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Generalized spheroidal wave equations from an image-potential method
for surface effects on impurity states
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Based on the hydrogenic effective-mass approximation, an image-potential method is developed for the
treatment of impurities in semiconductors with a boundary surface. The Schrodinger equation is separable
in prolate spheroidal coordinates (g, q, @). Generalized spheroidal wave equations of g and q resulting
from the separation constitute the basic equations for the study of surface effects on impurity states.

In the case when the effective-mass approximation is
valid, the shallow impurity levels of a substitutional impuri-
ty differing by one unit of valence from atoms of the pure
material are merely the hydrogenic levels. ' This is true only
if the impurity is located in an infinite bulk crystal. In actu-
al practice, often an impurity is on or near the surface of a
crystal. Many workers have studied surface effects on im-
purity levels using variational method or perturbation
theory. In this Brief Report we present a set of general-
ized spheroidal wave equations which can serve as the basic
equations for the treatment of surface effects on impurity
states along a somewhat different line of approach. Our
purpose here is to give solely the derivation of these equa-
tions but not their applications.

Consider a semi-infinite isotropic semiconductor occupy-
ing the z ~ 0 half-space and having a surface coincident
with the x-y plane. The z & 0 half-space is a vacuum. Let a
donor impurity be at (x,y, z) = (0, O, d) with an extra positive
charge in the nucleus. An extra electron with effective
mass m" is at an arbitrary point P = (x,y, z) in the z ~ 0
half-space. In GaAs, one of the As atoms replaced by a Te
or Se atom serves as a real example of such a system. ' Now
the problem is to find the solution of the following
Schrodinger equation:

t

„'72+ V (x y, z) p (x,y, z) =
E P (x,y, z)

2m

where the potential V(x,y, z) is chosen to be '

It is convenient to change this one-center problem into a
two-center one by considering the following potential:

V(x,y, z) =— 2

e( —z)e[x'+y'+ (z+d) ]'
2

[x2+y2+ (z d )2]1/2 ~(z)

1, z&0,
e(z)= —,', z=o,

0, z&0.

By image potential we mean the virtual image of the
Coulombic part of potential (2) produced by the x-y plane,
which is to be visualized for this purpose as if it were a
plane mirror. Our image potential is invented merely as a
mathematical aid and is entirely different from the potential
of image charge commonly encountered in interface prob-
lems. This potential of image charge is in some instances
also called "image potential" and must not be confused
with what we call an image potential. Let
r, = [x +y +(z+d) ]'/ and rb ——[x +y +(z —d) ]', as
shown in Fig. 1. The Schrodinger equation with V(x,y, z) as

—= V;(xy, z)+ V, (xy, z)

where V; and V, are the "image potential" and real poten-
tial, respectively; 8(z) is the Heaviside step function

V(x,y, z) =
2

[x2 +y 2 + (z d )2 ]1/2 '

z=0,

z)0,
x-y plane

where e is the dielectric constant of the crystal and E is
measured from the conduction-band edge. For simplicity,
we use units such that length and energy are expressed in
the effective first Bohr radius a, =—t2e/m'e2 and the effec-
tive Rydberg R, = e m'/2e f, respectively. Equation (1)
becomes

P(xp, z )

V2+E+
2 z z,/2 P(x,y, z) =02

x+y+ z —d (o,5,d)
7

with the boundary condition

y(xy, 0) = 0. FIG. 1. Coordinates used in the potential functions.
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the potential is
1

V +E+ 8—( —z) +—&(z) Q(x,y, z) =0
r, fb

t

(5)

(g, q, @) are related by the equations

x = —[(g'- 1)(1-ri') ]' 'cos@,
2

The most appropriate coordinate system for this equation is
the prolate spheroidal one in which the variables are

I + fb I" —fb

R ' R

where R =2d and @ is the azimuthal angle. Their ranges
are I ~ $ (~, —I ~ q ~ 1, and 0~ @ ~ 2m. (x,y, z) and

l

y =—[(g' —1)(1 —7l') ]'t' sin@
2

Rz= —gq2

It can be shown that Eq. (5) is now separable. Let
y=M(g)N(~)e(y); then

R E
4

~'+R I~l N(&) =0,

1 t

m R E
(g —1) M($) + A —

2
+ g +R( M(() ——0

dg dg
l

g' —I 4

d '

2 d(I —q ) N(ri) + m

dq dq 1 —g2

(6)

d@2
+m' e(y) =0,

y=M(g)N. „(~)e(@), ~~0 . (10)

The associated eigenvalue can be obtained from Eqs. (6)
I

where A and m are separation constants. E is negative for
the bound-state solution. 4(Q) has the usual form e —' ~

with m equal to zero or a positive integer. Apart from the
absolute value of 7! in the last term of Eq. (7), Eqs. (6) and
(7) are very nearly the same as the equations that have ap-
peared in the theory of the hydrogen atom, ' in one-
electron diatomic molecular ions, " in the application of
diatomic orbitals to multiple-electron diatomic mole-
cules, and, in general, in two-center problems. '

Equations (6) and (7) are called "generalized spheroidal
wave equations. "zo Since Eq. (7) is even in q and since
there is only one solution which is finite in —1 ~ q ~ 1,
N( —q) = +N(7!). Those N(q) that have odd 7i parity
have odd z parity too. The odd-parity solution has the prop-
erty

N, dd(g) = 0 at Yi = 0 (z = 0)

In the q & 0 (z ) 0) region, N, qd(q) satisfies the
Schrodinger equation with (2) as the potential. Hence the
solution of Eq. (3) is

and (7) with odd ri parity.
Results in limiting cases can be drawn immediately from

these basic equations. It can be shown that when d = 0, the
Q of Eq. (10) reduces to the hydrogenic eigenfunction in
spherical polar coordinates with the restrictions cos8 «0 and
1+m =odd integer. The latter is called customarily the
"surface selection rule. " This result is exactly the same as
that obtained by others with the conventional method. 2 In
the opposite case d ~, it can be proved by following a
procedure similar to Ref. 31 that the eigenstates are the hy-
drogenic levels in parabolic coordinates. Hence the ground
state at d = 0 is a 2po state, while at d ~ it is a 1s state. '

For given d, Eqs. (6) and (7) must be solved explicitly.
The eigenvalue E can be obtained as a function of d by
eliminating the separation constant A from the simultane-
ous solutions. The solution of (6) can be either Jaffe's'" or
Hylleraas's' solution. The former solution is

M(g) = (( —1) (g+ 1)~e rt X a
~=o ' 4+1

where pz = —~R E and o = R /2p —m —1. The coefficient

a~ satisfies the following relation:

(s +1)(a +m +1)a, +~ —[2y + (4p —2a )u —3' —2pcr —(m + l)(m + o)]a~ + (p —1 —o )( u —1 —o. —m )a~ ~= 0

(11)
where A'=A —p . Hylleraas's solution is expanded into associated Laguerre polynomials

M(g) = (gz —I) tze "t g ' I, (u)
o (m+t)!

with g = I + u/2p. The coefficient b, satisfies the relation

(t+m +1)(t—m —cr)b&+I+t(t —I —o )b, t+ (2t +2t(2p —a ) —[2'+2p o. + (m +1)(m + a )])b, =0 (12)

The absolute value of q in the last term of Eq. (7) makes this equation less familiar to us. A similar situation occurs in the
Schrodinger equation for a double oscillator. 33 We assume N (7!) to be expanded in the following form:3o

N,dd(q) =

oo

e~' X c,P, + (g), 0 q ~1~,
r=0

—e ~" g c, P, + ( —rt), —1~7i~0.
w —0
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c, satisfies the following relation:

(r + 2m + 1)(R + 2p + 2pr + 2pm )
2r + 2m + 3

—[A'+(r +m)(r +m —1)]c„
r (R —2pr —2pm ) 0 (13)

2r +2m —1

N (ri) can be equally well written as

e r g c„P, (q), 0«g-1,
r=o

N.„(~)=
—er' X c, P, + ( —g), —1«g«0.

+=0

Then c, satisfies a relation obtained from (13) by changing
the sign of p. N(q) may also have the alternative expan-
sion

(1—
7l ) ~ er~ g d, (1 —ri)', 0-«l«71,

r=0

—1~~~0.

d, satisfies the relation

2(r + 1)(r +m + 1)d„+~+ (2pm +2pr —R)d„
—[r (r + 1) +2r (2p +m) +A ' —R

+ (m + 2p) (m + 1) ]d, = 0 . (14)

This N, dd(q) and relation (14) can be changed slightly with

p replaced by —p. To get the P of (10), we must solve
either Eq. (11) or Eq. (12) simultaneously with either Eq.
(13) or Eq. (14) combined with condition (9). The differ-
ence equations constructed from these recurrence relations
can be written in the form of infinite-dimensional matrix
equations. For practical purposes, they can be truncated to
finite but sufficiently large dimension so that good conver-
gence of M(g) and N, dd(q) is guaranteed. To solve the
simultaneous matrix equations, the Newton-Raphson
method may be employed in actual numerial computa-
tion. ' The solution so obtained is exact.

The potential function (2) is slightly crude because the ef-
fect,of image charges of the ion and the electron is omitted.
With this effect taken into account, the Schrodinger equa-
tion is no longer separable. An appropriate way of treating
this problem is the incorporation of a perturbative-
variational approach 6 in the image-potential method.

Applicability of the image-potential method is not restrict-
ed solely to isotropic semiconductors and can be extended
to anisotropic materials, e.g. , Si or Ge, by approximating the
transverse and longitudinal electron effective masses to a
scalar effective mass by the method of Ref. 7.

A similar application of Eqs. (6)-(8) to the study of sur-
face effects on the Wannier exciton is also possible. In this
case, m' in Eq. (1) is replaced by the reduced mass calculat-
ed from the effective masses of the electron and the hole,
and d is now the distance between the center of mass of the
electron-hole system and the boundary surface in the z
direction. Satpathy has independently observed the separa-
bility of the Schrodinger equation for Wannier excitons near
a semiconductor surface. 3
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