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Fluctuating dipoles and polarizabilities in ionic materials: Calculations on LiF
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The physical mechanisms responsible for the fluctuating polarization which causes light scatter-
ing and infrared absorption in ionic materials are investigated by electronic structure calculations on
distorted crystal lattices. The lattice is modeled at two levels which permit the separation of the ef-
fects of electrostatic and first-shell overlap interactions. The distortion-induced polarization may be
regarded as the sum of an asymptotic term, which includes the electrostatically induced moments
described by a multipole expansion, and the result of a change in shape of the confining potential
well in which an ion sits. The latter is significant only for short-range distortions. The confining
well is caused by both electrostatic and overlap interactions, and for first-shell distortions the two
act in concert. Both the asymptotic and confining potentia1 effects may be built into a computation-
ally tractable model for the fluctuating polarization of crystalline LiF; extended schemes for more
disordered situations, such as the melt, are considered.

I. INTRODUCTION

The light-scattering spectrum of a condensed ionic ma-
terial in the Rayleigh wing region (1—500 cm ) contains
information on the relative motion of ions which may be
difficult to obtain by other means. For example, Mazza-
curati et a).' have shown that very large changes in the
polarization characteristics of this spectrum accompany
an order-disorder transition of the Ag+ ions in AgI in the
superionic conduction regime. Recently, an extensive
study of the Rayleigh wing spectra of molten alkali
halides has been undertaken in order to observe the
charge density wave expected in a two-component charged
fluid.

The corresponding "interaction-induced" spectra in
nonionic, weakly interacting ("van der Waals") fluids such
as argon or CS2 (Ref. 5) are now understood at a quanti-
tative level, the understanding has developed through
three stages. The electrodynamic mechanisms responsible
for the interaction-induced polarizability, whose fluctua-
tions are observed in the spectra, may be identified and
studied in the gas phase, where small numbers of mole-
cules interact. The applicability of the same mechanisms
to the condensed-phase polarizability may be examined by
comparing the results of computer simulations with exper-
iment. ' With the dependence of the fluctuating polari-
zability upon the coordinates of the molecules identified,
it is then possible to reexpress the polarizability in terms
of whatever modes are convenient for a theoretical
description of the intermolecular motion in the condensed
material, and in this way account for the shape of the
spectroscopic line.

This sequence cannot be followed in ionic materials,
and a theory of Rayleigh wing spectra for them has not
been developed. The reason is that the first stage cannot

be replicated, the electrodynamic interactions between
small numbers of ions in the gas phase are a poor guide to
the condensed-phase behavior. ' In order to relate the
fluctuating polarizability to the intermolecular coordi-
nates in a condensed ionic material it is necessary to study
the condensed phase itself.

In the present paper we will examine, by electronic
structure calculations, the dipoles (and quadrupoles) in
distorted crystal lattices of LiF in-the presence and ab-
sence of external fields. The idea behind this work is that
the weakly distorted lattice can provide a good model sys-
tem in which the essential many-body aspects of the elec-
trodynamics of condensed ionic systems are present, yet
which is sufficiently simple, by virtue of symmetry, for us
to extract the information we require. The distorted lat-
tice is, in this sense, the analog of the low-density gas in
the study of van der Waals materials. Our objective is to
provide closed expressions for the dependence of the
interaction-induced properties on the ionic coordinates.
Our calculations are made on only weakly distorted lat-
tices, and so the application of these expressions to strong-
ly disordered materials, such as melts, may be questioned.
However, the expressions will be designed so that they
give correctly the effect of one ion on another when the
distance between the two is large. It is for such configu-
rations that the crystal and melt differ most, as computer
simulations show. " Consequently, we expect that our ex-
pressions should provide a reasonable approximation to
the fluctuating property in the condensed phase; clearly
this viewpoint should be tested by computer simulation, as
in the analogous second stage of the procedure used to ex-
plain the spectra of condensed van der Waals materials.
Although our introductory remarks (and much of the sub-
sequent discussion) focus on the light-scattering problem,
we will also present results on the interaction-induced di-
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poles and quadrupoles. The latter are primarily of inter-
pretative interest, but the induced dipoles are responsible
for the far infrared spectra.

II. GENERAL BACKGROUND

The theoretical description of the dielectric properties
of a material whose electrons may be considered localized
on the constituent molecules is well established. Within
the dipole approximation' the instantaneous polarization,
P( r ), is given by

where p
' and r ' are the total dipole moment and position

of molecule i. p
' is given by

E Q( ~&)+ g T( -+&j) -+ t (2)
j (&i)

where E is the field produced by external charges, T(r)
is the dipole-dipole tensor (V V'r '), and p ' and a ' are
the instantaneous values of the dipole moment and dipole
polarizability of molecule i. In general, p ' and a ' depend
upon the configuration ofall N molecules in the sample.

For nonpolar materials, Eqs. (1) and (2) lead to the
Clausius-Mossotti or Lorenz-Lorentz equation for the per-
mittivity,

= (4rtp/3 ) (8 ' ),6+2 (3a)

where p is the density. This equation is accurately obeyed
by the fluids and crystals of nonpolar, van der Waals
compounds with (a ') simply taken to be the mean value
of the gas-phase, isolated molecule polarizability. ' That
is, so far as the equilibrium property e of such materials is

concerned, Eqs. (1) and (2) with the R dependence of a'
neglected appear to give a good description of the electro-
dynamic interactions between the molecules.

The application of these equations, and the underlying
localized electron assumption, to the dielectric properties
of condensed ionic materials is much less firmly establish-
ed. The static permittivities of ionic crystals have been
analyzed by the Clausius-Mossotti equation, e.g., for sim-
ple MX salts, '

6—1 = (4vrp/3)(a ~+a ),
@+2

where uM+ and o.'~ are in-crystal polarizabilities of the

cation and anion. For some ionic compounds, notably the
alkali halides, ' ' the in-crystal polarizabilities are reason-
ably transferable from one material to another. The in-
crystal anion polarizability is much smaller than the value
calculated for the free ion, whereas for the cation the two
values are usually quite similar. ' In other cases, that of
materials containing the 0 ion is well documented, ' '
the application of Eq. (4) to the data requires that cz 2

depends strongly on the counterion. From these observa-
tions one may conclude that, at best, the localized electron
assumption may hold in ionic materials but that, in any
case, the ionic polarizabilities depend strongly on the posi-

V(r) = Vo(r)+ V4(r)P4(r, )+ V6(r)P6(r, )+ (4)

where P& is an lth-order Legendre polynomial. The ef-
fects of the crystalline environment of the polarizability
of a first or second row ion is dominated by the spherical
(Vo) term. For such ions the ground-state wave function
is well represented by an sp basis, these functions are
unaffected by the Vz and higher-order terms in the poten-
tial. To describe the first-order perturbed wave function
in a uniform, externally applied field (which determines
the polarizability), additional functions of d type are re-
quired. As is well known, the Vq potential splits a set of
d functions about a mean value determined by the Vo po-
tential. We have shown that this effect on the first-order
wave function does not affect the polarizability [98% of
the effect of the crystalline environment on the polariza-
bility of F is due to Vo (Ref. 19)]. The V4 part of the
potential only becomes significant when d orbitals are oc-
cupied in the unperturbed ion [as, for example, in the case
of Ag+ (Ref. 20)]. For anions the spherical part of the
electrostatic potential may be viewed as a spherical poten-
tial. well which tends to compress the electron cloud. It is
illustrated in Figs. 1 and 2 where we show, for later refer-

I
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FIG. 1. Spherically averaged potential energy of an electron
in an octahedron of (+ 1) charges. The six charges are disposed
on a sphere of radius R and the figure is a slice through the
equatorial plane —3/2R (x,y (3/2R. Contours (counting out
from the center) at 1e, 0.9e, 0.8e, and 0.7e, where e is the well
depth —6/R.

tions of the other ions in the medium.
In a number of recent papers we have investigated the

validity of the concept of an in-crystal ionic polarizability
by ab initio electronic structure calculations' ' ' on clus-
ters of ions in environments appropriate to crystal lattices.
Our calculated values for alkali and halide ions agree
closely with those deduced from the application of Eq. (3)
to experimental data and have been shown to be insensi-
tive to charge-transfer effects in the crystal. ' '8'~ The ob-
served variation of the in-crystal polarizability of 0
may be accounted for by the effects of the different local
environments of the ion in different materials, within the
localized electron model. '

In a perfect cubic crystal the electrostatic potential felt
by an electron due to neighboring ions may be written
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FKx. 2. Spherically averaged potential energy of an electron
in an octahedron of (+ 1) charges. The graph is a section along
the z axis of the potential described in Fig. 1. Vis in units of e
and z in units of A.

ence, a contour plot and simple graph of Vo(r) for an oc-
tahedral shell of charges. The walls of the well occur at
the lattice spacing. Such figures have been previously dis-
cussed by Mahan. ' The electrostatic compression
reduces the anion ' polarizability; for F in LiF the
Hartree-Fock polarizability is reduced from the free ion
value of 10.65 to 7.30 a.u. '

In a real crystal the electrons are additionally
compressed by overlap interactions with neighboring ions.
This effect may be regarded as a property of a one--
electron pseudopotential, ' which may also be represented
as in Eq. (4). For the same reasons as above the VO part
of the pseudopotential will exert the dominant role and,
because of the short range of overlap effects may also be
thought of as a spherical potential well. The walls of the
overlap well occur at a smaller radius than the electrostat-
ic ones, at about the anion crystal radius (where the cation
electron density becomes appreciable). The walls of the
overlap well will therefore screen those of the electrostatic
well when both effects are operating (see Sec. 7 of Ref.
18). The overlap compression of the F ion in LiF fur-
ther reduces the F polarizability to 5.4 a.u. .'

This simple idea of representing both overlap and elec-
trostatic effects as a confining potential underlies the use
of the charged "Watson sphere" to simulate the ionic en-
vironment. In its original form the spherical well had a
radius equal to the lattice spacing and a charge chosen to
reproduce the Madelung potential inside, but in later ap-
plications a sphere of radius equal to the anionic radius
has been used to simulate overlap effects.

The analysis of the permittivity through the CM equa-
tion can only give information on the interactions between
molecules which are occupying their equilibrium positions
(i.e., on lattice sites for the crystal). For van der Waals
materials 'this is already a good indication of how to
model the fluctuating parts of the polarization (due to the

i 3aP= T&aP, yn+y+S+ + 2 CaP, yS+yS+

i 1 3
ct~p=ct&ap+ , yaprsFrFs+ ' —+~ BapysFys+ ,

'

(7)

where a, B, C, E, y are in crystal values of-the polariza-
bilities defined by these expressions and F, F ~, andI &y are the first three gradients of the Coulomb poten-
tial evaluated at the site of ion i. If these expansions are
truncated at low order [say that explicitly indicated in
Eqs. (5)—(7)], then they provide, with Eqs. (1) and (2), ex-
plicit expressions for the interaction-induced polarization.
The field and its gradients are readily evaluated from the
ionic positions

F p . . „(r')= g qJT p . . .„(r'~).
j (&i)

(8a)

displacement of particles from the lattice in a crystal) ob-
served in light scattering as, in this case, the permittivity
considerations show that it is a good approximation to
neglect the R dependence ofH'. ' Equations (1) and (2)
then give an explicit expression for the E -induced polari-
zation as a function of the particle coordinates, which is
found to account semiquantitatively for the shape and in-
tensity of the Rayleigh wing in (for example) liquid ar-
gon. For ionic crystals, although the static permittivity
considerations suggest that the localized electron descrip-
tion is adequate, the large difference between the in crys-
tal and free anion polarizabilities shows that the ionic po-
larizability depends strongly on the position of the other
ions. For a description of the fluctuating polarization,
Eqs. (1) and (2) are therefore incomplete without a
prescription for this position dependence.

The simplest conceivable description of the fiuctuating
polarization in an ionic system would be to replace the
R -dependent ionic properties p, '(R ) and H'(R ) by
their values in the undistorted crystal. Equations (1) and
(2) are then complete. It does not take long to see, howev-
er, that the resulting description is hopelessly inadequate.
The light-scattering spectrum, for example, will be simply
that predicted by the dipole-induced dipole (DID) model
(as in argon). The first-order DID model predicts a
frequency-independent depolarization ratio of 0.75 for the
Rayleigh wing, whereas observations on molten salts
show strongly frequency-dependent ratios which become
as low as 0.1.'

At the next level of sophistication it is noted that in a
perfect cubic lattice the first three gradients of the
Coulomb potential vanish at an ionic position (lattice site),
whereas in an instantaneous configuration of a distorted
crystal or melt they do not. If we expand the ionic di-
poles, quadrupoles and polarizabilities in powers of these
distortion-induced gradients, we obtain:

Ilja=&Fa+ 6 XaprsFpFyI's+
1 1+ 2 Ba13,y5+P+y5+ ' + &p Ea, Pyb+Py&+
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with

T~p . . .(r)=V' Vp V„r

and qj the charge on ion j. Referring to the light-
scattering problem discussed above we see that the hyper-
polarization term in Eq. (5) provides a polarized contribu-
tion to the fluctuating polarization of the form

1 0oP~= g , y pr—sFpFrEs .

This may therefore be partially responsible for the ob-
served departure from the constant 0.75 depolarization ra-
tio of the DID model. This mechanism has been invoked
by Mazzacurati et al. ' to account for the light scattering
in AgI. The role of the B term in Eq. (5) has not been
previously discussed; since B is traceless [i.e.,
B rsFrs ——0, Ref. 26)], this term will lead only to depo-
larized light scattering [in lowest order in Eq. (2)].

Equations such as (5)—(7) should suffice to describe the
moment on ion i induced by fluctuations in the positions
of ions at large distances from i For su. ch distant. ions
overlap effects should disappear and the convergence of
the expansion in the gradients of the Coulomb potential
should be rapid. Furthermore, the long-range fluctuations
will tend to screen each other which will limit the size of
the instantaneous field at any ion and ensure rapid con-
vergence of the expansion in powers of the field and its
gradients. For these reasons we shall refer to the model
for the fluctuating polarization which follows from Eqs.
(1) and (2) and (5)—(7) (truncated at the order explicitly
indicated) as the "asymptotic model, " as it correctly gives
the contributions to the polarization due to interactions
between ions separated by large distances.

The asymptotic model cannot be sufficient to describe
the effect on the properties of an ion of fluctuations in the
positions of near neighbors. For near neighbors overlap
effects, neglected in Eqs. (5)—(7), become significant, as
shown by the overlap compression effect on the in-crystal
polarizability. ' ' Furthermore, the expansion of the ion-
ic properties in the gradients of the Coulomb potential
fails to converge when the charges which cause the poten-
tial are at distances accessible to the electrons of the ion.

In the present paper we wish to characterize the
discrepancies between the predictions of the asymptotic
model and the results of ab initio electronic structure cal-
culations of the properties of an F ion in a distorted LiF
lattice. The objective is to provide a treatment of the fluc-
tuating polarization responsible for light scattering which
includes both the asymptotic effects and the discrepancies.

We begin by presenting (in Sec. III) the results of calcu-
lations in which all neighbors of a central F ion are
represented as point charges (called CRYST calculations)
and the ions of the first shell of neighbors are radially dis-
torted. Comparison of these results with the asymptotic
model allows us to determine the effect of nonconvergence
of the gradient expansion in Eqs. (5)—(7).

We then (in Sec. IV) introduce the overlap compression
effects for the same distorted geometries, by representing
the nearest neighbors of the central ion as full ions (i.e.,

nuclei plus electrons), while retaining the point-charge
description of more distant particles. These are denoted
CLUS calculations. In Sec. V, we consider the effects of
tangential displacements of the first shell at both the
CRYST and CLUS levels. We then consider how rapidly
the distortion-induced properties converge to the asymp-
totic prediction as the distance between the central and
displaced ions is increased (Sec. VI). Finally, we summa-
rize our results and show how they may be used to define
a computationally tractable set of equations for the
fluctuation-induced polarization observed in light scatter-
ing.

III. POINT-CHARGE CALCULATIONS
ON FIRST-SHELL DISTORTIONS

In this section we shall describe the results of calcula-
tions at the coupled Hartree-Fock level on the dipole mo-
ment, quadrupole moment, and polarizability of a fluoride
ion in a simple cubic lattice of point charges with a lattice
constant appropriate to LiF (R=3.7965 a.u. ). Except
for the fact that some of the charges are now displaced
from their lattice sites (see below) the calculations are
identical to those described in Ref. 10 (denoted CHF-
XTAL) and Ref. 18 (denoted CHF-CRYST). In particu-
lar, the same basis set is used for the F ion as in Ref. 10,
this large [12s/8p/Sd] set gives a polarizability for the
free ion which is very close to the Hartree-Fock limit.

We are interested in comparing the results of the purely
electrostatic environmental effects, which are all that
occur in the CRYST calculations, with the predictions of
the asymptotic model, described in Sec. II. For this we
require values for the various polarizabilities which ap-
pear in Eqs. (5)—(7), calculated in the undistorted point-
charge lattice, and in the same basis set as will be used in
the distorted-lattice calculations. These polarizabilities
may be calculated by methods we have described else-
where and their values are listed in Table I.

In this section we shall consider the results for radial
displacements of one or two ions in the first coordination
shell; these geometries are specified in Table II. 6] and
A2 are the radial displacements of the charges at +R and
—R along the z axis. The table also contains the value of
the independent components of the first three gradients of
the Coulomb potential at the fluoride ion for these
geometries.

Tables III—VI give the ab i'nitio results for the dipole
moment, quadrupole moment, and the changes in the iso-

C
Cxz, xz

B
Pzzzz

3'x zz

Ex,xzz

5.394
4.013

—96.0
679
141

2.95
—1.48

TABLE I. CRYST polarizabilities (a.u. ) for the fluoride ion
in the [12s 8p 5d] basis.

7.300
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TABLE II. The distorted geometries at which calculations were carried out and the fields and field
gradients at the F ion. Numbers in parentheses signify powers of 10; e.g., 1.792(—3)=1.792&& 10

Configuration no. A~ (a.u. )

0.05
0.05
0.1

0.1

0.5
0.5

h2 (a.u. )

0.05
0.0
0.1

0.0
0.5
0.0

F, (a.u. )

0
1.792( —3)

0
3.515( —3)

0
1.5208( —2)

F (a.u. )

2.814( —3)
1.407( —3)
5.485( —3)
2.742( —3)
2.2665( —2)
1.1333(—2)

F (a.u. }

0
1.473( —3 )

0
2.853( —3 }

0
1.1274( —2)

tropic (a ~
———, tra —a„) and anisotropic (aq ——a~ —a„x)

components of the polarizability induced by the distortion
of the environment. These are compared with the predic-
tions of the asymptotic model, i.e., for the axially sym-
metric distortions considered here:

1 2 3
Om =

2 B~,mFz + z C~, z F~ ~

at ——,' (y +2—y )E, ,

1 2 3a2= Y('Yzzzz 1'xx )+ + 4&zz,

(6')

(10)

The contributions of the various terms in these equations
to the total predicted by the model have been separately
given in the tables in an obvious notation. The last
columns of Tables III—VI give the value of the discrepan-
cy (5p, , etc.) between the ab initio value and that predict-
ed by the asymptotic model.

Several observations can be made immediately about
these results. The first is that the predicted and calculat-
ed values differ markedly. Second, we note that the
discrepancies have the opposite sign to the asymptotic
prediction and are largest for the properties which are
most influenced by the outermost part of the electron den-
sity. Thus for the dipole moment, which is the first mo-
ment of the ground-state electron density, the discrepancy
(5p, ) amounts to —22% of the predicted value (for
geometry 2), whereas for the quadrupole, which is a
second moment, it is —44%. The polarizability com-
ponents are even more sensitive to the outer electron con-
figuration (see Ref. 18, Table XIII); for the anisotropy the
discrepancy is —65% of the predicted value.

The behavior of the discrepancies can be correlated
rather well by considering the effects of geometric distor-
tion on the electrostatic potential discussed in the last sec-
tion. As we argued there the l=4 and higher-order parts
of this potential do not affect the ionic polarizability;

when the lattice is distorted new low-1 components of V
may be introduced. The distortion-induced changes in the
potential, including terms up to I=3, are illustrated in
Figs. 3 and 4 for an octahedron of yoint charges distorted
as 2, 4, and 6 (Table II), but with b, =R/10. Figure 3
may be compared with Fig. 1 and the dashed contour is
the lowest-energy contour of that figure which may be
taken to represent the position of the electrostatic wall in
the undistorted case, it has a radius equal to the lattice
constant. Projections of the distorted and undistorted po-
tentials along the z axis are shown in Fig. 4. To see which
aspects of the distortion-induced changes in the electron
density are accounted for by the asymptotic model, we
also show in Fig. 4 the asymptotic potential

V, (r)= Vo(r)+r I'~+ , r~rpF p+ —,r rprrI' p— (12)

where Vo is the spherical part of the undistorted potential
and F~, F~I3, F~I3& are components of the distortion-
induced field and its first two gradients at the position of
the central ion.

The figures show that the asymptotic potential is paral-
lel to the distorted potential inside the original electrostat-
ic potential well (i.e., for r (R). For larger values of r the
actual potential lies below the asymptotic potential (for
positive z) and below the undistorted potential. The situ-
ation may be summarized by describing the actual poten-
tial as the sum of the asymptotic potential and a
distortion-induced "dent" in the confining wall of the
electrostatic potential well whose origins we discussed in
the last section. The discrepancy between the calculated
properties and the predictions of the asymptotic model
may then be ascribed to the effects of this dent.

The asymptotic potential of Fig. 4 (corresponding to
geometries 2, 4, and 6) favors a displacement of electrons
to negative z and a positive value for the distortion-
induced dipole. The dent in the wall gives rise to a flow
of electrons to positive z which will therefore tend to

TABLE III. Calculated and predicted values of the CRYST dipole moment (for configuration 1, 3, and 5 the calculated and
predicted values are zero).

Configuration no. p, (calc)

1.053( —2)
2.073( —2)
9.161(—2)

1.308( —2)
2.566( —2}
1.1102(—1 )

0.7( —7)
0.49( —6)
3.981(—4)

p, (predicted)
8

1.213( —4)
4.628( —4)
8.273( —3)

4 344( 4)
8.415( —4)
3.326( —3)

Total

1.339(—2)
2.605( —2)
1.0648( —1)

—2.87( —3)
—5.32( —3)
—1.486( —2)
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TABLE IV. Calculated and predicted values of the CRYST quadrupole.

Configuration no. 0 (calc)

1.267( —2)
6.235( —3)
2.508( —2)
1.252( —2)
1.1451(—1)
4.920( —2)

0
—1.54( —4)

0
—5.93( —4)

0
—1.110(—2)

0 (predicted)
C

2.276( —2)
1.138(—2)
4.438( —2)
2.219( —2)
1.8339( —1)
9.169(—2)

Total

2.276( —2)
1.123( —2)
4.438( —2)
2.219( —2)
1.8339( —1)
8.594( —2)

—1.010(—2)
—4.99( —3)

1.930( —2)
—9.07( —3)
—6.89( —2)
—3.68( —2)

10
i (electrons)

(13)

so that a flow of electrons into the dents at + and —z
produces a negative contribution to 8, again opposing
the prediction of the asymptotic model. We expect the
quadrupole to be more sensitive than the dipole to the
change in the confining wall, and the quadrupole
discrepancy to be correspondingly larger, as it is more
sensitive to the outermost part of the electron density,
which is where the dent in the confining wall is effective.

The Kirkwood approximation

a„=(4/n) g I (r„)I (14)

reduce the value of the dipole from the asymptotic predic-
tion.

The distortion-induced quadrupole may be described in
the same way. Consider a simultaneous outward move-
ment of the charges at z=+R in an octahedral array (as
in geometries 1, 3, and 5). This produces a potential
whose contours are illustrated in Fig. 5, the potential wall
now has two dents. Recall that

(where n is an effective number of electrons) may be used
to relate the changes in the polarizability to the changes in
the extent of the electron cloud. It suggests immediately
that the polarizability will be more sensitive than the
quadrupole moment and the discrepancies corresponding-
ly larger. Furthermore, on the basis of the dent in the
wall picture we expect (r„) to increase while ( r ~ ) and

(rz, ) remain constant (this is borne out by the calcula-
tions). We therefore expect that the discrepancy (5a&) in
the isotropic polarizability will be about one third of the
discrepancy in the anisotropic polarizability. This expec-
tation is quite accurately supported by the results.

These considerations suggest that the picture of an in-
crystal anion as confined in a spherical potential well may
be usefully extended for understanding the distortion-
induced properties. The asymptotic model would give
correctly the distortion-induced properties if the central
ion were a polarizable point. The dent in the wall picture
corrects this prediction for the extended distribution of
polarizable matter in the actual ion. It is perhaps worth
reemphasizing that the only environmental effects in these
CRYST calculations are electrostatic in origin. A model
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FIG. 3. Potential energy of an electron in a dipolar distortion
of an octahedral array. The charge at z =R has been displaced
to 1.1R. The figure is a slice through the xz plane with,
—3/2R (x,z(3/2R. Contours counting out from the center
at 0.974m, 0.875m, 0.775', 0.675m. The dotted circle is the con-
tour of the undistorted potential (Fig. 1). Spherical components
up to I =3 are included in the potential.

FIG. 4. Potential energy of an electron in a dipolar distortion
of an octahedral array. The graph is a section along the z axis
of Fig. 3. The extra curves are the spherical potential of the
undistorted array (Fig. 2) and the asymptotic potential (dotted
line).
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TABLE V. Calculated and predicted values of the CRYST polarizability anisotropy.

(a —a „) (predicted)
Configuration no. (a —a ) (calc)

—7.135( —2)
—3.535( —2)
—1.426( —1)
—7.007( —2)
—6.967( —1)
—3.188( —1)

—2.0258( —1)
—1.0129(—1)
—3.9490( —1)
—1.9745( —1)
—1.63192(0)
—8.1596(—1)

0
8.64( —4)

0
3.32( —3)

0
6.22( —2}

Total

—2.0258( —1)
—1.0042( —1)
—3.9490( —1)
—1.9413( —1)
—1.63192(0)
—7.5374( —1)

1.3123(—1)
6.507( —2)
2.5228{—1)
1.2406( —1)
9.3525( —1)
4.3490{—1)

of the real crystal must also incorporate the effects of
overlap.

IV. FIRST-SHELL EFFECTS INCLUDING OVERLAP

The effect of first-shell overlap compression on the
distortion-induced properties of the fluoride ion may be
evaluated from the values of these properties for a distort-
ed cluster of an F ion surrounded by six Li+ neighbors
in a lattice of point charges. Although we calculate the
property for the cluster as a whole we are interested in
decomposing this result to obtain the environmental effect
on the property for the F ion. In Refs. 10 and 18 we
described how the overlap compression effect on the in-
crystal polarizability could be found from such CLUS cal-
culations when the Li+ ions were disposed on a regular
octahedron defined by the first neighbor lattice sites.
Here we give the results when the octahedron suffers the
same distortions as specified in Table II; the electvostatic
perturbations of the central ion are thus the same as in the
last section, except that the nearest-neighbor ions are now
charge distributions rather than points.

As discussed in Refs. 10 and 18, a satisfactory represen-
tation of the in-crystal Li+ ion, at the Hartree-Fock level,
can be accomplished with just two orbitals. These orbitals
(of [s] and [p] type) are constructed from a large (10s,sp)
basis so as to give the Hartree-Fock ground-state wave

function [s] and the first-order perturbed wave function
in the presence of a uniform externally applied field [sp].
The ground-state electron density, energy, and polarizabil-
ity in this small basis are therefore the same as those cal-
culated with the uncontracted (10s,5p) set, and very close
to the Hartree-Fock limit.

The extraction of the environmental effect on the value
of a property of the F ion from the value of the property
of the F ion from the value of the property for the
whole cluster depends upon the fact that the electron den-
sity of the Li+ ion is extremely insensitive to its environ-
ment. Furthermore, with the basis sets we are using (see
also Ref. 10), the contributions to the calculated proper-
ties from basis set superposition error is very small, as
we shall show below. We may therefore write (taking the
polarizability as an example)

acLUs(F, 6Li ) =acLUs(6Li )+aDID(F

+atNT(F (15a)

where acL~s(F,6 Li ) is the directly calculated polariza-
bility of the distorted cluster described above.
ac„Us(6Li ) is the independently calculated polarizability
of an identically distorted cluster in which the central F
ion is replaced by a point charge. Because the environ-
mental effects on Li+ are so small, we expect that the
contribution to the polarizability of the (F,6Li+) cluster
arising from the Li+ ions and from the Li+-Li+ interac-
tions is the same as the polarizability of the distorted
6Li+ cluster. ' aD,D(F,6Li+) contains the contributions
to the cluster polarizability which arise from dipole-
induced dipole interactions between the fluoride ion and
the Li ions, i.e., from the interion terms which arise
when Eqs. (1) and (2) are iterated [note that the Li+-Li+
DID terms are contained within acLUs(6Li )]. The DID
terms are given by

TABLE VI. Calculated and predicted values of the isotropic
CRYST polarizability.

Configuration

no.

—, trH (calc) —, trH (predicted)

y:—total

I I

-1.0 -0.5 0.0 0.5 1.0

FIG. 5. Potential energy of an electron in a quadrupolar dis-
tortion of an octahedral array. As Fig. 3, except that both
charges at z =+A have been displaced to + 1.1R.

1

2
3
4
5

6

3.779( —2)
1.875( —2)
7.417( —2)
3.653( —2)
3.2169( —1)
1.4929( —1)

0
5.14( —4)

0
1.98( —3)

0
3.70( —2)

3.779( —2)
1.823{—2)
7.417( —2)
3.455( —2)
3.2169{—1)
1.129( —1 }
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6

[az&o(F,6Li+)]=2a„a„,+ g T &(rj)
j=l

6

+(a„)a . + g T~&(rj)T&~( —rj)

+O(aF (a~,+)') . (15b)

The polarizabilities are the nominal (CLUS) in-crystal po-
larizabilities and rj is the position of the jth Li+ ion from
the fluoride ion. The DID term of order aF (a~, +) (and

higher-order terms) may be neglected because of the small
value of the Li+ polarizability compared to that of F
Since (as we show below) basis-set superposition errors are
negligible, atN~ contains the effect of overlap compression
as well as the electrostatic crystal field effects which were
separately studied in the last section.

We again wish to compare the predictions of the
asymptotic model [i.e., Eqs. (5)—(7)] with the calculated
distortion-induced properties of the F ion. However, for
this we need values foi the ionic hyperpolarizabilities
(y, P) etc.) for the undistorted CLUS environment; these
differ from the CRYST values used in the last section be-
cause they are affected by overlap compression. We have
recently calculated values for these quantities using the
same basis sets as employed here, they are reproduced in
Table VII. (Note that while the values given here are use-
ful for the present calculation, they are not expected to ac-
curately represent the true properties of F because of the
limitations of the st basis; calculations in an extended
basis are also discussed in Ref. 28.)

Tables VIII—XI show the comparison between the cal-
culated values of the dipole moment, quadrupole moment
and the isotropic and anisotropic parts of the polarizabili-
ty, and the values predicted by the asymptotic model.
The calculated quantity presented in the table is the
difference between the value calculated for the F 6Li+
cluster and the 6Li+ cluster, it therefore contains the DID
contributions. We have estimated the basis-set superposi-
tion error contribution to these results by performing sub-
sidiary calculations in which the basis functions of the F
ion are retained (but not the electrons). The difference be-
tween the properties obtained in these calculations and
those found for the simple 6Li+ cluster should give an
upper bound (cf. Ref. 10) to the superposition errors in the
full results. These considerations show that even in the
worst case (the quadrupole moment), the basis-set super-
position errors in the calculated values which appear in
the table do not exceed 1%; in the other cases the errors
are considerably smaller. The only property for which the
DID contribution exceeds 1% is the polarizability aniso-

TABLE VII. CLUS polarizabilities (a.u. ) for the fluoride ion
in the [12s 8p Sd]/[1s /lp] basis.

0,'„=5.40

a„.+ =0.192

y = 149.0
B = —345
E, =4.1

C =439

tropy, in other cases this has been omitted from the tables.
The discrepancies between the predictions of the

asymptotic model and the ab initio results show many
similarities with those found in the CRYST calculations.
The discrepancies have the opposite sign to the asymptot-
ic predictions and the sizes of the discrepancies relative to
the predictions of the asymptotic model are again smallest
for the dipole and largest for the polarizability. For
geometry 2 the discrepancies are —65% (dipole), —103%
(quadrupole), and —146% (a2) of the asymptotic predic-
tions, each about twice the CRYST discrepancy. As in
the CRYST case the discrepancy in the anisotropic polari-
zability (a2) is about three times larger than that in the
isotropic polarizability (a|).

These similarities suggest a rationalization of the CLUS
results by extending the concept of the "derit in the con-
fining wall", which we introduced in the last section. As
discussed in Sec. II, overlap compression may be con-
sidered as the result of a pseudopotential well with walls
which rise steeply at the anionic radius. Outward move-
ment of one of the first shell cations produces a dent in
this pseudopotential wall, analogous to and in the same
sense as that in the electrostatic wall which we demon-
strated in Sec. III, so that the above-mentioned observa-
tions may be readily rationalized. Because the overlap
well is of smaller radius than the electrostatic well a given
displacement of the wall will produce a larger relative
effect—as noted above.

V. CALCULATIONS ON FIRST-SHELL
BENDING DISPLACEMENTS

In the two previous sections we have considered the ef-
fect of radial displacements of Li+ ions in the first coor-
dination shell; here we consider first-shell tangential dis-
placements. Calculations have been carried out on two
distorted configurations (7 and 8) which are displayed in

TABLE VIII. Calculated and predicted values of the CLUS dipole moment. The y contributions to p are smaller than the super-
position errors and have been neglected.

p, (predicted)
Configuration no. p, (calc)

3.637( —3)
7.387( —3)

9.68( —3)
1.899( —2)

4.3( —5)
1.66( —4)

6.0( —4)
1.17( —3)

Total

1.03( —2)
2.03( —2)

—6.7( —3)
—1.29( —2)
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TABLE IX. Calculated and predicted values of the CLUS
quadrupole moment. The B contribution is smaller than the su-

perposition errors and has been neglected.

Configuration no. 0 (calc) 0 (predicted)

—1.515( —3)
—7.42( —4)
—2.709( —3)
—1.294( —3)

1.857( —2)
9.17( —3)
3.620( —2)
1.762( —2)

—2.008( —2)
—9.91(—3)
—3.891(—2)
—1.891(—2)

and

2
(Xxy 3 Bxy xy Fxy

Oxy =2Cxy xyFxy

(16)

(17)

Fxy 5 768 X 10 ea p (18)

For geometry 8 the distortion-induced dipole moment is
given by

Fig. 6. It can be shown by a symmetry-coordinate
analysis of the displacements of the first neighbor shell in
the group O~ that the geometries 1, 2, 3, 4, 7, and 8 span
the distortions which, by symmetry considerations, may
activate the dipole moment (T~„), polarizability (A &g, Eg,
T2g), and quadrupole moment (Eg, T2g) of the fluoride ion
on its lattice site.

For geometry 7 the asymptotic model predicts

7
T)

8

2g

FIG. 6. Bending distortions of the octahedron. Geometries 7
and 8 are illustrated.

At a more detailed level the change in the shape of the
confining wall can account for the sign of the discrepancy
of the polarizability and quadrupole moment. Figure 7
shows the contours of the distorted potential for a pure
bending T2g distortion of an octahedron in which each of
the charges in the x,y plane moves through 3'. The
asymptotic potential rises quadratically (with respect to
the undistorted potential) along the (+x',y'=0) axis and
decreases quadratically along (x ' =0, +y'), where
x'=2 '~ (x+y) and y'=2 '~ (x —y). The quadrupole
and polarizability are related to the moments of the elec-
tron density in the x',y' frame by

and

p, =aF, +O((b. /R) )

F,= —6.940X 10 cap

(19)

(20)

and (Kirkwood approximation)

(21)

where, in each case, the displaced ions have moved 0.1

bohr off their lattice sites.
CRYST calculations have been carried out on

geometries 7 and 8. The results are compared with the
predictions of the asymptotic model [from Eqs. (16)—(20)
using the polarizabilities given in Table II] in Table XII.

The discrepancies between the calculated and predicted
values are much smaller than for radial displacements of
the same amplitude, they are —4% (dipole), —18%
(quadrupole), and —29%%uo (polarizability) of the asymptot-
ic prediction. It would be expected from the distorted
well ideas that the asymptotic model would be relatively
successful for tangential displacements as the confining
well is much less distorted than by a radial displacement
of the same amplitude.

(22)

so that the asymptotic predictions are, respectively, nega-
tive and positive. Inside the circle of radius R the asymp-
totic potential agrees with the true one, but outside it
overestimates the difference between the distorted poten-
tial and Vp. The difference between the true potential and
the asymptotic one (i.e., the dent in the wall potential) cor-
responds to an outwards movement of the wall along +y'
and an inwards movement along +x'. The dent is there-
fore responsible for an increase in ((y') ) and a decrease
in ((x') ), relative to the values of these quantities with
the asymptotic potential, and consequently to positive and
negative discrepancies in the quadrupole and polarizabili-
ty, respectively.

TABLE X. Calculated and predicted values of the CLUS polarizability anisotropy. The y contribu-
tions are less than the superposition error and have been omitted.

Configuration no. (o: —o. ) (calc)
(a —a ) (predicted)

DID B

2.508( —2)
1.237( —2)
4.866( —2)
2.373( —2)

—8.71(—3)
—4.36( —3)
—1.710( —2)
—8.53( —3)

—7.28( —2)
—3.61(—2)
—1.419(—1)
—6.98( —2)

1.066( —1)
5.29( —2)
2.076( —1)
1.020( —1)
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TABLE XI. Calculated values of the CLUS isotropic polari-
zability. Both the y and second-order DID contributions are of
the same size as the superposition errors and are neglected.

Configuration no.

3.835( —2)
1.907( —2)
7.548( —2)
3.729( —2)

a„~=+0.0416 a.u. (CLUS),

O„y ———0.0157 a.u. (CLUS) .

(23)

(24)

DID and BSSE corrections to these properties were negli-
gible. The asymptotic predictions [Eqs. (16)—(18)] require
values for Cxyxy and Bxy xy for the CLUS ion. These are
not available, but assuming that the degree of anisotropy
in the CLUS and CRYST tensors is the same, i.e.,

We have also carried out a single CLUS calculation on
geometry 8, in order to check the effect of overlap on the
properties induced by bending displacements. After
analysis in the usual way [cf. Eq. (15) and the subsequent
discussion], the induced properties were found to be

FIG. 7. Potential energy of an electron in a T2g distorted oc-
tahedron. The figure is a slice through the x-y plane of a dis-
tortion like geometry 8, where each equatorial cation has moved
through 3'. The short arrows show the cation displacements
and full and dotted axes show the original and rotated principal
axes of (see text). Contours as Fig. 3.

Cc vs/CcRvs =Ccrvs/CcRYs
xy, xy xy, xy xx,xx xx, xx (25)

and

g CLUSyg CRYST g CLUS y~ CRYST
xy, xy xy, xy xx,xx xx,xx

we can derive asymptotic predictions of

waxy
——+0.079, 6(x y

———0.037,

0 y
———0.040, 5t9=0.024 .

(26)

(27)

(28)

Thus the discrepancies (relative to the predicted values)
are both larger in magnitude (both are —47%) than in the
CRYST calculations and of the same sign. This is to be
expected from the change in shape of the overlap contri-
butions to the confining wall. The change will favor the
movement of electrons into the region vacated by the dis-
placed cations, that is, ((y') ) will be increased and
((x') ) decreased. This is a change in the same sense as
produced by the dent in the electrostatic wall responsible
for the discrepancy in the CRYST results.

VI. SECOND- AND THIRD-SHELL DISPLACEMENTS

We have performed a limited series of CRYST calcula-
tions in which ions in the second shell (i.e., the first shell

pz
xy
Oy

—0.048 72 —0.050 66
0.152 71 0.2153

—0.037 90 —0.046 29

0.001 94
—0.0626
+ 0.008 39

TABLE XII. Calculated and predicted quantities for
geometries 7 and 8.

geometry Property Calculated Predicted Discrepancy

of anion neighbors at ~2R) and the third shell (the second
shell at v 3R) are displaced from their lattice sites. These
calculations were undertaken to examine how rapidly the
purely electrostatic effects converge to the predictions of
the asymptotic model as the distance between the dis-
placed site and the central fluoride ion is increased.

In the second shell, calculations were made with the
charge at (R,R, O) displaced to (R+6, R+6, 0) with
5=0.035 a.u. (geometry 9) and 0.070 a.u. (geometry 10).
These displacements change the distance between this
charge and the fluoride ion by 0.05 and 0.1 a.u. , respec-
tively, so that the magnitudes of the distortion-induced
properties may be directly compared with geometries 2
and 4 of Table II. In the third shell the ion at (R,R,R)
was displaced to (R+6, R+b„R+b,) with b, =0.029
a.u. (geometry 11) and 5=0.058 a.u. (geometry 10) which
again change the distance between this charge, and the
central ion by 0.05 and 0.1 a.u. The resulting small
displacement-induced properties of the F ion are given
in Table XIII.

The asymptotic model [Eqs. (5) to (7)] has been used to
predict the distortion-induced properties as in previous
sections of this paper. As in the first shell CRYST calcu-
lations we find that for the dipole, quadrupole, and aniso-
tropic polarizability the asymptotic prediction is opposed
by an additional contribution of opposite sign. The ori-
gins of this discrepancy may be successfully rationalized
by considering the change in the shape of the confining
potential in the manner discussed above, that is the sign
and magnitude of the discrepancy and the relationship be-
tween the discrepancy in different components of the
same tensor may all be predicted. Consider, for example,
the behavior of the components of the polarizability in
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TABLE XIII. Properties induced by distortions in second and third shells in the point-charge model.
Geometries 9 to 12 are defined in the text.

Property

a&

Q2

+ay

px
0
O„y

—1.507( —3)
—1.010(—2)
+ 8.294( —3)
—3.168( —3)

1.326( —3)
—1.970( —3)

Geometry
10

—2.701( —3)
—2.018( —2)
+ 1.649( —2)
—6.268( —3)

2.636( —3)
—3.915(—3)

—2.11(—4)
0

—2.767( —3)
+ 1.447( —3)

0
+ 6.24( —4)

12

—5.35( —4)
0

—5.432( —3)
+ 2.860( —3)

0
+ 1.222( —3)

geometry 9. In the coordinate system which coincides
with the principal axes of the distorted tensor,

(x',y', z')=(2 '~ (x+y), 2 '~
( —x+y),z),

the discrepancies are

5a„„=—3.92( —3), 5a~ ~
= —8. I( —4)

5a, , =2.2( —4);
the discrepancy is thus predominantly in the x' com-
ponent (i.e., along the line of the distortion). Outward
movement of a negatively charged ion in the second shell
creates a bump in the confining wall of the electrostatic
potential (i.e., an inward movement of the wall), thus we
expect ((x') ) to be decreased by this effect leading to a
negative discrepancy.

As we shall argue below, the actual values of the elec-
trostatic discrepancies are of limited significance. Far
more important is the fact they they appear to be becom-
ing small quite rapidly for displacements in the more dis-
tant coordination shells. As shown in Table XIV, where
the percentage ratio of the discrepancy to the asymptoti-
cally predicted value for a radial displacement of a given
size is given, by the time we reach the third shell the di-
pole, quadrupole, and anisotropic polarizability are well
described by the asymptotic model. The single exception
is the isotropic polarizability for which the asymptotic
prediction is always extremely low; however, the absolute
size of the third shell distortion-induced isotropic polari-
zability is itself very small (about 2/o of the first shell ef-
fect).

We have not performed any calculations from which
the overlap effects on the properties induced by second-

and third-shell distortions may be evaluated. However the
CLUS calculations described in previous sections enable
us to arrive at some qualitative conclusions. It is useful to
consider separately two aspects of the overlap problem.
First, the overlap with the first shell ions will alter proper-
ties induced by second- and third-shell distortions through
electrostatic interactions. The asymptotic contributions
will be altered, because the distortion-induced fields act on
the CLUS polarizability. Also the size of the electrostatic
discrepancies calculated above will be reduced, because
the first shell overlap effects will prevent the electrons of
the anion from penetrating to the region r ~ MZR, which
is where the dent in the confining electrostatic potential is
active. We believe that the electrostatic discrepancies will
become insignificant by virtue of this effect. Second, we
refer to the influence of overlap with the second- and
third-shell ions themselves. For the third shell such ef-
fects are unlikely to be large, because of the short range of
the overlap interactions and the overlap compression by
the first two shells. However, for the second shell overlap
effects could be important, particularly when a large
anion and a small cation are involved. For LiF we con-
cluded, ' because of the good agreement between the cal-
culated in-crystal polarizability of F with the experimen-
tal value, that the second-shell overlap effects were much
less important than the first-shell ones included in the
CLUS calculations. As we have seen above (Sec. III—V),
for first-shell distortions the overlap and electrostatic con-
tributions to the discrepancy between calculation and
asymptotic prediction act in concert. For the second shell
this will not be so. For an outward displacement of an
ion in the second shell the second-shell overlap effects will
favor a movement of electrons in the direction of the dis-
placement and consequently an increase in (for example)
the component of the polarizability in this direction. As
we have seen above the electrostatic discrepancy for this
component is negative.

Property

&xy

Shell 1

65

22
44

Shell 2

20
16

Shell 3

TABLE XIV. Convergence of electrostatic distortion-induced
properties to the asymptotic limit. The figure shown is the
discrepancy (calculated-asymptotic value) as a % of the asymp-
totic value for small radial displacements.

VII. A MODEL FOR
THE FLUCTUATING POLARIZATION

We have seen in the previous sections how the
distortion-induced dipole, quadrupole, and polarizability
of F in LiF can be satisfactorily attributed to two dis-
tinct mechanisms. The asymptotic model accounts for
the polarization which would be induced if the anions
were polarizable points, and the discrepancy between this
model and reality may be assigned to the change in shape
of the confining potential surrounding the anion, which is
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TABLE XV. Analysis of properties induced by first-shell distortions in terms of symmetry coordi-
nates. All properties in a.u. Symmetry coordinates are in bohr-radius units. Quantities in parentheses
are estimated. CRYST and CLUS are the ab initio results and CRYST asym, CLUS asym are the
asymptotic models at these levels. 5=CLUS —CLUS asym.

Derivative

(Bp, /BS, )

(Bp, /BS, )

(Ba ~/as, )

[B(a —a ) /BS„]
(Ba„ /BS„)
(ae /as, .)

(BO„ /BS„)

CRYST

+ 0.302
—0.654
+ 0.945
—1.235
—1.450
+ 0.213
+ 0.360

CRYST asym

+ 0.389
—0.680
+ 0.002
—3.594
—2.044
+ 0.390
+ 0.439

+ 0.101

+ 0.955
+ 0.600
—0.395
—0.029
+ 0.149

CLUS asym

+ 0.296

0.000
—1.292

( —0.75)
0.330

(+ 0.38)

—0.195

+ 0.955
+ 1.892
—0.320
—0.359
—0.111

sensed by its distributed electron density. The confining
potential is due to both electrostatic and overlap interac-
tions. We have shown that for first-shell distortions both
effects act in concert, but that overlap tends to dominate.
The dent in the confining potential is the overwhelmingly
dominant cause of the distortion-induced isotropic polari-
zability; this is supported by the early work of Hardy '

who successfully calculated the polarized light scattering
spectrum of crystalline NaF with a semiempirical model
for the fluctuating polarizability which included only
such effects. For first-shell distortions the asymptotic
model is much more successful for bending than stretch-
ing motions. We have shown directly that the properties
induced by second- and third-shell distortions via purely
electrostatic interactions converge quite rapidly to the
asymptotic model predictions. We also argued that over-
lap effects will tend to improve still further the asymptot-
ic predictions outside the first shell.

We now turn to the problem of how to make use of
these observations in building an explicit model for the
fluctuating polarization which is computationally tract-
able within the context of a computer simulation. The
most significant finding is that the asymptotic model ap-
pears to be reliable for all but first-shell distortions. This
suggests that we build a computational scheme by supple-
menting the equations which prescribe the asymptotic
predictions [i.e., Eqs. (5)—(7)] with additional terms which
are operative only for the first shell of cations around an
anion. The remaining problem is then to use our results
to parametrize suitable expressions for the discrepancies
between the first-shell distortion-induced properties we
have calculated and the asymptotic model predictions.

The results that we have presented in Sec. IV and V for
weakly distorted lattices enable us to specify the linear
response of dipole moment, quadrupole moment, and po-
larizability with respect to local distortions from the per-
fect crystal lattice. One way to collect this information is
in terms of symmetry coordinates of the (F )(Li+)6 clus-
ter. These coordinates are defined in terms of r;, the posi-
tion vector of the ith Li+ ion from the F origin and

P,J.
——cos '(r; rj /r;rj)..

as the nonredundant set

S1(A 1g) =(1/v 6)(5r1+5r2+6r3+5r4+5r5+5r6),

S24(Eg ) =(1/v 12)(25r1+25r2 —5r3 5r4 5r5 —5r6)

(29)

(30)

S3,( T1„)= (1/V 2)(5r1 —5r2),

S4,( T1„)=(1/Wg)(523+5024+5425+5526 5413

—54 14
—5415—5016)

S5 ( T2g) 2 (5035 5036 5045+ 5446)

S6z( T2u ) ( 1/~g)(5015+ 5416+54'23+ 54'24 5413

5014 5025 5026)

(31)

(32)

(33)

(34)

5a ~= g [5 ~(r;)+ , (3r; r; r; 5 f3)r; b(r;—)], —
I', ES

(35)

where each pair contribution to 5™a is a symmetric
second-rank tensor depending only on the interion vector
r;. The sum runs over the six cations in the first shell
around a fluoride ion. Noting that 5a vanishes when all
first-shell ions are on their lattice sites and using the defi-
nitions of the 5; with the 6 column of Table XV, we find

A T&g rotational redundancy has been removed.
Table XV lists the derivatives of the properties with

these distortion coordinates. Each value is given at
CRYST and CLUS levels with the asymptotic predictions
at each level. The final column gives the discrepancy be-
tween the CLUS ab initio and asymptotic derivatives and
is thus the effect of the dent in the wall mechanism on the
property.

As an illustration of how the calculations in the present
paper may be used to set up a model for computer simula-
tion, we consider the fluctuating polarizability. For ease
of evaluation the terms which supplement the asymptotic
model should be written as sums of pair functions, each of
which depends only on the distance between the central
F and one Li+ ion. A general representation of the
discrepancy in the distortion-induced polarizability of a
fluoride ion within this constraint is
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a (R)=0,
Qa 1 35cr )

ar „, v6 aS,

2, 85a„
b (R)= —— =+2.1)& 10

3 BS5,

=+3.9~10-', (36)

(37)

r)b 1 = —7.28X10 ~,
"r)r ~ 3 3 BSz,

(38)

all in atomic units.
Thus for small displacements we have specified the

a(r) and b(r) functions in Eq. (35). A model consisting
of the asymptotic predictions for all ion pairs plus Eq.
(35) for the first six nearest neighbors should be sufficient
for a practical calculation of the light-scattering spectrum
of crystalline I.iF. In a crystal the first cation shell is well
defined and the thermal distortions of the ions from their
lattice sites are small enough for the linear a (r) and b (r)
functions to be useful. The electrostatics-only results of
Tables V and VI show that the induced polarizability is
linear in the displacement up to about 0.5 bohr.

In the melt or in a crystal in which cation diffusion is
important, however, the model will need modification as
very large polarizability fluctuations will occur as cations
in the first shell exchange with others outside it. (We en-
visage a working definition of the first shell as the six
nearest cations. ) It is implicit in our expectation that the

distorted crystal provides a reasonable model of the melt
that such events are not too frequent, but they certainly
occur in monovalent melts and it is desirable to find
forms for a(r) and b(r) with which fluctuations are
quenched.

Some indications of the general shape of the a (r) func-
tion are available from calculations of (F ) in the alkali
fluorides' and of the polarizability of an atom in a spher-
ical box. At both large positive and negative r the slope
(da/dr) is expected to fall to zero. For large r the overlap
contribution to a is expected to fall off rapidly and H
should be predicted accurately by CRYST-type calcula-
tions. A cutoff function could be fitted to the variation of
the CRYST a (F ) with lattice parameter for the alkali
fluorides. ' Similarly, calculations on distorted CRYST
lattices could be used to fit b(r). An even simpler cutoff
procedure would be to replace the total polarizability by o;

(free F ) for displacements greater than some large value.
If a(r) were linear, with the slope calculated above, it
would reach the free ion CHF value at r =2.25 or
R (Li-F) =6 bohr.

Allowing for these modifications we believe that the re-
sults of the present paper provide the necessary parame-
ters for a realistic simulation of the light-scattering spec-
tra of LiF crystals and melt. More important, we have
demonstrated by direct calculation the physical mecha-
nisms underlying the fluctuating polarization in ionic ma-
terials and which are applicable to a wide range of
distortion-induced phenomena.
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