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Pressure dependence of elastic constants of (Vt „Cr„)203at 296 K

H. Yang and R. J. Sladek
Department ofPhysics, Purdue Uniuersity, 8'est Lafayette, Indiana 47907

H. R. Harrison
Materials Research Laboratory, Purdue Uniuersity, 8'est Lafayette, Indiana 47907

(Received 19 November 1984)

Transit times of 30-MHz ultrasonic waves in (Vl „Cr„)203 single crystals, with nominal (actual)
x values of 0.015 (0.013) and 0.030 (0.028), were measured at 296 K using hydrostatic pressures up
to 4 kbar for x =0.03 and 1.2 kbar for x =0.015. The results were used to deduce 1-bar values and
pressure derivatives of the elastic constants. Two of the elastic constants, C» and C», have unusual
negative pressure dependences resulting in both the A.4 elastic eigenvalue and the bulk modulus 8 de-

creasing strongly with increasing pressure. The behavior of A,4 indicates that pressure tends to make
the lattice unstable toward a deformation which increases the c/a ratio without changing the crystal
symmetry. This is consistent with the structural change at the pressure-induced, paramagnetic
insulator-to-metal transition. For (VQ97CIQQ3)203 we deduce a negative elastic y which disagrees
with its positive thermal y whereas these y s agree with each other in V203. These results are due to
the elastic y having strong negative contributions from some acoustic modes in certain directions in

(Vp 97Crp Q3)203 but not in V203.

I. INTRODUCTION

The mixed transition-metal compound (V& Cr„)@03
has been a subject of numerous investigations' in the past
decade. Much of the work has been concerned with the

. electrical, structural, magnetic, thermal, and optical prop-
erties to characterize the nature of several phase transi-
tions encountered in this system. From the electrical-
resistivity measurements as a function of temperature
and pressure for various Cr concentrations in V203,
the phase boundary of the higher-temperature metal-
insulator transition has been established as part of a gen-
eralized temperature-composition-pressure phase dia-
gram involving at least three different phase transi-
tions. At room temperature, this first-order metal-
insulator transition was found to occur at a critical com-
position of x -0.01 with concomitant discontinuous
changes in lattice parameters ' and interatomic dis-
tances, but no change in the R3c crystal symmetry. It
was also found that application of hydrostatic pressure to
(V& „Cr„)203 crystals with x )0.01 transforms them
from the insulating phase into a metallic phase at a pres-
sure which depends on the Cr concentration.

The pressure dependences of elastic constants at low
pressures have provided valuable information about lattice
instabilities and have been used to estimate the pressures
at which structural phase transitions occur in many crys-
tals. ' The (V~ „Cr„)203 system provides an excellent
opportunity to investigate elastic behavior associated with
a pressure-induced, insulator-to-metal (IM) transition
which is not accompanied by a change in crystal symme-
try. It should be noted that the study of elastic properties
in this system has thus far been limited to pure V203, '

due to the difficulties in growing (V& „Cr )203 single
crystals with relatively large dimensions and good quality

(i.e., without voids, cracks, etc.) which are required for ul-
trasonic investigations. The crystal-growth problem has
been overcome by using a crucibleless, skull-melting tech-
nique' with a controlled CO2-CO atmosphere to produce
stoichiometric single crystals as lar0e as 20 & 10& 10
mm.

When appropriate single-crystal samples suitable for ul-
trasonic, velocity measurements became available, we be-
gan an investigation of the pressure dependence of the
elastic constants for (V& Cr„)203 with nominal x values
of 0.015 and 0.03. If the Cr substitution does indeed scale
linearly with the effective negative pressure as suggested
from empirical findings (i.e., 1 at. %%uoCr- —3.6kbar),
the critical pressures for the IM transition at room tem-
perature would be about 1.8 and 7.2 kbar, respectively, for
x=0.015 and 0.03. To avoid possible damage to our
x =0.015 samples at the IM transition, we employed pres-
sures no larger than about 1 or 1.2 kbar and measured the
pressure dependences of only C&~, C33, and C4q moduli.
These precautions were taken because for the x=0.015
sample with [100] faces the ultrasonic signal disappeared
near 1 kbar, and was not recovered when the pressure was
released. Subsequent microscopic examination of the
sample revealed visible cracks similar to those observed at
the IM transition as a function of temperature. ' Howev-
er, we were able to determine the pressure dependences of
all the elastic constants for the x =0.03 sample up to 4
kbar.

II. EXPERIMENTAL PROCEDURE

Single-crystal samples of (V& xCr„)&03 with nominal x
values of 0.015 and 0.03 were prepared from the boules
grown in the Central Materials Preparation Facility of the
Purdue Materials Research Laboratory. The actual Cr
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concentrations of the crystals were analyzed' by atomic
absorption spectroscopy and were found to be slightly
smaller than the corresponding nominal values, namely
0.013 as compared to 0.015 and 0.028 as compared to
0.030. In the present paper the nominal concentrations
will be used to specify x. The samples were oriented to
within —, using I aue x-ray backreflection and polished so
as to have pairs of flat faces perpendicular to the three-
fold c axis, twofold a axis, and a direction 45' from the c
axis in the mirror plane. The opposite faces were parallel
to within 0.01'. The densities of the samples were deter-
mined by a liquid-immersion method to be 4.95 and 4.98
g/cm, respectively, for x =0.015 and 0.03, in good agree-
ment with the value of 4.96 g/cm deduced from x-ray
work '8

Transit times of various 30-MHz ultrasonic waves were
measured at 296 K by means of the standard pulse-echo-
overlap technique' as a function of hydrostatic pressure
up to about 4 kbar for the x =0.03 sample and up to 1.2
kbar for the x =0.015 sample. Transit-
time —versus —temperature data near room temperature
were also measured and used to correct the small effect of
a slight temperature drift which occurred during each
pressure run. Further experimental details on the pressure
apparatus and bonding of the quartz transducers can be
found elsewhere.

III. DATA ANALYSIS AND RESULTS
The equations relating the directly determined moduli,

pu; (i = 1—7), to the six independent elastic constants,
C&, are given in the literature. ' ' ' It is noted, however,
that we used an opposite sign in front of each C&4 term in
the equations for CT and C~T moduli because the direc-
tion of wave propagation for these moduli was identified
in the present study, following the convention adopted by
Wachtman et al. , as (0, —1/v 2, I/~2), which is dif-
ferent from the (0, I/V 2, I/v 2) direction employed in
Ref. 13. For converiience we also note that the angles be-
tween the basal plane and the plane of polarization is —7
for the fast transverse mode and 83' for the slow trans-
verse mode in the case of the x =0.03 sample.

To determine the elastic-stiffness moduli as a function
of pressure from our echo-overlap frequency data, we
used equations taken from Ref. 23. It should be men-
tioned that for this calculation previous investigators
employed an incorrect relation between the adiabatic and
isothermal compressibilities. This is usually of little prac-
.tica1 consequence since the correction is extremely small
because the adiabatic and isothermal compliances ordi-
narily differ by less than 1%. To check on the situation
in our samples we note that the correct relation is

p) (~()
——p) (~~)+a) (~~)avT/Cp,

T S (1)

p) (
~ ~

) and pj ( ~( ) are the isothermal and adiabatic
compressibilities, respectively, perpendicular (parallel) to
the c axis; az |~~~

is the thermal-expansion coefficient per-
pendicular (parallel) to the c axis, a) ——2a) +a~~, and Cp
is the heat capacity per unit volume at constant pressure.
For the x=0.03 crystal, for example, uz ——10&(10 /K,
a~~ =4&& 10 /K, and Cz ——108 J/mol K, together with

pf and p)( of 2.027X10 ' and 1.017&&10 ' cm /dyn
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FIG. l. Elastic-stiffness moduli C», C33 and C44 of
(VQ 97CIQ Q3)$03 as a function of hydrostatic pressure.

8.95—

8.85
Eo 790

0

0.97 C 0.03 ) 2 03

O
7.80

CV

7.70—

5.70 — CsT

5.65 I I

I 2 3
PRESSURE ( k bar )

FIG. 2. Elastic-stiffness moduli CFT, C~T, CT, and CsT of
(VQ 97CrQ Q3)203 as a function of hydrostatic pressure. The sub-
scripts stand for fast transverse, quasitransverse, transverse, and
slow transverse, respectively.

(calculated from the adiabatic elastic constants using the
relations given by Nye ), results in the values of p)
and p~~ about 1.0% and 0.8% larger than that of the
respective adiabatic ones.

The adiabatic elastic-stiffness moduli determined for
the x =0.03 sample are plotted in Figs. 1 and 2 as a func-
tion of hydrostatic pressure. All the pressure dependences
are seen to be linear within experimental error. The solid
lines represent the linear, least-squares fits to the data
points. The values of six independent elastic constants
C&„and their pressure derivatives BC„,/BP, where
@v=11, 33, 44, 12, 13, and 14, were determined from
(pu; )p o and B(pu; )/BP, where i =1—7, by fitting,
respectively, to the seven equations mentioned previously
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with

(e
~
U;) =a;(e~+e2)+P;e3

2C&3

A,; —C33

(2)

(3)

where i' =3,4 and U; is an eigenvector associated with k;
in a space spanned by strain components ej (j = 1—6 in
Voigt s notation). Since A, 3 & C33 and A,4 & C33 i =3 is
essentially a dilatational deformation, while E'=4 corre-
sponds to a stretching strain of tetragonal symmetry, con-
sisting of extension (compression) along the threefold c
axis and a uniform lateral compression (extension) in the
basal plane perpendicular to the c axis, which changes the
c/a ratio.

The pressure-induced decrease of the stability of
( VQ 97CrQ Q3 )203 with respect to such a stretching defor-
mation, indicated by the negative value of dA, 4/BP, is con-
sistent with the fact that the pressure-induced IM transi-
tion proceeds without change in the crystal symmetry. In
fact, x-ray-diffraction measurements as a function of
pressure on a powdered sample of (V1 „Cr„)105 with
x =0.04 revealed a discontinuous drop and rise in the a
and c lattice parameters, respectively, at about the pres-
sure where a resistivity discontinuity of more than 2 or-
ders of magnitude was observed. '

The softening of k4 with increasing pressure in

(VQ 97C1Q Q3)203 can be seen to be caused primarily by
BC»/dP and BC&2/BP being negative in this material (in
contrast to V203) since, using the fact that
(C()+C)2—C33) «SC», the expression for A4 in Ref.
14 can be approximated to give

aX, 1 aC„aC„ac„aC„
+ + —2 2

aP 2 OP
+ aP +

OP aP
(4)

In the case of (VQ 9$5CrQ Q»)20&, as can be seen from Table
I, sufficient data are lacking to determine the value of
BA,4/BP. Nevertheless, from the above considerations it
seems reasonable to expect that the more negative value of
BC]&/BP in this sample than in the x=0.03 sample may
result in a more negative BA,4/BP for x=0.015 than for
x=0.03 if BC&2/BP-BC»/r)P, as is true in V203 and
(VQ 97C1Q Q3)205. This suggests that dA4/dP generally be-
comes more negative as the phase boundary is approached
from the insulating side by decreasing x.

The slope of the IM phase boundary can be estimated
from where the ultrasonic echoes disappeared, i.e., at a
pressure of about 1 kbar at room temperature in the
present work (see Sec. I) and at a temperature of about
250 K at atmospheric pressure in Ref. 16, to be
dT/dP-50 K/kbar. This is in fair agreement with the
value of 40 K/kbar determined from electrical-resistivity
measurements.

It can also be seen from Table I that B has a negative-
pressure dependence for the x =0.03 sample —a new
feature which has never been reported, to the authors'
knowledge, for any crystalline solid. The only known ex-
ample seems to be the bulk modulus of fused SiOz,
which decreases strongly with pressure up to 20 kbar,
where a collapse of the open oxygen network to a more

dense modification occurs. Although B is not one of the
eigenvalues of the elastic-constant matrix for a crystal
with 3m symmetry, the unusual softening of B with in-
creasing pressure observed in (VQ9'7CrQQ3)203 may be a
precursor to the volume collapse of —1% which accom-
panies the discontinuous change in the c/a ratio at the
IM transition.

B. Elastic Griineisen parameter

Anharmonic properties of solids are customarily
described in terms of the Gruneisen parameter y defined
by

y=avB /Cp,S (5)

where o.v is the volumetric thermal-expansion coefficient,
B the adiabatic bulk modulus, and Cz the heat capacity
per unit volume at constant pressure. In the quasihar-
monic approximation, in which atomic vibrations of a
crystal are treated as a set of harmonic oscillators whose
frequencies are volume dependent, Eq. (5) can also be ex-
pressed as a weighted average of the mode gammas

y; = —(1) 1nco;/8lnV) as

gc, ,
i=1

(6)

where k is Boltzmann's constant and OE ——465 K for
T &230 K, we shall assume in view of Eq. (6) that

y = [y,~(OD/T)+4y, pE(OE/T)],31Vk

5Cv

where y„and y,~ are average acoustic- and optical-mode
y s, respectively. In the continuum approximation, y„ in

where C; is the heat capacity of the ith normal mode with
frequency ~; and the summation is over the 3N normal
modes of the crystal. The average in Eq. (6) can be re-
duced, in the anisotropic elastic continuum approxima-
tion, to a directional average of the acoustic modes (in the
long-wavelength limit) whose mode y's can be deduced
from the elastic constants and their pressure derivatives.

The thermal y, determined from Eq. (5), has been
found to agree with the elastic y, computed from Eq. (6)
in the continuum model, not only at temperatures much
less than the Debye temperature 8D, but also when
T) OD for a number of cubic ' and hexagonal ' crys-
tals. It is, however, obvious that the elastic continuum
approximation would be valid in the high-temperature
limit only when the optical modes and the acoustic modes
in the dispersive region have the same mode y's as the
low-frequency acoustic modes. Furthermore, in the case
of (V) Cr„)203 crystals, which have relatively high De-
bye temperatures (calorimetric OD =580 K for pure and
Cr-substituted V203), it is expected that not all the
modes are completely excited at room temperature, so
that they do not make equal contributions to the sum in
Eq. (6). However, since the experimental heat capacity of
(V& „Cr„)20& can be reproduced by empirically fitting to
a combination of Debye (D) and Einstein (E) functions
as4'

Cs —Cv sNk[D(OD/T) +——4E(OE/T) ], -
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V2 0~
TABLE II. Room-temperature values of thermal and elastic

Gruneisen parameters and the average optical mode y for V203
and (VQ 97C 0 Q3)203.

V203
~ V0.97Cr0.03 )203

1.61
1.32

bj elas

1.64
—0.78

C

fop

1.60
1.85

P = -3O'

I I

30 60 90 0
e
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8=9o
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'Deduced from thermal-expansion coefficients: References 3
(V/03) and 28 [(VQ 97C10 Q3)$03].
Deduced from elastic data of Table I.

'Estimated from Eq. (8).

FIG. 4. Acoustic-mode y~ (X=1,2 for transverse modes,
A, =3 for longitudinal mode) deduced from elastic data along the
three boundaries of the triangular zone formed by the {0,0,1),
(W3/2, —2, 0), and (W3/2, z, 0) directions for V203.

Eq. (8) can be written in integral form as

1y„-y,I„—— g f y7„(8,$)dQ,
127T

(9)

where y1(8,$) is the mode y for an acoustic mode with
polarization index A, and wave vector q in the direction of
(8,$) and dQ=sin8d8dg. It is therefore quite interest-
ing to see how the thermal and elastic y's differ from each
other for the (V1 „Cr„)203crystals, since any appreciable
difference between the two can be largely attributed to the
contribution from optical modes according to Eq. (8).

The mode y's for the acoustic modes in crystals of tri-
gonal symmetry can be deduced from the elastic constants
and their pressure derivatives by means of the relation

r

y7„(q)=B (l +m )p1+n pll +T 2 2 T 2 T 1 1 Olney'g

2 2 BP

{Vo97Cro. oz)2 0

(10)

where B =(2p1+pll) ' is the isothermal bulk modulus,
(l, m, n) are the direction cosines of q, and W1 denotes the
elastic modulus associated with the mode (A, ,q). A com-
puter program was written for the Purdue CDC6500
computer to calculate y1(q) as well as y,I„ in crystals of
trigonal symmetry. %'ith the elastic constants and their

pressure derivatives as input data, the program computes
8'~ and BR'~/BP in any direction of q by calculating the
eigenvalues of the appropriate Christoffel tensors. ' It is
noted that, in view of the symmetry of the trigonal struc-
ture, it suffices to carry out the necessary numerical in-
tegration of y1(8,$) in Eq. (9) over only the directions
confined to —,', of a sphere bounded by three directions,
(0,0, 1), (v 3/2, ——,, 0), and (3/3/2, 2, 0), i.e., 0 & 8 & 90',
—30' & (t & 30'.4'

The above program was applied to V20q and
( VQ 97CI Q Q3 )$03 The resulting y1 for these crystals are
shown in Figs. 4 and 5 along the three boundaries of nu-
merical integration mentioned above, where A, =1 and 2
correspond to transverse modes and A, =3 is the longitudi-
nal mode. In Table II the values of the Gruneisen y's
computed from thermal-expansion data are compared
with the y's computed from elastic data. Also given in
Table II are the values of average optical-mode y's es-
timated from Eq. (8). It is apparent that for V&03 the
corresponding thermal and elastic y's are in excellent
agreement, suggesting, in turn, the near equality of the
average acoustic- and optical-mode y's. In the case of
( VQ 97C1Q Q3 )203 however, there is a large discrepancy be-
tween them. In fact, y,&„ is even negative, implying that
y,~ is larger than y,h. It can be seen from Fig. 5 that the
negative y,I„in (VQ 97C1Q Q3)203 is caused by negative con-
tributions from the A, =l transverse mode and the A, =3
longitudinal mode. These are due to the A, =1 mode hav-
ing a deep minimum for 8 between 40' and 50', apparently
because of the negative pressure dependence of C12T (see
Fig. 2), and to the A, =3 mode becoming increasingly neg-
ative as the polar angle 8 approaches 90' because of the
negative pressure dependence of the C~~ elastic constant.
It is interesting to note that the softening of the CQT
modulus with pressure has been previously observed in
Ti103 and was attributed to an inherent instability of the
cation sublattice in the corundum structure. It is not
clear, however, why the CoT mode softens with pressure
in (VQ 97C1Q Q3)203 but not in pure V203, ' nor in
(Ti1 „V„)203.

r3 V. CONCLUSION

-60
$=-so
I I I

30 60 90 0 30 60
8 8

8= eo
I

90 -30 0 30

FIG. 5. Acoustic-mode y's for (v097crQQ3)2o3 shown in the
same way as in Fig. 4.

Pressure derivatives of elastic constants are determined
for (VI „Cr„)203 with x=0.015 and 0.03. The strong
negative pressure dependence of the A,4 elastic eigenvalue
derived therefrom implies that pressure causes a decrease
in the stability of the corundum-structured lattice that is
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consistent with the abrupt increase in cia ratio which
occurs at the pressure-induced, insulator-to-metal transi-
tion. The disagreement between the thermal and elastic
y's of (VQ 97clQ Q3)203 is due to strong negative contribu-
tions from some of the long-wavelength acoustic modes.

ACKNOWLEDGMENT

This work was supported by the National Science
Foundation via Materials Research Laboratory Program
Grant No. DMR-80-20249.

For a review of various properties of (V] „Cr„)203,see, for ex-

ample, J. M. Honig and L. L. Van Zandt, in Annual Review of
Materials Science, edited by R. Huggins, R. H. Bube, and R.
W. Roberts (Annual Reviews, Palo Alto, California, 1975),
Vol. 5, p. 255.

D. B. McWhan, T. M. Rice, and J. P. Remeika, Phys. Rev.
Lett; 23, 1384 (1969).

D. B. McWhan and J. P. Remeika, Phys. Rev. B 2, 3734
(1970).

4A. Jayaraman, D. B. McWhan, J. P. Remeika, and P. D. Der-
nier, Phys. Rev. B 2, 3751 (1970).

5H. Kuwamoto, J. M. Honig, and J. Appel, Phys. Rev. B 22,
2626 (1980).

D. B. McWhan, A. Menth, J. P. Remeika, W. R. Brinkman,
and T. M. Rice, Phys. Rev. B 7, 1920 (1973).

7W. R. Robinson, Acta Crystallogr. Sect. B 31, 1153 (1975).
H. H. Demarest, Jr., R. Ota, and O. L. Anderson, in High

Pressure Research —Applications in Geophysics, edited by M.
H. Manghnani (Academic, New York, 1977), p. 281.

9E. Chang and G. R. Barsch, J. Phys. Chem. Solids 34, 1543
(1973).
I. L. Drichko and S. I. Kogan, Fiz. Tverd. Tela (Leningrad)
16, 1015 (1974) [Sov. Phys. —Solid State 16, 656 (1974)].

G. O. Andrianov and I. L. Drichko, Fiz. Tverd. Tela (Len-
ingrad) 1$, 1392 (1976) [Sov. Phys. —Solid State 18, 803
(1976)].
G. O. Andrianov, I. L. Drichko, and B. D. Laikhtman, Zh.
Eksp. Teor. Fiz. 75, 2246 (1978) [Sov. Phys. —JETP 48, 1132
(1978)].
D. N. Nichols and R. J. Sladek, Phys. Rev. B 24, 3155 (1981)~

D. N. Nichols, R. J. Sladek, and H. R. Harrison, Phys. Rev. B
24, 3025 (1981).

~5S. A. Shivashanka, R. Aragon, H. R. Harrison, C. J. Sand-
berg, and J. M. Honig, J. Electrochem. Soc. 128, 2472 (1981).
H. Yang, R. J. Sladek, and H. R. Harrison, Solid State Com-
mun. 47, 955 (1983).
Analyses performed by Galbraith Laboratories, Inc. , P.O.Box
4187, Knoxville, TN 37921.

8S. Chen, J. E. Hahn, C. E. Rice, and W. R. Robinson, J. Solid
State Chem. 44, 192 (1982).
E. P. Papadakis, J. Acoust. Soc. Am. 42, 1045-(1967); H. J.
McSkimin and P. Andreach, ibid. 34, 609 (1962).
D. S. Rimai, R. J. Sladek, and D. N. Nichols, Phys. Rev. B
18, 6807 (1978).

R. Truell, C. Elbaum, and B. B. Chick, Ultrasonic Methods in
Solid State Physics {Academic, New York, 1969), App. A.
J. B. Wachtman, Jr., W. E. Tefft, D. G. Lam, Jr. , and R. P.
Stinchfield, J. Res. Natl. Bur. Stand. Sect. A 64, 213 (1960).
M. H. Manghnani, J. Geophys. Res. 74, 4317 (1969).

24D. S. Rimai, Phys. Rev. B 16, 2200 (1977).
25D. S. Rimai and R. J. Sladek, Phys. Rev. B 18, 2807 (1978).

H. B. Huntington, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic, New York, 1958), Vol. 7, p. 213.
This equation can be derived from the expression for linear
compressibilities (Ref. 30) and the general relation between
isothermal and adiabatic compliances (Ref. 26).
G. V. Chandrashekar and A. P. B. Sinha, Mater. Res. Bull. 9,
787 (1974).
H. V. Keer, H. L. C. 8arros, D. L. Dick erson, A. T.
Barfknecht, and J. M. Honig, Mater. Res. Bull. 12, 137
(1977).

3oJ. F. Nye, Physical Properties of Crystals (Oxford University
Press, London, 1972), p. 131.
O. L. Anderson, J. Phys. Chem. Solids 27, 547 (1966).

32M. Born and K. Huang, Dynamical Theories of Crystal Lat
tices (Oxford University Press, London, 1954), p. 129.
N. Boccara, Ann. Phys. (Leipzig) 47, 40 (1968).
The sign of the last term in Eq. (2) is the opposite of that
given in Ref. 14, which is in error.

35E. H. Bogardus, J. Appl. Phys. 36, 2504 (1965).
See, for example, J. C. Slater, Introduction to Chemical Phys-
ics (McGraw-Hill, New York, 1939), p. 199.
F. W. Sheard, Philos. Mag. 3, 1381 (1958); J. G. Collins, ibid.
8, 323 (1963).

SK. Brugger and T. C. Fritz, Phys. Rev. 157, 524 (1967).
D. Gerlich, J. Phys. Chem. Solids 30, 1638 (1969). Although,
in Ref. 39, Eq. (10) of this text was derived for the tetragonal
and hexagonal crystals, it can be shown that Eq. (10) is valid
for any uniaxial crystal, including the trigonal 3m for which
C24 = —C]4.

~ H. V. Keer, D. L. Dickerson, H. Kuwamoto, H. L. C. Barros,
and J. M. Honig, J. Solid State Chem. 19, 95 (1976).

~'W. P. Mason, Physical Acoustics and the Properties of Solids
{Van Nostrand, Princeton, N.J., 1958), p. 355 ~

42G. A. Alers, in Physical Acoustics, edited by W. P. Mason
(Academic, New York, 1965), Vol. III B, p. 1; Ref. 22.
D. N. Nichols, D. S. Rimai, and R. J. Sladek, Phys. Rev. 8
25, 3786 (1982).


