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Resonant enhancement of the electric field in the grooves of bare metallic
gratings exposed to S-polarized light
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Cavity resonances are shown to be produced for S-polarized light striking an infinitely conducting lamel-
lar grating. They manifest themselves by significant electric field enhancements within the grooves. This
result has applications to surface-enhanced Raman scatte'ring.

Much recent research on surface-enhanced effects con-
nected with Raman scattering, ' second harmonic genera-
tion, and photoelectric yield, ' stresses the role of rough
surfaces in general, and gratings in particular, for coupling
radiant energy into surface polariton modes responsible for
electric field amplification near air-metal (or lossy dielectric)
interfaces. ' Until now, it has been thought ' " that all
resonant near-field enhancement processes at bare gratings
are possibly only in the P-polarized state of the excitation
radiation (electric vector perpendicular to the rulings, i.e., in
the plane of incidence). Hessel and Oliner' have predicted,
on the basis of an impedance boundary condition, and An-
drewartha, Fox, and Wilson' have verified, on the example
of a perfectly conducting grating, that gratings are also capa-
ble of producing cavity-type resonances with S-polarized
light (electric vector parallel to the rulings). These reso-
nances, like their P-polarization counterparts"' do not oc-
cur at the plane-surface plasmon wavelengths. Hessel and
Olinear specify that the S resonances will only occur for
gratings whose groove depth h satisfies the relation

mug/2 ) h & (2m —1)h.g/4, m = 1, 2, . . . ,

but they provide us neither with the definition of Xg nor
with the explanation of the origin of this criterion. An-
drewartha et al. bypass this problem, but they do give us a
clear picture of the nature of the resonance poles associated
with the cavity modes in the grooves of the grating. In par-
ticular, they show that the imaginary part of the
(wavelength) resonance pole is generally so large that the S
resonance goes unnoticed (i.e., does not appear as an "ano-
maly" with sharp features as do P resonances) in a far-field
observable such as the specular reflectance.

Herein we demonstrate that the S resonances show up in-
the immediate vicinity of the grating, in particular in the
grooves, wherein they give rise to large electric field
enhancements when the groove depth h obeys the Hessel
and Oliner criterion. The latter is shown to arise from the
dispersion relation of a slow guided wave analogous to the
S-polarized guided wave that can be supported by a flat loss-
less dielectric film overlying a flat infinitely conducting sub-
strate.

In a subsequent publication we will show that noble-metal
gratings (e.g. , Ag) and infinitely conducting gratings of the
same profile produce essentially the same kind of S reso-
nances; this enables us to restrict our attention here to the

E$3 (x IctJ ) E03 (x Ice ) X A„(k; ~f, co )exp(it„+ x),

where

k„+~I ——k;~~+(2n~/d)e&, &=2~c/~ (2)

k„q=e2[(cu/c)' —(k„~~ )']' ', Re(k„q )+ Im(k„q ) ~0
Separation of variables enables the following modal

X)

FIG. 1. S-polarization lamellar grating scattering configuration.

(simpler) second kind of grating. We treat the same lamel-
lar profile as Andrewartha et al. ' The plane of incidence
(x~,x2) cross section of the scattering configuration is
displayed in Fig. 1. The rulings are in the e3 direction (with

e, the unit vector along the x, axis). Let x=xte~+x2e~
and let ~ be the angular frequency of the incident plane-
wave field [the time factor exp( —i rot ) is hereafter
suppressed]. We designate the incident and total electric
fields above the grating by Eo(xIcu) and E~(xIcv), respec-
tively, and the component along the x~ axis of E~(xIcu) by
E~(xIcu), p =0, 1. The nature and polarization of the in-
cident wave field are such that E~(xIco) =0, for p=0, 1

and q =1,2, and E03(xIco) = exp(ik, x), with k&=kfs
+k(t, kf([ e~(co/c)sin81, kIq=e2(ru/c)( —cos8&), c being
the velocity of light in the medium (assumed to be air)
above the grating, and 8; the angle of incidence.

We adopt the usual Rayleigh plane-wave representation'
of the field in the half-space above the grooves of the grat-
ing:
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representation of the field in the central groove to be obtained:

E13(xl~) = X A (k;~~, co)exp(ik ~h)sin(k ~~ X)[exp(ik 1, X) —exp( —ik~1 X)],
m=1

where

X=x+(w/2)e1+he2, k
~~

——(mm/w)e1

IX11 ~ w/2, 0 —~x2 ~ —h, (3)

(4)

This representation incorporates the boundary condition E13(xlco) =0 on the vertical and bottom horizontal facets of the
groove. Applying the boundary condition on the plateaus and the continuity conditions across the central slit results in

RJ(k ~~, 01) = —gjo+y X A (k;~~, co) [exp(2ik qh) —1)S& (k;~~, cu), y= w/d, 51 ~1 ——0, 5 =1;
m=1

(5)

A1(k; ~~, o) ) = 2 [exp(2ik11 h ) + 1 ]
k k+

SOI ( ill ~) + g R (kill ~) S I (k'll ~)
kll n = —oo, kll

(6)

where
f ~/2

S~+-(k;), , 01) =J,sin(k~(( X)exp(+ ik~(( x)dx1/w

(7)

Equation (5) can be inserted in Eq. (6) to obtain a matrix
equation of the type of G 3 =0 for the determination of
the vector A of the modal amplitudes A [the R~ then being
computed from the A by means of Eq. (5)], or the pro-
cedure can be reversed to obtain P R = 0 for the determina-
tion of the vector R of the Rayleigh plane-wave amplitudes
R„[the A then being computed from the R„by means of
Eq. (6)]. Hessel and Oliner" replace the physical grating by
an idealized planar reactance surface whose effect is to ap-
proximate P by some nearly diagonal matrix P'. In the P-
polarization state they find that R undergoes rapid variations
in the neighborhood of a zero of det(P') and that the real
part of such a zero (which corresponds to a pole of R ) oc-
curs near that value of the frequency for which the phase
velocity of one of the evanescent waves (k„1 imaginary) in
the Rayleigh field becomes equal to that of a surface wave
which would be present in some limit-grating configuration
(e.g. , a flat interface in the case of plane-surface plasmon
polaritons) .

Andrewartha et al. ' stick to the rigorous boundary condi-
tions on the physical (lamellar) grating. They solve for A

(instead of R ), and associate resonances with the (com-
plex) zeros of det(G). The latter are obtained by approxi-
mating 6 by G', with G~' = 0 for l & m and G ' = 6 . An-
drewarta et al. indicate that the S resonances do not show
up as sharp features in the (far-field) grating efficiencies as
do the P resonances, but they do not examine the nature of
the near field.

The first step in our approach is to search for solutions to
GA =H by truncating it to finite order N and increasing N
until what appears as stability of successive solutions is ob-
tained. The solution 3 is then identified with the stabilized
value of the solutions. In all the numerical examples herein
we obtained stabilization for N ~9, and found that the
N = 1 solution furnished a good approximation of the stabi-
lized solution. Results obtained in this manner are
displayed in Fig. 2, which shows the real and imaginary
parts of det(G), for truncation order 9, as a function of the
wavelength A. , relative to one of the gratings studied in Ref.
13. Andrewartha et al. find the real part of the complex
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FIG. 2. Real (full curve) and imaginary (dashed curve) parts of
det(G) vs X/d, w/d =0.43, h/d =1, 8(= arcsin(X/2d). A~ and X~
designate the locations of the zeros of Irn [det {G }] and
Re[det(G)], respectively, and the A.

' designate the real parts of the
complex zeros of det(G') in Ref. 13.

I

zeros A. 01 and Xo2 of det(G') to be located (approximately) at
0.807 and 0.705 p, m, respectively. In the figure it will be
noticed that X' ( Re(l1.0) (X", m =1, 2, with l1' and l1.

'
the real zeros of Im[det(G ) ] and Re[det(G ) ], respectively
(the position of these zeros is essentially the same for
N = 1). We have found this rule to be verified in the other
examples of the paper of Andrewartha et al. , but have been
unable to establish its theoretical basis. Nevertheless, it fur-
nishes a simple means by which to predict successfully the
occurrence of new S resonances.

We have also found A.
' and A.

" to be identical to the real
zeros of Im[det(P)] and Re[det (P)], respectively, the
latter being obtained by truncation, as previously. This indi-
cates that the S resonances of Andrewartha et al. and those
of Hessel and Oliner are probably the same physical objects.

To get a more precise picture of the cavity resonances, we
chose a scattering configuration in which the incident wave
strikes the grating normally (8; = 0'), the grating period is
d = 0.38 p, m, and the wavelength spans the interval
V= [A. 6 (0.44 p, m, 0.76 pm)] of the visible. This grating
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D'(0, co) =2ykoqSp~ (0, co)SO~ (0, cu)tan(kqqh )

From the latter relation, we find that the A.
' are the roots

of typ(k~zh) =0, i.e.,

= 2[(m/It) + I/~) ] '~
ping

= I, 2, (10)

'%1
(b)

throws all the incident energy into the specular (n =0)
spectral order throughout V so that it is impossible to find
any trace of S resonances in a far-field intensity. How then
is one to detect the resonances? The aforementioned ex-
amination of the positions of the zeros of the real and imag-
inary parts of det(G) suggests a means for establishing the
conditions of existence of the resonances which is particu-
larly efficient if the groove field is monomode (k t imag-
inary for m) 1). This is assured over Vif w=0.35 p, m.
We then find that the question of the location of the zeros
of Re[det(G)] and Im[det(G) reduces, to a good approxi-
mation, to that of the location of the zeros A.

' and A.
' of

D'(0, co) =ktq +4yIk~q IS~~ (O, ao)St~ (0, cu)tan(k~qh), (8)

The roots P
' turn out to be larger than X ' for each m, with

the distance of P
' to P

' being smaller the smaller mis. By
comparison with the results of Andrewartha et al. , we found
that this distance is a measure of the imaginary part of the
complex zero A. o, and thus of the damping of the resonance
associated with X . We have also found that the real part
of the resonance pole of A is located in the interval
[R ~, X ' ] very close to the root X of

D (0, co) = kqq +y Iktq Itan(kqqh ) = 0

This is analogous to the dispersion relation for an S-
polarized slow guided surface wave on a flat lossless dielec-
tric film overlying a flat, infinitely conducting substrate.
The condition of existence of a cavity resonance is therefore
similar to that of a guided-surface wave polariton, ' viz. ,
tan(k~qh) & 0. This is identical to the Hessel and Oliner
criterion if Xg is identified with 2m. /k~q. Our numerical ex-
periments on the aforementioned scattering configuration
show that the excitation of the guided wave is accompanied
by the (weaker) excitation of a host of other evanescent
waves in the Rayleigh field. The interference of these
waves produces a field in the half-space above the grooves
of the grating whose magnitude is essentially the same as
that of the field above a perfect mirror. This means that
the resonances not only fail to manifest themselves in the
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FIG. 3. Electric field enhancement on the line x& = 0 of the cen-

tral groove vs A. . d =0.38 p, m, w =0.35 p, m, h =1 p, m, 0;=0 .
Samples (a), (b), (c), (d), and (e) are taken at x2=0 —,—0.2h,
—0.4h, —0.6h, and —0.8h, respectively. The vertical lines indicate
the positions of the roots A.~ and A.~. The cavity resonances occur
in the intervals [X~1, A.~], m = 1, 2, . . . .

FIG. 4. Electric field enhancement in the central groove as a
function of groove depth h. d =0.38 p, m, w =0.35 p, m, 8;=0',
X-X ), with X] defined by Eq. (10). Solid lines apply to a perfect
conductor, dashed lines to silver. Upper pair of curves applies to lo-
cation x i = 0, x2 = —0.4h; lower pair to x

&
= 0, x2 = —0,8h.
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far-field intensities, but also in the intensity of the near
field above the groove cavities.

The situation is radically different within the grooves,
although it is quite similar at X ', P, and A. ', especially for
m = 1. At P and x2= fh (—0 (f~ I)

IE„(o,x, l~)!=41k,„S,+, (0, ~)l """" "'+
k)j

which is larger the smaller is k~~ at A. . The optimal condi-
tion occurs for m =1 and X ' as close as possible to 2~.
The latter situation is obtained for h ~. These facts are
made evident in Fig. 3, in which are displayed the (modulus
squared) electric field enhancements as functions of k, and
in Fig. 4, in which they are plotted versus h at the
wavelength X ' defined in Eq. (10) which, for m = 1, is very
close to the wavelength at which the enhancements are
greatest. In this respect, our Fig. 4 is similar to Fig. 6(b) in
Ref. 4 wherein it is found that the field enhancement asso-

ciated with the excitation of the plane plasmon of an Ag
grating at first increases with increasing h, and then past
some critical value h = h, begins to decrease with further in-
crease in h due to radiation damping. We find the enhance-
ment at resonance (identified with X j ) to increase mono-
tonically with h; this is maintained for a highly conducting
metal such as Ag and is consistent with the finding of An-
drewartha et al. according to which the imaginary part of
the complex zeros associated with the cavity resonances
tends to zero as h ~. Thus, both the positions and
damping effects of the cavity resonances are very different
from those of the plane-plasmon polariton resonances.

These results suggest that a possible way of observing the
S resonances is to measure the degree of enhancement of
Raman scattered light from molecules adsorbed within the
grooves of a grating.
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