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Explicit trial wave functions are proposed for the ground state at all odd-denominator rational filling fac-

tors of the lowest Landau level of a two-dimensional electron gas. An exact sum rule valid for any isotro-

pic state in the lowest Landau level is used to justify an approximation scheme in which the hierarchy of
quantum Hall states is associated with a corresponding hierarchy of classical fluids. Results are given for

the energy at many rational filling factors and for the pair-correlation function at v = 7.
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where N is the number of electrons and Af (N) the homo-
geneous degree of P [z].

As emphasized by Girvin' the particle-hole symmetry
within the lowest Landau level, which is exact only in the
infinite magnetic field limit, plays an essential role in form-
ing the hierarchy of fractional Hall states. For any polyno-
mial P;[z] we denote the polynomial part of the particle-hole
conjugate of P; [z] exp( —gk IzkI /4) by C(P;[z]). Each an-

The occurrence of a fractional quantum Hall effect at fil-
ling factor v demonstrates the existence of especially stable
states of the two-dimensional electron gas at that filling fac-
tor. ' Experiments strongly suggest that such states oc-
cur only at rational filling factors (rff) with odd denomina-
tors. The states at v= 1/m where m is an odd integer seem
to be well described by the wave functions proposed by
Laughlin. 6 For v= 1 —1/m approximate eigenstates may be
obtained by particle-hole conjugating Laughlin's states. It
has been suggested ' that states at the remaining odd
denominator rff occur as a hierarchy in which the elementa-
ry excitations of a more primitive Laughlin state themselves
condense into a Laughlin state. Here we propose trial
many-body wave functions in terms of electron (rather than
quasiparticle8) coordinates for each state in this hierarchy.
We argue, using an exact sum rule, that it is possible to es-
timate the pair distribution function (pdf) and hence the en-
ergy of a hierarchy state by performing a corresponding
hierarchy of liquid structure calculations.

Any many-body wave function contained entirely within
the lowest Landau level may be written in the form

n

+ [z] = P [zl Q exp ( —
I zk I'/4),

k=1

where zk =xk+iyk is the electron coordinate in complex no-
tation, P[z] a polynomial in the zk's, and lengths are in
units of aL, —= (tc/eH)'i . If W[z] describes an isotropic
state P [z] must be homogeneous. It follows from the an-
tisymmetry of %'[z] that P [z] must be divisible by

Pv[z] =—g (zq —z;)
i&j

Since Py[z] is a Vandermonde determinant the case
P [z]=Pv[z] describes the full Landau level with a uniform
density nt= (2m. ) '. In general the rff of any polynomial
P [z] which describes a state of uniform density is given by

With these definitions we can compactly state our re-
currence relation for the fractional Hall states:

or
Q;[z] = C (Q; t [z])(Pv[z]) '

Qi[z]=C(g;-)[z])+(Pt [zl) '

(4a)

(4b)

where p; must, of course, be even. In Eq. (4a) Q;[z] corre-
sponds to a state in which quasiholes of the Laughlin state
at v '= 1+p; have condensed into the hierarchy state asso-
ciated with Q; ~[z]; in Eq. (4b) it is the quasielectrons
which have condensed into this state. (The justification of
these statements is discussed below. Note that we use
quasielectron to describe the positive fractionally charged ex-
citations of Laughlin's states, quasihole for negative charges,
and quasiparticle when referring to the excitations generical-
ly. ) In Eq. (4b) Q+ [z] is the adjoint of Q [z].9 "

It follows from Eq. (3) that the Landau level filling factor
associated with Q;[z] is given by

—1 i —1
vi 1+pi +

vi —1

I +pi+ ~' —1/pi —1+~i —2/p —2+ ' ' ' ~o/po' , (5)

where nj is 1 and —I for Q, [z] obtained from QJ t[z] by
Eqs. (4a) and (4b), respectively. The notation in Eqs. (4)
and (5) has been chosen to match that of Haldane, 7 except
that for a state which occurs at level i of the hierarchy his
Aj pj is our ai J,p; j. This change is made since the wave
functions are constructed by starting with that which
describes the condensate of quasiparticles at the innermost
level of the hierarchy and proceeding outward. These inner-
most states are those proposed by Laughlin, i.e.,
Qo[z]= (P~[z]) . In Table I we list some of the wave
functions for states which occur in the first two levels of the
hierarchy. (The wave functions at v '=

2 and v '=
2 are

identical to the hierarchy states proposed by Laughlin. ")
We now advance some arguments in support of the con-

tention that the wave functions generated by Eqs. (4) are
good approximations to the ground state at the filling fac-
tors for which they occur and in support of the statements
of interpretation which follow Eq. (4). The lowest energy
states are those whose wave functions 0" [z] vanish most
strongly as the zj= z; —zj approaches zero. At larger v

tisymmetric polynomial is uniquely related to a correspond-
ing symmetric polynomial denoted by Q;[zl —= P;[z]/ Pv[z].
We define a conjugate for Q;[zl as follows:

C(QI[zl) = C(g [z]P I zl)/Py[z]
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TABLE I. Explicit symmetric polynomials characterizing some
hierarchy states. gj[z] corresponds to a state which occurs at level i

of the hierarchy. We list all states with v 1 & 7 in which the parent
state has p, =o, 2, or 4.

Symmetric polynomial
—1v

g0 p2

g2 PV0 4

g 1 C(g 0)+p2

g1 g(g0)+p4

g1 C(g0)

5

5
2

9
2

3
2

g 1 g(g 0)p2

g1 ( (g0)+p2

g 1 C(g 0)+p4

g,' = C(g,0)

g1 g(g0)+p2

7
2

11
4

19
4

5
4

13
4

(lower density compared to nt) W[z] tends to decrease
more rapidly with Iz„"I but the polynomial (Pv[z])v (p even)
is most successful in achieving this end for a given contri-
bution to v . Thus, if P [z] is a good approximation to the
ground-state polynomial for inverse rff v ', (Pv[z])zP[z]
should be a good approximation at v '+2. This is just the
procedure by which the Laughlin state wave functions6 are
obtained from that of a full Landau level. The second ele-
ment necessary to justify Eqs. (4) is the observation that if
P[z] is the ground state at filling factor v, C(P[z]) is
guaranteed by particle-hole symmetry to be the ground state
at filling factor 1 —v. The physical interpretation provided
for Eqs. (4) follows from the facts that C(0;[z]) corre-
sponds to state Q;[z] in the holes of a full Landau level and
that H[z](Pv[z))v is the symmetric polynomial correspond-
ing to a hole in the full Landau level if p =0 and to frac-
tionally charged holes in Laughlin states for p = 2, 4, . . . .
Here, H[z] = gk (zk —zo) for a hole centered at zo and
H+ [z] creates a quasielectron at zo.

Given the pdf g, ~(r) for some state, P; t[z], at level
i —1 of the hierarchy we determine the pdf at level i, for
the case where P; ~[z] is formed in the holes of a Laughlin
state [Eq. (4a)] by noting that I'P;[z] I can be expressed as

Ie, [z] I' = exp( —P, U, [zl ),
where, choosing P, = v;

(6a)

U;[z] = —2v; 'p; $ lnIz; —zJI —v; 'IC(P, t[z]) I'
i&j

+ X v,
-'

—,
'

Iz, I' . (6b)
I

As discussed-above we wish to approximate the impact of
v; '

I C (P; t [z] ) I in "statistical" averages by an effective
classical pairwise interaction. This effective potential
U,"r'~ (R) is chosen so that the pdf when p;= 0 (i.e., for the
particle-hole conjugate of 'P; ~ [z]; v; = 1 —v; t)

2/2(1—v; t) g t(r)=(1 —2v, )(l —e ' )+v;g; t(r)
is reproduced exactly when calculated in a modified
hypernetted-chain (HNC) approximation. ' '3 We take this
potential to be the same as that between distributed two-
dimensional charges with areal density o-, q(r), i.e.,

U'rrt(IR —R'I) = Jjdr J~ dr'a. , ~(lr —Rl)~;-t
& (Ir' —R'I)( —21nIr —r'I), (8a)

where a; ~(r) goes to zero for r && aL and

dr r'[I —g (r) ] = 2v (10)

which holds for any homogeneous isotropic state in the
lowest Landau level'4 is obeyed exactly in our approach. In
the case of the plasma calculations, Eq. (10) foilows from
the perfect screening condition' which, depending only on
the long-range part of the interaction, is the same for point
charges as for those with a finite size.

For the hierarchy states where the condensate is formed
in the quasielectrons of a Laughlin state [Eq. (4b)] we do
not have a simple expression like Eq. (6b). In this case we
approximate the pair-correlation function of the daughter
state with the aid of the following observations. For the

1+p,.parent Laughlin state, P[z] = (Pv[z]) ', g(r) vanishes as
1+p,.(rz) ' corresponding to each pair of electrons having a re-

lative angular momentum 1+p;. When a condensate occurs
1+p,.in the quasiholes of this state, g (r) still vanishes as (rz)

and we can regard the electron pairs as having some proba-
bility for relative angular momentum 1+p; and some proba-
bility for a greater relative angular momentum. The pdf has
an extra contribution reflecting this, g (r) gL (r)
+Sg;' ~ (r). When the same condensate is formed in the

1+p.
quasielectrons of (Pv[z]) ' [Eq. (6b)] the electron pairs
develop a probability for having a reduced relative angular
momentum. Except for the sign of the quasiparticles the
situation is more similar to that in which the condensate is
formed in the holes of a parent with p; reduced by two.
This suggests that when 0;[zl is determined by Eq. (4b)

g;(r) =gL'(r) —gg;-'i (r) (»)
i.e., the change in the pdf when a given condensate occurs

p. +1
in the quasielectrons of P [z] = (P~[z]) ' is the same

dro. ; t(r) = (1—v, t) (8b)

Then the last term in Eq. (6b) describes the interaction of
these charges with a uniform positive background of fiction-
al charge density (27r) '. This guarantees that the classical
potential of Eqs. (6) at p;= 0 correctly describes a state of
electron with uniform (neutralizing) fictional charge density
(2m) ' which corresponds to electron density
(2n ) '(1 —v; t). The Fourier transform,

o.(k) = Jl dr exp(i k r) a-(r)

corresponding to the particle-hole conjugate of the p= 3

Laughlin state, is illustrated in Fig. 1. For p; = 2, 4, . . . the
total interparticle potential is, from Eq. (6b),

2 i vpi InIzgj I vI (1 v' —t) UI t (R)—

which, using Eqs. (8b) and (5), approaches —2v, z

Inlz& —zJI for r » aL. Thus, all of the hierarchy states are
represented by two-dimensional fluids with interparticle in-
teractions which are the same as those of distributed
charged particles, with —21nr interactions and total charge

The plasma analogy which holds for the original
Laughlin states [P [z]= (Pv[z])v+'] is thus extended to all
states of the hierarchy. One consequence of this extension
of the plasma analogy, which provides strong support for
our approximation and suggests that the plasma analogy
may have a fundamental origin, is the following. The sum
rule
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FIG. 1. Fourier transform of the charge distribution which yields the effective potential defined by the hierarchy state which occurs at
v =

3 IQ3t [z] = C (Pv2[z]) I. The dashed lines shows the result when bridge corrections are dropped.

(apart from sign) as the change which occurs when the
same condensate occurs in the quasiholes of P[z]

. —1= (Pv[z]) . With this approximation Eq. (10), which is
associated with the longer-range correlations, is satisfied. In

,2/4
addition the propertyts that e' g(r) has no odd terms in a
power series expansion in r, which severely restricts the
form of g(r) at small r, is preserved. An additional piece of
evidence for the accuracy of Eq. (11) comes from the nu-
merical calculations of Yoshioka for small systems (see Ref.
17). For v= —,{0[z]=c(Pv'[z])+Pv2[z]) Eq. (11) com-

bined with Eq. (7) yields
—I' /2gz/5(r)= 4gtg(r)+~(1 —e ' ) (12)

which, since gty3(r)~ r at small r, this gives the coefficients
of r and (r ) in the expansion of gy5(r) as ct= s and
c2= 72- which agrees with his results to within their accura-
Cy.

Using the procedures outlined above we have determined
pair-correlation functions for many hierarchy states. In Fig.
2 we compare the pair correlation function of the v= 7
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FIG. 2. Comparison of the pair-correlation function g (r) for the hierarchy state which occurs at v =

7 (04 tz] = Pvfz]03 [z]) (solid line)

and the corresponding plasma pair-correlation function, gp](f) {dashed line).
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FIG. 3. Cohesive energy per electron (E/1V —vv~m/8). The triangles are for hexagonal lattice CDW states calculated in the Hartree-Fock

approximation (Ref. 18), the crosses were obtained from Eq. (15) using hierarchy state pair-correlation functions, and the solid line is the fit
to the reference plasma energy given in Ref. 19.

E. e2
dr [g (r) —1 ]

N ag
(13)

In Fig. 3 we compare the energies for all the hierarchy
states we have calculated with the corresponding plasma en-
ergies and with the energies of charge-density-wave (CDW)
states. " For v ' odd the difference between the plasma en-
ergies and the energies calculated for the hierarchy states
are a measure of the accuracy of the modified HNC calcula-
tions. For example, the energy per electron we obtain at
v '=3 in units of e/a~ is —0.4092 compared with the

hierarchy state (0[z]= C(Pv[z])Pv[z]] with that of the
corresponding plasma (i.e., point "fictional" charge). The
scale of the filling-factor-dependent anomalies, which are
responsible for the fractional quantum Hall effect, is that of
the differences between these curves. For a e /r electron-
electron interaction the energy per electron is

more accurate value —0.4100 + 0.0001 obtained from
Monte Carlo calculations. '9 (When bridge corrections are
neglected the HNC calculation gives —0.4055.) Note that
the hierarchy states remain lower in energy than the CDW
states for all values of u in the range illustrated. The main
features of Fig. 3 are consistent with the qualitative discus-
sion of Halperin based on considerations related to the
quasiparticles of the Laughlin states. On a more quantita-
tive level, however, there are differences. For example, we
find the difference between the hierarchy state energy and
the reference plasma energy tends to be larger when a con-
densate occurs in the quasielectrons rather than the
quasiholes. A consequence of this in Fig. 3 is that the
anomalies in filling factor dependence of the hierarchy state
energy are stronger for the sequence v=

5 7 9 . . than2 3 4
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