general form

I

14&=ilk&+m ~g)+n ~g& with l +m +n =1, (14)

and the function to be minimized, ET (p ~

~——r ~
p), js

calculated to be

which transform as T&s. The vibronic Hamiltonian is
given by

T ——glW+gege+g4. 8 e+ggM g+gqM &+go& g, (6)

where the functions g; depend on the collective coordi-
nates ' Qe, Q„gg, Q„, Q~ (considering only coupling to
one mode of each symmetry) and transform as the orbital
operators they multiply. The Q; are linear combinations
of the displacements of the ions surrounding the defect
transforming as Eg and T2g under the symmetry opera-
tions of OI, . They are the only symmetry modes which
lead to linear vibronic coupling and hence to a Jahn-Teller
effect. In this section, we will consider only one mode of
each symmetry. Since the amplitudes of the normal
modes are assumed to be small, we can write the functions

g; as a Taylor series in the Q;, the first terms of which are

A. Linear coupling case

If one neglects all nonlinear vibronic coupling and
anharmonic terms in Eqs. (7)—(12), the values of the Q;
minimizing ET are

Qe —— (1 +m —2n ), Q, = (m —l ),
3kE

' '
kE

(16)

ET g~ + (2n——' —l' —m ')ge+ &3(l' —m ')g,

+2mng~+2nlgz+2lmg~ .

If the derivatives of Er with respect to the five Q; are set
equal to zero, one obtains five equations which give the
Q; in terms of l, m, and n. Furthermore, minimizing
with respect to l, m, and n with the restriction (14) leads
to the desired stationary points. It should be emphasized
that this method gives only the stationary points of the
APE and not the APE itself.

gi= 2kE(Qe+Q')+ 2kT(gg+gg+gg)

+~EQe(3Q,' —Q e)+~TQgg„gg

+As[ge(2gg —Qg —Q„')+~3Q.(gg —Q'„)]

VT VT VT
Q~

———2 mn, Qz ———2 nl, g&
——2

kT
' ~ IT

(17)

+ I ~ ~ 7 (7) Substituting these values into Eq. (15) gives the Opik and
Pryce result

VEQe+NE(g Qe)+N&(2Q& —
Q&

—Q&)
3

T

2 Vg Vg VT
(18)

+ 0 ~ ~

where the function f4 (which is invariant in cubic symme-
try) is

f =mn+nl+lm
g e VE Q.+2NE Q eQ, +~&N i ( Q g Q„' ) + . . —

v'3

gg = VTgg+NTg„gg+N2gg(v 3Q, Qe)+-
g„=VTQ&+NTgggg+N2gq( ~&g~ Qe)+—

gg = Vz gg+NTggg„+2N2ggge+. . . . (12)

If VE/kE is comparable to VT/kT, the dominant contri-
bution to the Jahn-Teller stabilization energy is the con-
stant term —2V&/3kE. However, since this term is in-
dependent of l, m, and. n, it does not influence the con-
clusions we draw if we simply ignore it. Consequently, we
will drop this constant term from all further expressions
for ET. It can easily be seen that ET admits tetragonal
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( ( 100) ) minima if VT /k T & Vz /kz and trigonal ( ( 111) )

minima if Vr /kz. & VE/kF. Orthorhombic ((110)) sta-
tionary points are always saddle points of the APE except
for Vz/kE ——VT/kT, in which case the energy is the same
for any possible values of l, m, and n.

B. Nonlinear and anharmonic terms

ET af4+pf6 (20)

where f4 is given by Eq. (19) and fs (which is also invari-
ant in cubic symmetry) by

fs l m n—— (21)

The stationary points of the APE are now given by those
of ET [Eq. (20)]. Stauss and Krebs suggested that the
minima of the APE could be written in the form given by
Eq. (20), but considered only some of the nonlinear vi-

bronic coupling terms and no anharmonicities. Recently,
Lister and O' Brien used this form for the potential ener-

gy to calculate Ham factors for the triplet problem with
nonlinear coupling. The coefficients a and P are

As has been mentioned in the Introduction, if
VE/k~ && (or &&) VT/kT tetragonal (or trigonal) distor-
tions correspond to deep minima of the APE. As long as
the nonlinear coupling (N~) and anharmonic (A;) terms
[Eqs. (7)—(12)] are small compared to VE/kE or VT/kT,
they will not modify the symmetry of the system. How-
ever, if VE/kE is comparable to VT/kT, both es and t2s
vibrational modes pr'oduce comparable energy reductions
and the APE may show new kinds of minima, even for
small values of N; or A;. If one includes all quadratic
vibronic coupling and cubic anharmonic terms in the
functions g; [Eqs. (7)—(12)], the energy [Eq. (15)] becomes
a complicated function of the collective displacements Q;.
Assuming that the nonlinear coupling and anharmonic
terms are small and that the zeroth-order- solutions are
given by Eqs. (16) and (17), an iterative solution can be
obtained. In first order in the nonlinear coupling (N~ ) and
anharmonic (A;) terms, after minimizing with respect to
the Q;, Eq. (15) is reduced to the general form

a& ——,'P and a&0, (24)

which is always the case if V@/kz » Vz. /kr (regions 6
and 7 in Fig. 1). Trigonal distortions occur in regions 3
through 5 in Fig. 1, i.e., if

a& ——,P and a& —9P,1 (25)

and orthorhombic ((110))distortions are stable in regions
1 and 2 in Fig. 1, i.e., if

——,P&a &0, (26)

which can occur only if VF. /kE and VT/kT are compar-
able. Furthermore, in regions 2 and 3 in Fig. 1, minima
of trigonal and orthorhombic symmetry coexist, one being
an absolute minimum, the other a relative minimum.
This occurs for

——,p&a& ——,p.1 1 (27)

Finally (111)and (100) minima coexist in regions 5 and
6 in Fig. 1, i.e.,

0&a & ——,P .1 (28)

0.5—

The simultaneous occurrence of tetragonal and
orthorhombic minima cannot be realized in lowest order
in the coefficients N, and A;. The coexistence of these
two distortions has been investigated using some nonlinear
vibronic coupling terms ' or anharmonicities ' and ap-
pears to result from higher-order contributions of these
vibronic coupling constants.

In addition to the stationary points mentioned in Table
I, which are all minima of the APE for some values of the
parameters, there is another stationary point with lower
symmetry, corresponding to monoclinic ((lln ) ) distor-
tions. However, it is a saddle point in all the regions in

VE
(x= 2

kE

VT

kT

VE VE AE

v3k,
l00$

VEVr~M
+8

kT v 3kEkT

N) VT N2VE

kT ~3kE
(22)

-0,5—
VE VEaEp= 36, NE—
kE V 3kE

V, VEVAM N V, NVE—72
kT ~3kEkT

V,' V,A—8 —3NT (23)

A detailed study of the stationary point of the APE [Eq.
(20)] as a function of a and p is contained in Fig. 1 and
Table I. As far as absolute minima are concerned, tetrag-
onal distortions are stable if

-I,O -0.5 0.5 I.O

FIG. 1. Stationary point of the adiabatic potential energy
[Eq. (20)] as a function of the quantities a and P which contain
all the parameters in the vibronic Hamiltonian [Eqs. (22) and
(23)]. Only the minima are shown. The solid lines separate the
regions where tetragonal ( ( 100) ), trigonal ( ( 111)), and
orthorhombic ( ( 110)) distortions correspond to absolute mini-
ma. The shaded regions show where two inequivalent minima
coexist. The boundaries of the regions and the description of
the various stationary points are given in Table I.
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TABLE I. Stationary points of the adiabatic potential energy (APE) for a triplet in cubic symmetry.
If all linear and quadratic nonlinear vibronic coupling constants and cubic anharmonicities are included,
the stationary points of the APE are those of af4+Pf6 [Eq. (20)], where a and P contain all the param-
eters in the vibronic Hamiltonian [Eqs. (22) and (23)]. On1y tetragonal ((100)), trigonal 1(111)), and
orthorhombic ((110)) distortions can be realized. Furthermore, (111) and (110) minima coexist in
regions 2 and 3 in Fig. 1, as well as (111) and (100) (regions 5 and 6). ABS MAX (MIN) represent
absolute maximum (minimum), MAX (MIN) represents local maximum (minimum), and SP represents
saddle point.

Region (see Fig. 1)

J P&9~a~, a&0
l3/a/ &P&9/a/, a&0

2fa/ &P&4 /a/, a&0
P&2/a/, a&0
P& —9a, a&0

—9a&P& —3a, a&0
9—3a&P& —~a, a&0

' —4a&P& —2a, a&09

P& —2a, a&0

( 100)

MAX
ABS MAX
ABS MAX

ABS MAX
ABS MAX
MIN
ABS MIN
ABS MIN

ABS MIN
ABS MIN

(110)

ABS MIN
ABS MIN
ABS MIN

MIN
SP
ABS MAX
ABS MAX
ABS MAX
MAX
SP

ABS MAX
MAX
MIN

ABS MIN
ABS MIN
ABS MIN
MIN
MAX

ABS MAX
ABS MAX

Fig. 1, where it is a stationary point.
As was mentioned in the Introduction and earlier in

this section, minima of the APE other than tetragonal or
trigonal can occur only if VEIkE —Vz. /k'-. If this is the
case, it can be seen from Eqs. (22) and (23) that for most
values of the parameters N; and A;, a and P will have op-
posite signs and ~P~ will be larger than ~a

~

(since
P= —3a+ . ). In this region of the parameter space,
minima of tetragonal and trigonal symmetry coexist for
a & 0 (regions 5 and 6 in Fig. 1), whereas orthorhombic
distortions are realized if a &0 (regions 1—3 in Fig. 1).
The coexistence of orthorhombic and trigonal minima is
also possible (regions 2 and 3 in Fig. 1), but for a more re-
stricted range of parameters. These limited regions of the
a-P parameter space contain all of the parameter com-
binations which yield either orthorhombic distortions or
coexisting inequivalent minima.

III. INTERLEVEL VIBRONIC COUPLING

A. Preliminary remarks

The lowest branch of the adiabatic potential-energy sur-
face is affected by vibronic coupling to close-lying excited
orbital states as well as by the vibronic coupling within
the degenerate state which we analyzed in Sec. II. In
some cases, the triplet level is very far away from any oth-
er level and can be considered as isolated to good approxi-
mation. However, in other cases the splittings between
energy levels are sufficiently small to result in interlevel
vibronic coupling but sufficiently large to allow a pertur-
bation treatment. The effects are larger if the linear inter-
level vibronic coupling results from one or both of the
modes causing intralevel coupling, the eg and t2g modes.

We consider now two levels separated in eneIgy by 5,
the lowest level being a T2g orbital triplet with ground
state

~
0) = [ ~

g'),
~
g),

~
g) J and Hamiltonian matrix

A o
——A T [Eq. (13)]. The other level —which in O~ sym-

metry can be an A]g, A2g Eg T&g or another T2g level,
since odd levels will not be linearly coupled by even

ones —is described by the Hamiltonian A '. The coupling
between the two levels is given by A, . The general form
of the Hamiltonian matrix for the whole system is

(29)

where A,' is the transpose of A, .
Stoneham and Lannoo studied exact solutions to these

problems and calculated the various displacements
minimizing the APE. Their solutions can be applied even
to very close-lying levels. Since our interest is in the case
when the effects of interlevel coupling are relatively small,
it is more realistic and far simpler to treat the interlevel
vibronic coupling as a perturbation. This is easier to do
by rederiving the results rather than taking the limiting
forms of the equations of Stoneham and Lannoo. Pertur-
bation theory applied to the present situation is developed
in the Appendix. The lowest-order correction to A T [Eq.
(13)], for one perturbing level, is [see Eq. (A12)]

(30)

where A, (obtained from the coupling coefficients of the
group Op, ) describes the linear vibronic coupling between
the two levels considered. The Hamiltonian A '—
appearing in Eq. (29) and describing the excited level—
contributes first in only one of the two third-order terms
[proportional to b, : see Eq. (A12)]. Thus, the effect of
interlevel perturbation is to add d 3X3 matrices to A z,
where d is the degeneracy of the excited level.

B. Coupling to an A&~ level

In the case of an A &g level lying close to the T2g ground
level, the coupling matrix is



31 POSSIBLE MECHANISMS FOR ORTHORHOMBIC JAHN-TELLER. . . 5621

g'„with g = V, Q;, (31)

~ ff g l~+g9@e+g @ +gg~ g+g ~ +gg~ g

which has the same form as ~r in Eq. (6). Thus, the re-
sult of a weak coupling between a T2g and an A ~g level is
to introduce new functions of the norma1 mode ampli-
tudes to replace those defined in Eqs. (7)—(12). In lowest
order, they are

where V, is the linear interlevel vibronic coupling con-
stant and the index i stands for g, q, or g. The lowest-
order correction to A r is therefore

gag gag
——A,

~

n )(n A,'= ——g~g'„(g'„)' g~g . (32)

gag gag (gg)

In terms of the orbital operators defined in Eqs. (2)—(4),
the effect of the A&s T2~ in-terlevel coupling is the effec-
tive Hamiltonian

An expansion of 1/kz. has been used to obtain a' [Eq.
(42)]. Since P' is always negative, it can be seen from Fig.
1 that only (100), (111), and coexisting (100) with
(111)minima can be realized. In particular, trigonal and
tetragonal minima coexist if the conditions given by Eq.
(28) are satisfied, i.e.,

VE Vp 12 V, Vp
2 2 2

(44)

Thus, VE/kF must be larger than Vz/kz. but the differ-
ence is limited by the effects of interlevel coupling.

C. Coupling to an A2~ level

Using the coupling coefficients for the group O~, it is
straightforward to see that ~, contains no terms propor-
tional to Qe, Q„Q~, Q„, or Q~. Therefore, in lowest or-
der, the presence of an A2g level does not modify the re-
sults described in Sec. II.

D. Coupling to an E~ level

The T2g+Eg vibronic coupling matrix is

2

g') ———,
' ks(Qg+Q,')+ —,

' kr —
~ (Qg+Q„+Qg),

(34)

—gg

2gg 0

(45)

2
1g'= ~ V.Q.—,(2Q& —

Q&
—Q, ),

3
2

1 Vc
g' = ~ VF. Q. ~~~(Qg —Q„»

V2

~ Q„Qg,

V2

~ QgQg,

V2

gj = VrQ( QgQg —.

gj = Vz.Qg—

g,'= VrQ,

(35)

(36)

(37)

(38)

(39)

A comparison of Eqs. (7)—(12) and (34)—(39) shows that
the presence of the 3 &g level results in the effective force
constant kr ——kz. —2V, /3b. and in two terms equivalent
to the vibronic coupling constants N& and Nr [Eqs.
(8)—(12)]:

where the first (second) column corresponds to
~

8) ( e))
and where the g are defined as in Eq. (31). Following the
same steps as in Sec. III A, we obtain an effective Hamil-
tonian which can be written as in Eq. (33). The functions
g, compared to Eqs. (7)—(12), lead to the definition of
the effective force constant kz- ——k~ —8V, /3A and of the
two effective nonlinear vibronic coupling terms

V2 V2
N) ———— &0, Xp ——2 ~0 .

3
(46)

Thus, Er can again be written as in Eq. (41) with a' given
by Eq. (42) and P'=0. Consequently, the vibronic cou-
pling between a T2g and an Eg level does not modify in
lowest order the situation described in Sec. II.

E. Coupling to a Tj~ level
/

The Hamiltonian describing the interlevel coupling is

V2
&0, Np ———

6h

V2
&0 (40)

Using the results of Sec. II, the stationary points of the
APE are those of

~3ge+ge
—~3ge+g~ —g g

g
c —2g'

(47)

&r =a'f4+f3'f 6

VEa'=2
kE

36
kz-

[see Eq. (20)] with [see Eqs. (22) and (23)]
2

Vp

kz-

(41)

(42)

(43)

where the columns correspond to
~

x ),
~ y ), and

~

z ) .
Two different linear interlevel vibronic coupling constants
will now contribute since A, involves terms containing
both eg and t2g vibrational modes. We define V,

' and V,
'

by g = V,'Q; (i =O, e) and gj' ——V,'QJ (j =g, g, g). The re-
sults of the T2g+ T]g coupling are the two effective force
constants kE kz —4( V,') /b, and——kr kr —4( V,') /b„——
and the four effective nonlinear vibronic coupling con-
stants
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1 (V,'), V,'V,'
)0, N' = —v3

6

(V,')' ( V')
)0, Ng ——— &0.

(48)

(49)

gonal, and coexisting tetragonal with trigonal. In particu-
lar, (111) and (100) minima coexist if the conditions
given by Eq. (29) are fulfilled.

G. Discussion

The function to be minimized has once more the same
form [Eq. (41)], with

Vg 4 V,'Vg
cx =2 (50)

k~ b, k~

V'V

kp

Vg

kp

V,'VE

kE

2
V, Vz )0. (51)

Since P is always positive, the possible minima are
(100), (110), (111),and coexisting (ill) with (110).
In addition, a' is more negative than without interlevel
coupling. The conditions for having orthorhombic distor-
tions [Eq. (26)] are

V,'VE Vp

kE kp

Vf V
2 V2

k~ kg
r

V,'Vg

k.
VtV

(52)

which are always satisfied for comparable couplings to ez
and t2~ vibrational modes. The conditions for coexisting
trigonal and orthorhombic minima can be obtained from
Eq. (27).

C

—ge —v 3R'e gg

28e

(53)

where the columns correspond to
~

g'),
~
g), and

~
g).

Following the same steps as before, we obtain
kg ——kg —4(V,') /b, kr kr 4(V,') /3b, an——d—

1 (V')'
~0,

6

NF ——
( V,') )0.

(54)

(55)

Thus, Er has the form given by Eq. (41) with

Vr 4 V,'VE ~ V,
' Vz.

kr v 3b, k~ kr
5 + 3

X ~ V:VE

kg

V,
'
Vg &0.

kz-

(56)
kg

As in the T2s+A&s case, P' is always negative, which re-
stricts the possible minima of the APE to tetragonal, tri-

F. Coupling to another T2~ level

The last possibility of interlevel coupling in O~ symme-
try is that of two T2s levels. The coupling is described by

ge+ ~&g—~

The effect of interlevel vibronic coupling up to a
second-order perturbation theory on the linear
'12'(ez+t2s) problem is to introduce terms formally
analogous to nonlinear coupling terms in the single-level
problem. We have cheeked that, in third-order perturba-
tion theory, the contributions of interlevel coupling are
analogous to anharmonic terms and cubic nonlineanties.
Therefore, as was the case in Sec. II, interlevel vibronic
coupling between levels which are moderately well
separated can produce orthorhombic or coexisting in-
equivalent minima only for comparable values of the
linear Jahn-Teller stabilization energies for e~ and t2~ vi-
brational modes.

Up to second order in perturbation theory, coupling to
an Aq~ or an E~ level has no effect on the system. How-
ever, coexisting (111)and (100) minima of the APE can
be realized if the perturbing level is of 3 ~~ or Tz~ symme-
try, and linear vibronic coupling to a T&z level may result
in orthorhombic distortions (or even in coexisting (111)
and (110) minima of the APE) for comparable values of
VF. /kz and Vr/kz- [see Eq. (52)]. It should be noted that
in the case of an excited T2~ level vibronically coupled to
a lower-lying level, the difference in energy 6 is negative.
In this case, the discussion of the various possible cou-
plings is a straightforward extension of that given above
for a T2& ground state.

IV. INDUCED LINEAR COUPLING
TO OTHER VIBRATIONAL MODES

We have considered so far only the collective coordi-
nates Qs, Q„gg, gz, and Q~ which yield linear vibronic
couplings. If there is a large linear coupling to these
modes, then the minima of the APE occur for values of
some of the coordinates which are far removed from zero.
Consequently, terms in the vibronic Hamiltonian which
are linear in other modes and linear or quadratic in the
strongly coupled e~ and t2~ modes, can be quite important
and result in an induced linear vibronic coupling of the
otherwise uncoupled modes. Therefore, we investigated
also whether this induced linear coupling can produce
orthorhombic or coexisting inequivalent minima.

As in Sec. II, we consider an isolated T2z orbital level,
assume that the leading terms are the two linear vibronic
coupling constants to ez and tzz vibrational modes, and
investigate the effects of induced linear coupling to vibra-
tional modes of a&s, a2s, es, t,~, and t2s symmetries (odd
modes give no linear coupling). These calculations are
reasonably straightforward, but the combinations of the
parameters appearing in the resulting APE are complicat-
ed, concealing their physical meaning. Therefore, we
shall restrict ourselves to qualitative remarks after dis-
cussing an example in some detail.

%'e consider first a T2& orbital state coupled to a~&
(Q~), es (Qs, g, ), and t2s (Q~, g&, g~) vibrational modes.
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1- VEQ +&iQ|Q +V3

gJ=VTQJ+&2QiQJ+ . .

i =0,e (59)

(60)

where the terms involving 3 ], A2, N&, and %2 represent
the induced linear couplings. The minima of ET [Eq.
(15)] can be calculated iteratively. In first order, we ob-
tain

VE
ET ——2

k~

V2
2f4+af4+7 f4,

T
(61)

where a and y, which both contain combinations of only
quadratic and cross terms in Ai, A2, Xi, X2, can be in-
dependently positive or negative. The function f4 is given
by Eq. (19). For large values of VE/kE (VT/kT) tetrago-
nal (trigonal) distortions occur. For other values of the
linear vibronic coupling constants, the stationary point of
Eq. (61) contain complicated sets of continuous minima
which extend, e.g. , from (lln ) to (lm 0) through (lmn ).
However, ( 110) stationary points are never absolute
minima of the APE. This result is in agreement with a
previous study of the T2~(a&g+eg+t2e) problem. In
the case of eg+t2g+a2g vibrational modes, the lowest-
order correction is zero. In the T2e(e~+t2g+t&g) case,
ET is given by

2 2
Vg VT 2

&T =2 — f4 ~'(f4+3f6 —4f4»—
kE kp

(62)

where 3 depends linearly on the constants for the terms
which involve the t&g vibrational modes. If the first term
dominates, tetragonal or trigonal distortions occur. When

and 2( Vz/kz —VT/kT) are comparable in magnitude,
the minima are monoclinic corresponding to (Iln ) distor-
tions. The direction of the minima varies continuously
from (001) to (111) as 2(VE/kE —VT/kT) varies from
large and positive to large and negative. Orthorhombic
((110)) distortions never correspond to minima of Eq;
(62).

In both the ez+eg+t2g and eg+t2g+t'2g cases it is
more questionable to neglect the nonlinear vibronic cou-
pling terms and anharmonicities in each mode while in-
cluding cross terms with the primed mode as we did
above. Clearly, if only the harmonic terms are included in

gi [Eq. (7)] and the linear vibronic coupling terms in ge
to g~ [Eqs. (8)—(12)], FT will have the form af4 with a
increased (decreased) if eg (t'2g) modes are included. If
bilinear terms are added (i.e., terms linear in the primed
mode and linear or quadratic in the unprimed ones), they
behave in a comparable way to nonlinear vibronic cou-
pling terms and anharmonicities in the single-mode prob-
lem-(Sec. II). In first order in the coefficients of the bilin-
ear terms, ET contains the additional term Pf6, and in

The general form for the stationary points of the APE is
given by Eq. (15) with

gi= zkz(Qe+Q')+ 2kT(Qg+Q~+Qg)+ 2kiQf

+&
& Q &(Qe+ Q', )+ ~2Q&(Q&+ Q'„+Q&)+. . . ,

(58)

second order the term yf4. However, the latter contribu-
tion also appears if the approach developed in Sec. II is
extended to include higher-order contributions in the X;
and A; [Eqs. (7)—(12)] or cubic nonlinear couplings and
quartic anharmonicities. '

Thus, the addition of an induced linear coupling to the
T2g(eg+t2g) problem complicates the analysis without
enhancing the possibility of orthorhombic distortions. It
should be noted that in the e+t2~+a&g and eg +t2g+t]g
cases, the corrections to the single-mode problem [Eqs.
(61) and (62)] involve the squares (or cross terms) of the
amplitudes for bilinear vibronic coupling. The lowest-
order corrections due to a2~ vibrational modes are zero.
Finally, the effect of two eg or two t2& modes can be
simulated by effective nonlinear vibronic terms or effec-
tive anharmonicities in the one-mode problem (Sec. II).
These results confirm the validity of the single-mode ap-
proximation, which is generally assumed when discussing
the static Jahn- Teller effect.

V. APE WITH SPIN-ORBIT COUPLING
TO A SPIN OF 2

In Secs. II—IV, the minima of the APE have been
determined using the method of Opik and Pryce which
provides a simple way to investigate the various stationary
points of the APE. However, when spin-orbit coupling is
included in the problem, the wave function [Eq. (14)] is
spin dependent and the method becomes less straightfor-
ward to use. In the case of a spin of —,', the Hamiltonian
is given by the 6&& 6 matrix:

A, ~ =A TCIW2+2k, WSP (63)

E; =gi —2(p +A, )' sina;,

where the three values of a; are determined from

g +Xsin(3a) =
(p

2 +g2 )
3 /2

(64)

(65)

The functions p and q are combinations of the functions
g; [see Eqs. (7)—(12)] and contain all the linear and non-
linear vibronic coupling constants

2 2 [ 2 2 2
p =ge+ge+ 3 (gg+gq+gg)

0 = ge(ge 3gE)+gag'~gg—3 — 2 2

—
2 [ge(2gg —gg —gg)+~3ge(gg —gg)] .

(66)

(67)

where A T is the vibronic Hamiltonian [Eq. (13)], W2 is
the 2&&2 identity matrix, the orbital operators W are
given by Eq. (5), and W= —,o, where o are the Pauli ma-

trices. The eigenvalues of A, , are the solutions of a
sixth-order characteristic equation where each eigenvalue
is doubly degenerate (Kramers degeneracy). Since this de-
generacy cannot be removed by a Jahn-Teller effect, we
shall continue to talk about triplets, doublets, and singlets,
although they are actually sextets, quartets, and doublets.
The eigenvalues of this problem have been calculated
for tetragonal (Q, =Q~

——Qz ——Q~ ——0) and trigonal
(Qe ——Q, =O,

i Qg i

=
~ Q„~ =

~ Q~ ) distortions in the
linear vibronic coupling case." However, they can also be
calculated in the general case and are given by
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h ld b noticed that the potential energies F.; [Eq.tsou e
(64)] are obtained from a direct diagonalization o e

'1 '
nd therefore give a general form for the

APE which could be used for discussions of eit er
d namic or static properties, with o

~ ~ '
h r without s in-orbityn p

coupling.
ra onalWe studied the eigenvalue E; [Eq. (64)] for tetragona

e.g., Qs =Q, Q, =Qg =Q„=Q g
=0), trigonal (e.g.,

~ Q~ ~

Q =Q Q =Q =0), and orthorhombic
Q Q 0 Q =Q =Q, =0) distortions, and i

only the linear vibromc coupling constants are included,
orthorhombic distortions never correspond to minima o
the APE. Furthermore, an expansion of E; [Eq. (64] or
small non inear coup

'1' pling and anharmonic terms s ows
that all nonlinear coupling terms [contained in the unc-
tions p an q, qs.d E s. (66) and (67)] are quenched by the
s in-orbit coup ing, wb' 1' whereas the harmonic and anharmon-
ic terms [contained in gi, Eq. (7)] are independent of the

b't ling constant A, and therefore are not af-
fected b the spin-orbit interaction. It is known t at or
A, (0, a sufficiently large spin-orbit interaction can stabi-
lize the symmetrical configuration, whereas

~ ~

hereas this stabiliza-
This can be under-tion does not occur for A, )0. '

stood by realizing that a triplet is split by the spin-orbit
coupling into a doublet and a singlet. If the spin-orbit
coupling constant k is negative, the singlet lies lower in
energy and the position of the minimum is not signi i-

, r" 't' k the doublet lies lower and will there-
fore always be split by the Jahn-Teller coupling. e

d the APE [Eq. (64)] with linear vibronic coupling
and harmonic terms and calculated the reduction o
Jahn- Teller stabilization energy

EEi~(A, ) =E(Q;„,A, ) E(Q =0,A, )— (68)

in the case of tetragonal (or trigonal) distortions. The nu-
merical) result is illustrated in Fig. 2. For positive A, , he
expansions of Eq. (64) give

0
I I I I I I I I I I

-0.5

I

-I 0 I

I I I I I

5
kE
Q2

E

I I I I

IO

[E . {68)3 as a function of the spin-orbit coupling constant k for
tetragonal (or trigonal) distortions. As shown in q.
hE~(k~ ap )= —V~/6k~ (dashed line), and hEJ~ ——0 for A, (0
and

i
A,

i
)

( k,„ i
(see text).

AE (A, )=A, — +k 2 if A. ((
~

VQ
~3kE 2 pE

(69)

2' k
b, Ei~(A, ) = —2A, —

E
(71)

whereas for k large and negative, we obtain two solutions.

owest order, A,~»- —2V~/9k~ [the actual value of A,~»,
obtained numerically, is about —0.6' E
there is no indication that spin-orbit coupling to a spin o

favors orthorhombic distortions or coexisting ine-2

quivalent minima.

VI. DISCUSSION AND CONCLUSION

An orbital triplet in cubic symmetry couples linearly
only to vibrational modes of e~ an 2z yt s mmetry. If the
linear coup ing o ez 2

1' t e (t ) modes is much stronger than
the linear coupling to t2s (es) modes, tetragonal trigona
distortions correspond to deep minima o t et e APE and no
small perturbation can change the symmetry of t e sys-
tem. Since linear vibronic coupling usually dominates in
the vibronic Hamiltonian, a perturbation to linear cou-

ling can lower the symmetry only if the trigonal and
t t onal linear Jahn- Teller stabilization energies are

ne ofcomparable. It could be that in an unusual system one o
the higher-order terms in the vibronic Hamiltonian or
perhaps even interlevel vibronic coupling turns out to be

ould be nocoincidentally very large. Ho~ever, there s ou
reason for this to be common. The rather frequent oc-
currences of orthorhombic distortions and of coexisting
inequiva ent minima o1 t inima of the APE for orbital triplets in cu-
bic symmetry led us to investigate systematically t e pos-
sible perturbations to linear vibronic coupling in the case
where e~ and t2~ modes produce comparable energy
reductions, wi eth th assumption that linear vibronic cou-
pling omina es.d

' t The mechanisms investigated are non-
linear vibronic coupling and anharmonicity (Sec. II, in-
terlevel vibronic coupling (Sec. III), induced linear vibron-
ic coupling (involving vibrational modes which o not
otherwise have a linear coupling, ec. , p'IV and s in-orbit

1' (Sec. V). Spin-orbit coupling was analyzed ex-
1, b 1 f a spin of —' and all the other effects

were trea e ast t d as &erturbations to the linear coupling
blem using the Qpik and Pryce method. Eac mec-

anisrn (except spin-orbit coupling) predicts orthorhomb'
distortions for some values of the parameters, as we as
the coexistence of trigonal and tetragonal or trigonal and
orthorhombic minima. The coexistence of tetragonal and

p2
if A, ))

~
VQ ~, (70)

2 3k —4V /3A,

which shows that for A, large arid positive, the Jahn-Teller
but the minimumstabilization energy is reduced by 75 o, u

of the APE corresponds to a finite distortion for any
The limitvalue of the spin-orbit coupling constant . e

hE (A,~oc) [Eq. (70)] is the dotted line in Fig. 2. Onn
the other hand, for k negative, the expansion for smamall
/A,

/

is
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orthorhombic minima does not occur in lowest-order per-
turbation theory for nonlinear coupling and anharmonici-
ty or for interlevel coupling.

The results can be summarized as follows.
The effect of nonlinear coupling and anharmonic terms

in the vibronic Hamiltonian is the best candidate to ex-
plain orthorhombic and coexisting minima of (100) and
(111) symmetry. For comparable values of VE/kE and
Vr /kr, , Eqs. (22) and (23) show that the parameters a and
P are very likely to have opposite s'igns with

l P l
&

l
a

l
.

An inspection of Fig. 1 shows then that orthorhombic dis-
tortions may occur for + &0, and coexisting minima of
(100) and (111) symmetry for a & 0. In lowest order in
the nonlinear vibronic coupling constants S; and anhar-
monic terms A;, the coexistence of (111) and (110)
minima could occur, but for a restricted range of parame-
ters only (regions 2 and 3 in Fig. 1). The coexistence of
(100) and (110) minima cannot be realized unless even
higher-order effects are included.

The lowest-order effects of interlevel coupling can be
expressed in terms of effective nonlinear vibronic coupling
constants in the vibronic Hamiltonian. Only coupling of
the T2g level to an excited T~~ level favors (110) mini-
ma, whereas coupling to any other level does not. There
is nothing about the cases of observed (110) minima
which favors interlevel coupling and particularly not with
a T&z level. Coexisting tetragonal and trigonal minima
could result from T2g+A~g or T2g+T2g interlevel cou-
pling. However, this does not seem to be a reasonable ex-
planation of the double A band observed for Tl+-like
centers in the alkali halides since the excited states do not
contain these levels. Rather, it is believed that the dou-
ble A band is due to the combined effects of nonlinear
coupling and anharmonic terms in the vibronic Hamil-
tonian (see, e.g., Refs. 58 and 61), of spin-orbit coupling in
the a ~ t ~ electronic configuration ' ' ' and of con-

1 1

tributions of a 1g vibrational modes. 70

Induced linear coupling, involving vibrational modes
which do not couple linearly unless the Jahn-Teller active
eg or t2~ modes are significantly displaced from zero,
generally gives complicated results. In both the
Tz~I3 (eg + t2g +a &g) and Tq~ (eg + t2g + t &~) cases, the
lowest-order correction due to bilinear vibronic coupling
involves only the squares and cross terms of the coupling
constants, and the minima of the APE include more com-
plicated types of minima (e.g., monoclinic distortions) but
not orthorhombic distortions. In the case of induced
linear coupling to a2g vibrational modes, the correction
involves even higher-order coefficients. Finally, the in-
clusion of two eg (or two t2g) vibrational modes adds
terms to the APE which are similar to nonlinear vibronic
coupling terms and anharmonicities in the single-mode
problem. Therefore, there does not appear to be any situ-
ation which would indicate that the single-mode approxi-
mation should be extended to include more vibrational
Qlodes.

We discussed the effects of spin-orbit coupling to a spin
of —,'. The general form of the APE was obtained by
direct diagonalization of the vibronic Hamiltonian. It has
been shown that linear and nonlinear vibronic coupling is
quenched by the spin-orbit interaction (although different-

ly for positive and negative A,) and that the harmonic and
anharmonic terms are not affected by the spin-orbit cou-
pling. If only the harmonic terms and the linear vibronic
coupling constants are included in the Hamiltonian with
spin-orbit coupling to a spin of —,, orthorhombic distor-
tions never correspond to minima of the APE. As to
whether a spin larger than —,

'
[it is 2 for Cr + (Refs. 16,

28, 29, and 31)] would permit spin-orbit coupling to in-
crease the chances of orthorhombic distortions cannot be
said with certainty, but we cannot suggest why it should.

The main approximation contained in this paper is the
assumption that the harmonic elastic energy and the
linear vibronic coupling terms are the largest ones in the
vibronie Hamiltonian, so that any other contribution ean
be treated using perturbation theory (except spin-orbit
coupling). It is quite evident that a perturbation approach
is reasonable for the systems observed, both in the eases of
interlevel coupling and induced linear coupling. It may be
less obvious that nonlinear coupling and/or anharmonici-
ty ean be treated perturbatively. If these terms are not
perturbations to linear coupling, is it reasonable to neglect
even higher-order terms such as cubic nonlinear coupling
or quartic anharmonicity? Clearly, such a problem is
hopelessly complicated. However, it has always appeared
that the linear coupling dominates in the Jahn-Teller ef-
fect, and we believe it to be the case here as well.
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APPENDIX: EFFECTIVE VIBRONIC
HAMILTONIAN FOR MULTILEVEL COUPLING

In this analysis, we follow an approach first introduced
by Pryce. We consider several levels, possibly degen-
erate, lying close to each other. The Schrodinger equation
for the full system is

ml e) =z
l
e),

where

(Al)

~el +~~ ~e)+~P+~c +~
0)+X

I
n) .

n&0

(A2)

(A3)

The eigenstates of the unperturbed system, described by
are

l
0), . . .

l
n), . . . , with energies Eo, . . . ,

E„, . . . , and each set t l
n) I is a linear manifold of di-

mension equal to the degeneracy of the level considered.
The perturbation Hamiltonian A I contains A p, which
operates only within the manifold

l
0), A, which

operates only between the levels
l
0) and

l
n ), and A ',

which operates only within the manifold
l

n ). Equations
(A2) and (A3) can be inserted into Eq. (A 1) with the result

(EQ E+A $)
l
0)+ y(E„E—+A $)

l
n) =0 . —

n&0

If I'„=
l

n ) (n l, the projection operator of the manifold
l

n ), is applied to Eq. (A4), one obtains
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fn)=—

n ) = T„
f
0

where

P„m,
f
0) P„m,

f
m )

Solving iteratively, one obtains

(A5)

(A6)

(Eo E—)Po+Po@ tPo+ QPo~tT Po
n+0

We now expand

1 1 1

(En —Eo)+(Eo—E) ~n

E

Q2 Q3

Pn ~1 Pn ~1Pm ~1
Tn= — +E„E —

o (E„—E)(E~ E)—
P„A jP A iPI~i

t~o ~o (E~ E—)(Em E)—(Ei E)— (A7)

If we multiply now Eq. (A4) on each side by Po, the pro-
jection operator of

f
0), and use Eqs. (A5) and (A6), we

obtain

(A9)

where E=Ep —E is the difference between the ground-
state energy of the unperturbed system and the exact
ground-state energy, and b,„=E„Eois—the difference in
energy between the lowest level and the level

f
n ) without

interlevel coupling. Using Eq. (A9), the operator T„be-
comes

Pn~1 E' E

n n ~n

2

1 —g 1—

Pm ~1Pl~1 e+ 1 + 0 ~ ~

t~o m~o
1—

g2 + 0 ~ ~

J

(A 10)

If Eqs. (Ag) and (Alo) are combined to eliminate the remaining unknown e, we obtain the effective Hamiltonian

A,ff f
0) =E fo), (A 1 1)

where, if the zero of the energy is chosen to be the ground-state energy of the unperturbed system,

A, f
n)(n fm, A o fO)(Oft, fn)(n fm, m, fn)(n fm' fm)(m fm,

A, it=A o —g Q3
n+0 n n&0 n m&0 n&0 n m

(A12)
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