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Domain model of stage order and disorder in intercalation compounds
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A theoretical model of staging is presented which takes account of the domain structure of inter-
calation compounds. The model is able to treat stage order and disorder in a unified way. The stag-
ing phase transitions in which the stage index of the intercalation compound changes are predicted
to proceed via stage-disordered states. If the domains are finite and can be considered to be indepen-
dent, then the staging transitions are predicted to be continuous. The model is applied to the case of
typical donor and acceptor graphite intercalation compounds. Other systems are also discussed. A
model-independent scaling rule is proposed relating stage disorder to domain size, stage, tempera-
ture, in-plane density, and charge transfer, and a fundamental limit is set on the period of well-
staged structures. The relationship between the present model and previous theories of staging is
discussed. The implications of recent staging experiments are also considered.

I. INTRODUCI ION

%'hen a quest species is intercalated into a layered host
material such as graphite, the resulting sequence of quest
and host layers can be ordered' or disordered. ' ' The
period of the ordered structures consists of a layer of the
guest species followed by n layers of host for a stage-n
compound. The ordered structures have been extensively
studied experimentally' and, in the past few years, follow-
ing the pioneering work of Safran' and of Safran and
Hamann, ' theoretical models' ' ' of them have been
developed. However, rione of the theoretical models has
been able to treat stage disorder, which has remained a
poorly understood, although frequently observed,
phenomenon. Some interesting unresolved questions are
the following: What is the basic physics governing stage
disorder'? Should stage order-disorder phase transitions
occur, and, if so, what should they be like? Does stage
disorder play an important role in the staging phase tran-
sitions in which the stage index n of an intercalation com-
pound changes? It is the purpose of this article to formu-
late a single theory describing both stage order and stage
disorder and to address the above questions. '

A basic assumption which is implicit in the previous
theoretical models of staging' ' ' is that the intercalate
layers in the intercalation compound are continuous over
macroscopic distances, occupying the entire galleries be-
tween selected pairs of host layers. However, there is per-
suasive experimental evidence that this is not the case in
reality, and that, in fact, the intercalate between a pair of
host layers is divided into separate islands. The most
often quoted island size is of the order of 100 A, but very
much larger (up to 10000 A) and smaller islands have
also been reported. ' Physically, it is reasonable that
the intercalants between a pair of host layers should clus-
ter into islands, since, as has been shown by Safran and
Hamann, and by Ohnishi and Sugano, the elastic de-
formation of the-host by the guest atoms leads to a long-
ranged attractive effective in-plane interaction between
the intercalants. On the other hand, Kirczenow and
Hawrylak and Subbaswamy have shown that the

shorter-ranged elastic interactions between intercalant is-
lands are such as to tend to stabilize the islands between a
pair of host layers against agglomeration into a continu-
ous intercalant layer, at least for small intercalant species.
Much of the work on islands in intercalation compounds
was stimulated by a suggestion by Daumas and Herold '-

that islands should play a central role in the kinetics of in-
tercalation and of the staging phase transitions.

In the model put forward by Daumas and Herold, the
intercalation compound consists of microscopic domains,
such that within any domain the intercalate layers are
continuous and, together with the host layers, form a
well-ordered (staged) sequence, but in adjacent domains
the intercalate layers lie between different pairs of host
layers. Thus a macroscopic iritercalated crystal can be
stage n almost everywhere, and, at the same time, globally
there can be equal numbers of intercalants between every
neighboring pair of host layers. This makes it possible for
a phase transition in which the stage index changes to
occur by the movement of microscopic islands of inter-
calant atoms between adjacent domains, without the need
to empty of intercalate entire galleries between pairs of
host layers throughout the crystal and to fill others. The
consequences for staging kinetics are quite dramatic, and
the Daumas-Herold model is widely accepted as the only
reasonable explanation for the results of a broad range of
experiments. ' ' It should be noted, however, that
there has been as yet no direct experimental observation of
a Daumas-Herold domain boundary.

In this paper, a mathematical model of staging based on
the Daumas-Herold view of intercalation is presented. It
is shown that stage disorder is an inherent property of the
Daumas-Herold domain model, or indeed of any model in
which the intercalants form into finite islands. The phase
transitions in which the stage index changes are found to
proceed via stage-disordered states, the width of the tran-
sition increasing with stage index.

An important consideration is that of domain size, i.e.,
of the in-plane dimensions of the intercalant islands. In
the Daumas-Herold model, the reason for the existence of
the islands is not thermodynamic but rather a conse-
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quence of the layered topology of the host and of inter-
calation kinetics, i.e., the Daumas-Herold domains, in
common with domain structures observed experimentally
in many other physical systems, are a nonequi/ibrium
phenomenon. This view is supported by the fact that a
very wide range of domain sizes is reported experimental-
ly, the domain size apparently being determined more by
sample preparation and history than by ambient condi-
tions. ' ' Thus it would be incorrect to calculate the
domain size from considerations of equilibrium thermo-
dynamics, and we shall instead take it to be a variable pa-
rameter in the theory, which is to be measured experimen-
tally whenever the theory is to be compared with experi-
ment.

In the present calculations the elastic interactions be-
tween the intercalant layers in different domains are
neglected. Such an approximation can only be made if
the neighboring domains contain similar overall amounts
of intercalant so that there are no long-range elastic
strains present. If it is assumed that domain-domain in-
teractions can be neglected, it follows that the staging
phase transitions in which the stage index changes are
continuous for any finite domain size. This remains true if
correlations between the intercalate layers in different
domains are included approximately in the theory by re-
placing the domain size by any larger but still finite effec-
tive domain size which reflects these correlations. Since
the domains themselves are nonequilibrium entities, it
would seem doubtful that correlations between them could
lead to an effective domain size very much larger than the
actual domain size.

However, the problem of including domain-domain in-
teractions properly in a theory of stage disorder is a very
delicate one. For example, in a naive thermodynamic
treatment these interactions would cause all of the
domains to merge into a single domain as the sample is
cooled to low temperatures. This behavior would be
grossly unphysical since it would require intercalants to
pass through various host layers, violating the topology of
the system and the basic concepts underlying the
Daumas-Herold model. If one attempts to treat domain-
domain interactions in a simple mean-field theory, for ex-
ample, by assuming the domain-domain interaction ener-

gy to be just a function of the degree of stage disorder, it
is easy to arrive at a prediction that the staging phase
transitions should not be continuous but first order, with
an abrupt jump in the properties of the system and in the
distribution of staging packages which make up the
stage-disordered state. Such a prediction, however, cannot
be relied upon since mean-field theories do not always
correctly predict the nature, or even the existence, of a
phase transition, particularly for low dimensionalities. In
the present case, the prediction of such a theory of
domain-domain interactions is qualitatively the same
whether there are only two finite interacting domains in
the system or infinitely many. We know that the predic-
tion of a first-order transition occurring for the case of
only two finite domains interacting with each other is in-
correct, since such a system is still, in fact, one-
dimensional. Thus such arguments cannot supply definite
answers about the nature of staging phase transitions.

More generally, it is difficult to devise a treatment con-
taining domain-domain interactions which would include
stage disorder, do justice to the nonequilibrium nature of
the Daumas-Herold domains, and, at the same time, be
tractable. ' However, if the domain size is assumed to
be given, if the domains are considered to be at least meta-
stable entities, and if domain-domain interactions can be
neglected, then it seems reasonable to apply equilibrium
thermodynamics to the problem of stage disorder within a
domain. This view will be adopted here. Whether a good
approximation to quasiequilibrium is attained in this
sense in a given system can only be established experimen-
tally, and the relevant experiments are only now beginning
to be done. The limited experin'ental data which are
currently available appear to be consistent with this
theoretical approach.

II. THE MODEL AND FREE ENERGY

As was noted above, all of the previous theoretical
treatments of staging were devised for the case of infinite
Daumas-Herold domains. The extension to the case of a
finite domain is the simplest for the staging model pro-
posed by Millman et a/. In that model, the energy of the
system for a given configuration of intercalant layers
[NJ J is

E( [NJ J ) = g ( EzNJ l2—NO 6%~ +8Jy—NO ).

+ —, g V;JN;NJ/No .

In the present paper, E([NJ J) will be the energy of a
Daumas-Herold domain. Then Xo will be the number of
lattice-gas sites available to intercalants in any gallery be-
tween a pair of host layers within the domain; it specifies
the in-plane size of the domain. XJ is the number of in-
tercalants present in gallery j in the domain. —c is the
nearest-neighbor in-plane interaction energy between in-
tercalants and z the in-plane coordination number. VJ is
the repulsive interaction between layers &' and j which is
responsible for staging. ' ' 6 represents the chemical in-
teraction between the intercalant and the host. y is the
energy per lattice-gas site which is required to separate the
host layers sufficiently to admit the intercalants.

Following Ref. 15, it will be assumed that (a) V~ =0 if
there is any occupied intercalant layer between layers i
and j (the strong-screening assumption), and (b) that the
host layers can be treated as if they were perfectly rigid
within any domain, although, of course, the layers must
bend at the domain boundary. The strong-screening as-
sumption (a) is supported by the calculation of Safran and
Hamann. ' The idealization of perfect rigidity (b) means
that 0; =0 if X;=0, and that 0; =1 if X; ~0. The appli-
cability of the idealization (b) has been checked theoreti-
cally' by relaxing it in a number of calculations using an
improved phenomenological form of the energy suggested
by Dahn et a/. ,

' and it appears to be good for most gra-
phite intercalation compounds, except at very high tem-
peratures. ' Departures from the idealization of perfect
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rigidity are characterized in the calculations by the ap-
pearance at high temperatures of intercalants in the nomi-
nally empty galleries in the staged intercalation com-
pounds. That this has not been observed experimentally
lends further support to the use of idealization (b).

Safran' and subsequent authors' ' ' took the free
energy for configuration [NJ I to be of the form

(r( [N, I ) = E( [N, I ) —p g Nj
J

kT g—[ NplnNp —N lnN.

—(Np NJ )In—(Np —NJ )],
where the quantity 5 in (1) is usually absorbed into the
chemical potential p, in (2). The use of the simple Bragg-
Williams form for the in-plane entropy in (2) is usually
justified on the basis that, experimentally, stage ordering
occurs in a wide variety of compounds and appears in-
sensitive to the details of the in-plane order or lack
thereof. The correctness of this point of view for the
problem of stage disorder will be demonstrated explicitly
in Sec. III. However, recently it has been argued by
DiVincenzo et al. , on the basis of a comparison between
theory and experiment in the (p, T) plane for Li-graphite,
that the above simple in-plane entropy may actually be a
reasonably good approximation for some real systems.

Since in the previous calculations' ' ' ' only per-
fectly periodic structures were being considered (i.e.,
structures in which N; is a periodic function of the layer
i), the free energy P( [NJ I ) was calculated for various such
structures, and the structure [NJ I which yielded the
lowest value of P( [NJ I ) for given p and T was taken to be
the equilibrium state for those conditions. Here we are in-
terested in stage-disordered as well as stage-ordered states
and such a procedure is not acceptable. The free energy
N, which should be used to treat the more general prob-
lem, can be constructed from the restricted configuration-
al free energies P( [NJ I ) as follows.

Within the same approximations on the in-plane prop-
erties which yielded (1) and (2), the canonical partition
function restricted to those microscopic states which
occur in the configuration [NJ I can be written as

Z([NJ I, T)=exp —P([N~I)+@+N~ kT
J

We require the unrestricted grand-canonical partition
function

Q(p, T)= g Z([NJI, T)e
IN I

—$(IN I ))/kT
Z e
IN. I

where the sum is taken over all configurations of layers,
both periodic and nonperiodic.

Let v; be the number of packages each consisting of i
host layers sandwiched between a pair of intercalate layers
in any configuration [NJ I . I will refer to such a sandwich
with i host layers as "a stage-i unit. " Then,

Q(p, T)= g g'e

where the prime indicates that the sum over [N& I is now
restricted to those configurations belonging to the distri-
bution [v; I of packages being indexed in the first sum in
(5). The equilibrium distribution [v;I is the one for
which the term

(6)

in the sum (5) is maximized. In evaluating the sum in (6)
for the purpose of comparing its value for different distri-
butions [v; I, one can, as is usual in statistical mechanics,
consider only the largest terms. In this case, this means
finding, for each arrangement of occupied layers con-
sistent with the distribution [v; I, the values of the layer
occupation numbers [NJI which maximize e
and retaining only those maximal terms in the sum (6). In
general, this is still a very difficult coupled problem to
solve, since the most probable value of the number of in-

tercalants NJ in a given layer j depends on the locations
and occupations of its two neighboring layers via the inter-
layer repulsion term —, g," VJN;1V&/Np in the energy (1).
The most probable occupations of these neighboring
layers depend on their neighbors, etc.

The problem can be simplified considerably and solu-
tions of the model obtained which are exact in a number
of experimentally realizable limiting situations if one con-
siders the case where the rigidity energy 0&yNp in (1) is
comparable in magnitude with the in-plane interaction

energy —AN /2NO and where the interlayer repulsion

energy VJN;N~/Np is smaller. I will refer to this case as
"the GIC case" since it appears to be characteristic of
many graphite intercation compounds (GIC's). '5 Under
these conditions, if the assumption of "strong screening"
and the idealization of perfect rigidity are made, Millman
et al. ' showed that the periodic structures which are
found to be stable in their (infinite-domain) model are the
simple stages which are observed experimentally under
normal conditions. They also found that the in-plane den-
sity depends rather weakly on stage at constant tempera-
ture. When, in the GIC case, the strong-screening condi-
tion was relaxed, and complex stages (where the period
contains more than one intercalant layer) appeared in the
phase diagram, the in-plane densities of the occupied ine-
quivalent intercalant layers were found to differ from
each other by only a few percent. '

Thus, in the GIC case, it would seem to be a good ap-
proximation to replace each nonzero NJ in (6) by an aver-
age value N characteristic of the distribution [v; I. This is
instead of using [NJ. I, where each N~ depends on the par-
ticular, stacking of filled and empty layers being con-
sidered, as discussed above. If this "mean-field" approxi-
mation on the in-plane density is made, then the configu-
rational free energy P depends only on the distribution
[v; I of staging packages and not on how these packages
are arranged in the stack. The restricted free energy of
the important configurations contributing to the sum (6)
can then be written as



31 DOMAIN MODEL OF STAGE ORDER AND DISORDER IN. . . 5379

p([NJ j)=$(Iv;j,N)

g v; ( Ez—N /2NO+yNo p—N)+ g u;v;N /No kT—g v; [NolnNO N—lnN —(No —N)ln(NO —N)],

where u; = VJ J+, , strong screening being assumed. Thus,
in order to find the equilibrium distribution of stage-i
units, [v; j, and the filling N of an occupied intercalate
layer, we must maximize the function

VI.
—t15( Iv; I,x)/kT

e
v. 'f

where the combinatorial prefactor is the number of dif-
ferent arrangements of staging units which can be made
out of the distribution [v; j. Equivalently, one can mini-
mize the free energy

N=P( I v; j,N) kT g —v; ln g vJ —g (v;lnv;)

(9)

limit of high tempevatuves, where the in-plane density is
determined primarily by the in-plane entropy.

In those cases where the approximate free energy @ is
applicable (i.e., the in-plane density is the same in all in-
tercalant layers), every stacking arrangement of the host
and intercalant layers which is consistent with a given dis-
tribution Iv; j has the same configurational free energy
P(INj j). Therefore the arrangement of the various stag-
ing units in the disordered stack is predicted to be com-
pletely random. Where the approximation begins to break
down, the stacking of the staging units will become corre-
lated. Such correlations can be detected experimentally in
x-ray- or neutron-scattering experiments and can thus
provide a direct experimental check on the applicability of
the approximation to any given experimental system.

Situations in which the approximate free energy @ is
inadequate are discussed in Sec. VI.

at constant p and T with respect to the distribution [v; j
and X, subject to the constraint that the number of host
layers,

III. ANALYSIS OF THE FREE ENERGY:
MODEL-INDEPENDENT SCALING RULE

FOR STAGE DISORDER

vH ~vi (1O)

is held constant.
It should be noted that the last term in (9) represents

the entropy due to stage disorder, while the remaining
term P([v; j,N) is essentially the same as the free energy
of a particular configuration P( I Nj j ).

While P( [v; j,N) is proportional to the domain size No,
the entropy due to stage disorder is independent of Xo, so
that for very large domain sizes, stage disorder might, at
first, appear to become negligible, justifying the earlier
calculations in which stage disorder was ignored. This is
true for low stages for most values of the chemical poten-
tial. It will be shown, however, that for any finite domain
size No and nonzero temperature, for a sufficiently high
stage index n, stage disorder dominates. In addition, for
any finite domain size, for those values of p and T at
which the phase transitions between the different stages
occur, the system is also stage disordered.

As has already been mentioned, the approximation
made above by replacing XJ by a single value X 'in all
layers is expected to be a good one in the "G-IC case."
Indeed, it is exact in those situations in which the expecta-
tion value of the in-plane density %J becomes the same in
all occupied layers. One such case is the low-temperature
limit, where the filling of every occupied intercalant layer
tends to 1VO, the maximum possible occupation of the
layer allowed in the lattice-gas model. Another such case
is the high-stage limit, where the occupied layers are very
far apart, so that the interlayer repulsion energy is very
small and the filling of every layer is determined almost
entirely by the in-plane free energy. Another case is the

For any given p and T we would like to find the distri-
bution [v; j of stage-i units in the intercalation domain
and the filling X of the occupied guest layers which mini-
mize the free energy @ [Eq. (9)] subject to the physical
constraint that the number of host layers vH ——g,. iv; is
held fixed. The solution to this problem satisfies, for all i,
the equation

fi vi gvj
J

(12)

where I vj j is a solution of (11), is given by

f; =exp(c;), (13)

where

c; = NolnNO N lnN (No —N )—ln(NO ——N) iPV-
+p(pN+ezN /2ND yNO .u;N /No)—— (14)

and P= 1/kT.
The normalization condition g, f; =1, which follows.

from (12), then yields, from (13), the result

g exp(c;) = 1

a
8v).

@+0'gjv =O,

where + is a Lagrange multiplier. Direct evaluation of
(11) yields that the frequency (or fraction) of stage-i units,
f;, defined by
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We now obtain an explicit expression for f; in the case
where the frequency of stage-i units is a sufficiently
smoothly varying function of i that i can be treated as a
continuous variable. (In practice, this means that i, the
value of the stage index i at which v; and f; are the larg-
est, needs to be sufficiently large. ) Then,

BE

Bc =0
BE

2 .
2

B c
c;=c-, + —,(i i )—

BE
(17)

From (14) and (16) it follows that

BQ;

BE'
(18)

while, from (14) and (17),

f;=f,-exp[ —[(i—i )lo] l2], (19)

where

o =kT
2, B

Npx
BE

(20)

and

X/No (21)

is the filling coefficient of the occupied layers. If, as is
usually done, we assume a power-law form

~ —a
Qg =Vpl )

we find

(22)

cr =kTi + l[Nox voa(a+1)] . (23)

Equations (19)—(23) mean that the distribution of stag-
ing units in the disordered structure is approximately
Gaussian and peaked at the dominant staging unit i. cr is
the width of the distribution and is a measure of the stage
disorder. From (23) we see that the degree of stage disor-
der should increase strongly with increasing stage i. It
should increase with temperature and decrease with in-
creasing domain size Np and in-plane density x. If, fol-
lowing Safran and Hamann, ' we attribute the repulsive
interlayer interaction responsible for staging to the charge
transfer, then vp is a measure of the magnitude of the
charge transfer so that stage disorder should increase with
decreasing charge transfer.

The derivation which was given for expressions (20) and
(23) for the degree of stage disorder turns out to be re-
markably model independent. First, one should note that
the in-plane interaction energy c, and the cohesion between
the host layers, y, do not enter the expressions (19)—(23)
describing stage disorder. Their effect is felt only in-
directly through the influence which they have on the
equilibrium in-plane density x and the dominant stage E.

Indeed, it is easy to verify that the derivation of the re-
sults (19)—(23) proceeds exactly as above, and that the ex-
pressions for the stage disorder are unchanged if, instead

of taking c and y to be constants, we allow them to be ar-
bitrary functions of the in-plane density. [It is required,
however, that the values taken by c. and y at the equilibri-
um value of the in pla-ne density be sufficiently large com-
pared to the interlayer repulsion at stage i that the deriva-
tion of the free energy 4 in Sec. II, and, in particular, the
condition (7) that P([NJ J)=P([v;],N), be satisfied. As
was explained in Sec. II, this will always be true if i is suf-
ficiently large. ] A particular model where y depends on
the in-plane density was first put forward by Dahn
et al. ' and their form for y is widely used. An in-plane
interaction energy c which depends on the in-plane densi-
ty was recently used by DiVincenzo et al. ' to model the
effect of corrugation potentials on the phase diagram of
graphite-Li. Similarly, the simple Bragg-Williams form
for the in p/ane -entropy appearing in the free energy (7)
can be replaced by an arbitrary function without altering
the results (19)—(23) for the stage disorder. More gen-
erally, the entire in-p/ane free energy appearing in
P([v;J,N) in Eq. (7) [i.e., the entire expression (7) for
P([v;],N), excluding the interlayer repulsion term and
leaving the normalization factors g,. v; unchanged] can
be replaced by any general form for the in-plane free ener-
gy. The argument proceeds unchanged and the results
(19)—(23) again follow.

This shows that stage disorder should not be influenced
significantly by such things as the in-plane order of the
intercalants or lack of in-plane order, or whether the in-
tercalant layers are commensurate or incommensurate
with the host. All such things should manifest themselves
in the stage disorder only indirectly through their influ-
ence on the in-plane density x, and on the dominant stage
i, both experimentally measurable quantities.

This high degree of model independence of the scaling
rules (20) and (23) for stage disorder makes their experi-
mental verification a matter of considerable interest. In
addition to furnishing a good means of testing the present
theory of stage disorder experimentally, the scaling rules

' also provide a novel and sensitive way of measuring the
interlayer repulsion energy u;, which is responsible for
staging. Thus we have a promising new method for ex-
perimentally probing the mechanism of staging itself,
without having to be concerned with complications in-
volving the in-plane free energy which make it difficult to
deduce detailed information about the staging mechanism
from measurements of intercalation phase diagrams.

While the above derivation was made for high dom-
inant stages i, comparison with the exact numerical calcu-
lations of the distribution [f; j described below shows that
the same qualitative trends in the degree of stage disorder
are found also for the case of low stages. Indeed, if suit-
ably interpreted, the same expressions for o. continue to be
a good quantitative predictor of some important aspects
of stage disorder, even for low values of i.

IV. NUMERICAL METHOD

The key to the problem of finding an efficient numeri-
cal procedure for calculating the equilibrium distribution
of staging packages [f; J and the equilibrium in-plane
density x for any choice of p and T is contained in the re-
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(C /v„);„=—0, (24)

which is easily proved from (11). This process is repeated
for different trial choices of x until the value of x (and
hence the distribution If; I) which minimizes the free en-

ergy per host layer is found.

V. NUMERICAL RESULTS FOR LOW STAGES

We now need to consider whether the present theory
yields a significant amount of stage disorder for the low
stages which are studied experimentally, for realistic
values of the model parameters. We begin with the case
of K-graphite.

It is clear from the discussion in Sec. III that stage dis-
order should be very sensitive to the interlayer repulsion
u;. Thus it is.important to have as realistic an estimate of
this energy as is possible. Safran and Hamann'" have ar-
gued that if the interlayer repulsion is caused by the
charge transfer which occurs between the guest and host
layers, then, for high stage numbers i,

suits (13) and (14). These results state that for any fixed
Ualue of the in pl-ane density the entire distribution If; I of
stage-i units which minimizes the free energy @ subject to
the constraint (10) is given by a function which becomes
explicitly known as soon as the parameter 4 is deter-
mined. Thus we begin with some trial value of the in-
plane density, x=X/No, and, for that value, we solve
Eqs. (14) and (15) numerically for V. Then we can insert
this value of %' into (13) and (14) to find the distribution

If; I which minimizes 4 subject to the constraint (10) and
subject to the constraint that the in-plane density be equal
to our trial choice of x. We then can use our calculated
distribution If; I to calculate the free energy per layer of
host 4/v~ directly from (7), (9), and (10). Since 4 has al-
ready been calculated, this last step can be simplified if
one realizes that this extremal value of @/vH is given by

to y, ' we set zc.=1 eV. Here one should note that, as ex-
plained in Sec. III, stage disorder is not sensitive to y or c.,
provided that these quantities are sufficiently large that
the "CHIC case" applies. (Direct numerical calculations
have been carried out within the present model, confirm-
ing that this result obtained analytically for high stages in
Sec. III also holds for low stages. )

The numerical results calculated using this choice of y,
zs, Uo, and u for K-graphite for kT=0.03 eV (about
room temperature) and No=300 (domains with an in-
plane dimension of about 100 A) are shown in Fig. 1(a).
The fraction f; of stage-i units in the domain is plotted
for each i against chemical potential. p, =p, —p, where
p is the threshold for intercalation for infinite domain
size, i.e., p is the chemical potential below which there is
no intercalant present in an equilibrium sample with in-
finite domains.

For large values of p, f, = 1 and f; =0 for i & 1, i.e., the
system is a pure stage 1. In a very narrow range of
chemical-potential values near p, =0.45 eV, f, decreases
continuously with decreasing p from 1 to 0, while f2 in-
creases from 0 to 1, i.e., at high values of p the system is
nearly pure stage 1, but near p =0.45 eV randomly placed
stage-2 packages begin to appear in the domain. The pro-
portion of stage-2 packages in this microscopic mixture
grows continuously with decreasing p, while the propor-
tion of stage-1 packages decreases until the domain be-
comes nearly pure stage 2. This transition is very sharp,
the domain changing from 95% stage 1 to 95% stage 2 in
an interval of chemical potential hp=0. 001 eV. The
change from 99.9% stage 1 to 99.9% stage 2 occurs
within an interval bp=0. 002 eV. For chemical-potential
values further from the value at the center of the transi-
tion, the proportion of the tninority staging unit continues
to decrease rapidly, the stage-1 and -2 phases becoming
"pure" to within the numerical accuracy of the present
calculation. As p decreases further, similar continuous

QI UPL (22)

with an asymptotic value a-5. However, this asymptotic
result is not approached until i becomes very large, '

& 200, and is well outside of the regime in which experi-
ments are done (1 &i & 15). For the low stages the stage
dependence is much weaker. Thus, while the power-law
form (22) of the repulsion has been widely applied in
modeling staging theoretically, exponents n =2 and o.=4
have usually been used. ' ' ' To obtain more realistic
values, one can estimate u; from the ranges of chemical
potential by(j) in which the various stages j are stable ex-
perimentally. The procedure for doing this has been dis-
cussed by Safran and Hamann. '

Fitting the form (22) to the chemical-potential data of
Nishitani et al. for stages 1—7 of K-graphite in this
way yields a —1 and vp-0. 3 eV, in agreement with the
earlier fits' to the experimental data of Salzano and
Aronson for the alkali-metal intercalates. Thus we use
these values of o. and Up in the numerical calculation of
stage disorder in K-graphite. We take y=1 eV, which
corresponds approximately to the cleavage energy of gra-
phite measured by Salzano and Aronson. c. is more diffi-
cult to estimate, but since zc is expected to be comparable
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transitions occur from stage 2 to 3, 3 to 4, 4 to 5, 5 to 6,
and 6 to 7, but with increasing stage the region of chemi-
cal potential in which the transition (and the stage disor-
der) occur becomes broader relative to the region occupied
by the pure stages. For stage i &7 pure stages no longer
exist and the domain is always a disordered mixture of
two or more different staging units. Eventually (beyond
stage 16), no single staging unit makes up even half of the
distribution for any value of p, more and more different
staging units contributing to the mixture.

The results for a larger domain size (Xo ——2000) are
shown in Fig. 1(b). As one might expect from the analyt-
ic results for the degree of stage disorder obtained in Sec.
III, the stage disorder is less for the larger domain size.
The staging transitions are still continuous, but narrower
than in Fig. 1(a), and pure stages can exist for higher
values of the stage index, up to approximately i =14.
These results again show the sensitivity of stage disorder
to domain size, and clearly demonstrate that it is essential
to measure the in-plane dimensions of the intercalant is-
lands in any systematic experimental study of stage disor-
der.

The effect of a smaller charge transfer (vo ——0.06 eV)
typical of graphite intercalated with acceptors is shown
for the low stages in Fig. 2, for Xo ——300. At kT=0.03
eV the results are similar to those in Fig. 1(a), but the
transitions are relatively broader, and the stage disorder
more prominent, in qualitative agreement with the predic-
tions of the scaling rule of Sec. III. This may explain why

1.0

stage disorder is more often seen experimentally, and seen
for lower stages, in acceptor than donor graphite inter-
calation compounds. ' However, a careful, systematic
experimental study comparing stage disorder in different
compounds and taking proper account of the variation in
domain size from compound to compound and from sam-
ple to sample is clearly needed to check this idea.

As can be seen from Figs. 2(a)—2(d), the degree of dis-
order increases, the transitions broaden, and the highest
attainable pure stage decreases with increasing T. At
kT = 1.0 eV [Fig. 2(c)] even a pure stage 2 does not occur.
In intercalated graphite this temperature is unrealistic, but
in Li„TiS2 the scale of energies is lower, and behavior
consistent with that shown in Fig. 2(c) has been report-
ed, ' ' a pure stage 1 being observed at high chemical
potentials, but only a stage-disordered stage 2 occurring at
lower p. Li NbSe2 —where well-ordered stages I and 2
but only a disordered stage 3 have been observed' —may
be a case intermediate between Figs. 2(b) and 2(c). At still
higher T [Fig. 2(d)], even an "imperfect" stage 2 is not
present and f&

)f2 for all p.
The above results show that stage disorder should play

an important role in the Daumas-Herold domain model
for realistic domain sizes and reasonable choices of the
model parameters. However, stage disorder should be
very sensitive to the interlayer repulsion u;, while our
choice of the form u; —voi with n = 1 was based on ex-
perimental data whose accuracy is limited and which are
available only for low stages. Given that theoretically the
exponent a is expected to increase with increasing stage, it
is of interest to examine the effect a higher exponent a on
stage disorder. In Fig. 3(a) the results are presented for
the case a=4, all of the other parameters being the same
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FIG. 2. Stage disorder for acceptorlike charge transfer.

y =zc,= 1 eV, vo ——0.06 eV, a = 1, and N0 ——300. Notation as in
Fig. 1.

FIG. 3. Stage disorder for a strongly-stage-dependent inter-
layer repulsion energy. y=zc=1 eV, vo ——0.3 eV, o.=4, and
kT =0.03 eV. Notation as in Fig. 1.
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as in Fig. 1(a). The main qualitative difference between
these two cases is that the degree of stage disorder in-
creases much more rapidly with increasing stage for u =4
than for +=1, in agreement with the predictions of the
scaling rule obtained in Sec. III. Also, from Fig. 3(b),
where the results are shown for o.=4 and Xo =30000 [a
domain with in-plane dimensions 10 times larger than
those for Fig. 3(a)], it is clear that for higher values of the
exponent a, stage disorder is important at moderate values
of the stage index i, even for quite large domain sizes.

VI. LIMITS TO THE VALIDITY OF 4
In the preceding examples, y and zc, are comparable

with each other and larger than Uo, so that the arguments
given in Sec. II, which lead to the approximate free energy
@ [Eqs. (7) and (9)] of the stage-disordered system, should
apply. It is of interest, however, also to consider the phys-
ics of what happens when these arguments begin to break
down. To this end let us consider the case in which zc=1
eV, Uo =03 eV, Xo =300 kT =012 eV, a = 1, and

y =0.2 eV. Here we.have chosen y & Uo and a moderately
high temperature. The results of minimizing the approxi-
mate free energy @using the same procedure as before are
shown in Fig. 4. The main qualitative difference between
this and the previous results is that N now has two dif-
ferent local minima (characterized by different distribu-
tions [ v; I and in-plane densities x) in the region of the
stage-1 —to—stage-2 transition, and the transition is no
longer continuous. A greatly expanded view of the hys-
teresis loop showing only the values taken by f, in this re-
gion (f2 —1 f, ) is shown in—the panel at the right of the
figure. This discontinuous behavior is not physical, since
the model which is being used is a one-dimensional one.
It reflects an inadequacy of the approximate free energy

To correct this difficulty it is necessary to construct a
more accurate free energy in which the in-plane density in
a particular intercalant layer is allowed to depend on the
local environment in which that layer occurs, i.e., on the
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FIG. 4. Stage disorder calculated from the approximate free

energy @ for cz = 1 eV, y =0.2 eV, vo ——0.3 eV, k T=0. 12 eV,
+=1, and No ——300. The panel to the right-hand side of the fig-

ure shows the hysteresis loop for the fraction of stage 1 in the

stage-1 —to—stage-2 transition in more detail. The discontinu-

ous behavior in the stage-1 —to—stage-2 transition is due to an

inadequacy of the free energy N and is not expected to occur in

an improved theory.

location of the neighboring intercalant layers. A complete
solution to this problem is beyond the scope of the present
paper; some comments, however, are in order:

(1) If such a more accurate free energy is constructed,
then the in-plane density will no longer be constrained to
be the same in all of the intercalant layers. Thus thermo-
dynamic states will be allowed in which spatial fluctua-
tions occur in the domain during the stage-1 —to—stage-2
transition. Some parts of the domain will resemble the
state characteristic of one of the local minima of the ap-
proximate free energy @, while others will resemble the
state at the other local minimum. As is generally the case
with one-dimensional models, these fluctuations will cause
the stage-1 —to—stage-2 transition to become continuous.
What effect domain-domain interactions would have on
such a situation is not clear at present. However, it would
appear that the likelihood of them resulting in a first-
order transition is higher in this case than in the situations
considered in Sec. V.

(2) As was explained in Sec. II, the approximate free en-

ergy N should become exact in the high-stage limit. This
is in agreement with the results shown in Fig. 4, where the
unphysical discontinuous behavior is found only for the
stage-1 —to—stage-2 transition. The higher transitions are
all continuous as expected. Also in agreement with the
discussion in Sec. II, the numerical calculations based on
the approximate free energy N yield a continuous stage-
1—to—stage-2 transition at low temperatures where all of
the occupied intercalant layers become completely filled in
the lattice-gas model and, thus, equally occupied.

VII. SCALING FOR LOW STAGES

The expressions (20) and (23) for o, which were derived
for the high-stage limit, continue to provide a useful scal-
ing rule for the degree of stage disorder even for low
stages if we reinterpret o to be a measure of the relatiue
prominence on a chemical potential scale (as in Figs. 1—4)
of the disordered- and pure-stage regions at stage i.

The present low-stage numerical calculations show that
the degree of stage disorder increases with increasing tem-
perature and stage index, and with decreasing domain
size, in-plane density, and charge transfer, in agreement
with this interpretation of o.. This agreement is not mere-
ly qualitative, but can provide useful quantitative results
as well. For example, we can use it to obtain a quantita-
tively reliable expression for the limit to pure staging: A
comparison of the numerical results shown in Figs. 1—4
with the form (23) for o. shows that in all cases pure
stages cease to be found when o. exceeds the value 0.29.
Indeed, inserting this value for o. into (23) yields i =8, 15,
4.7, 3.1, 1.2, 0.4, 4.1, 8.9, and 5.0 for the cases of Figs.
1(a), 1(b), 2(a), 2(b), 2(c), 2(d), 3(a), 3(b), and 4, respective-
ly, predicting very accurately the stage beyond which pure
staging ceases to be possible. A value of i & 1 should be
interpreted at 1 since a pure stage 1 can always be pro-
duced by choosing a sufficiently high value of p.

VIII. RECENT EXPERIMENTS

Although observations of stage disorder have been re-
ported for many years, ' systematic experimental studies of
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it have only recently begun. One reason for this delay ap-
pears to have been the sensitivity of this phenomenon to
sample preparation, which was not understood, and which
in the present theory is explained by the dependence of
stage disorder on domain size. Here I will comment on
some of the recent experiments and briefly discuss their
relevance to the present theory.

A central issue which needs to be addressed experimen-
tally is whether the entropy associated with stage disorder
actually is the determining factor which drives this
phenomenon, as is assumed in this paper. Dahn and
Haering' have recently reported a thermodynamic study
of the voltage characteristics of Li/Li TiS2 electrochemi-
cal cells which may provide a part of the answer to this
question. They interpreted structure in their curves of
(BVjdT)„z as a function of concentration as being due to
the entropy associated with stage disorder in the intercala-
tion compound Li TiSq. They also correlated these ther-
modynamic measurements with their earlier structural x-

ray work. ' This is a very promising approach which
should be followed up with more detailed studies and ex-

tended also to other materials.
Another experiment which may be relevant to the prob-

lem of the entropy associated with stage disorder was re-

ported by Fuerst et al. ' These authors observed that the
degree of stage disorder in a microscopic mixture of
stage-7 and -8 units in a K-graphite sample decreased
with decreasing temperature in a way which could be in-

terpreted as being driven by the entropy of stage disorder.
However, a very recent study by Heiney et al. suggests a
possible alternative driving mechanism for this
phenomenon, in terms of an in-plane phase transition
which occurs with decreasing temperature and involves a
reduction of the in-plane density with a corresponding in-

crease in the number of galleries occupied by the inter-
calant. A more complete experimental and theoretical
understanding of this phenomenon would be of real in-

terest.
Another experimental approach to the question of stage

disorder is to measure the distribution of staging units

If; ] as a function of the thermodynamic variables as the
system goes through a succession of different stages. A
number of such measurements have been reported, princi-
pally focusing on the K-graphite system, with varying re-
sults. The most recent such studies have been by Nishi-
tani et al. and by Misenheimer and Zabel. The former
authors did not observe any stage disorder occurring
during the sequence of transitions from stage 1 to stage 7.
However, the latter report admixtures of stage-(n+1)
packages in every nominally stage-(n & 2) compound
through stage 5, the stage disorder iricreasing in the vicin-
ity of the staging phase transitions, particularly for the
higher stages, as predicted by the present theory. Both of
these sets of observations, as well as the work of Fuerst
et al. ' and Heiney et al. on K-graphite are consistent
with the present theory and with each other if one as-
sumes different Daumas-Herold domain sizes in the sam-
ples of different groups. A large domain size would make
the staging transitions very sharp and stage disorder diffi-
cult to detect, explaining the results of Nishitani et al. ,
while a smaller domain size would account for the obser-

vation of stage disorder by the other groups. This fur-
ther emphasizes the need for reliable measurements of
domain sizes in experimental studies of stage disorder. '

However, differing levels of instrumental resolution and
sample homogeneity in the different experiments may
also have contributed to the different amounts of stage
disorder which could be detected.

Another aspect which requires further experimental
and theoretical study is whether the staging phase transi-
tions are first order or continuous. The present theory,
based on noninteracting domains, and the other considera-
tions explained in the Introduction, tend to favor continu-
ous transitions; however, a definite theoretical answer to
this question is yet to be given. Experimentally, first-
order transitions have usually been reported, in agreement
with the predictions of the previous theories which did
not allow for finite-domain-size effects or stage disorder.
However, the kinetics of staging are notoriously sluggish,
and sample homogeneity is difficult to achieve and also
difficult to check experimentally. Thus the apparent
coexistence of two different staged phases in the same
sample and/or hysteresis cannot be considered as ade-
quate evidence of a first-order phase transition, as has
often been assumed in the past. The extreme sharpness of
the staging transitions predicted in Sec. V for the case of
low stages and large domains makes it particularly diffi-
cult to distinguish between first-order and continuous
transitions in the presence of any sample inhomogeneities.
Misenheimer and Zabel have reported observing discon-
tinuous changes in the distribution Iv;I of staging units
which occur during the transitions between the different
stages in K-graphite. These discontinuities could be "mis-
cibility gaps" caused by domain-domain interactions driv-
ing the staging transitions first order. However, the ob-
servations could equally well be explained by the presence
of sample inhomogeneities due to slow kinetics. Thus
the question as to whether staging phase transitions are
continuous or first order is likely to remain controversial
for some time. It is possible that answers to this question
may be easier to obtain by studying intercalation corn-
pounds of transition-metal dichalcogenides such as
Ag TiSz (Ref. 9) or Li Tisz (Refs. 10—12) using powder
samples in which the intercalation kinetics is less difficult
than in single-crystal graphite or in highly oriented pyro-
lytic graphite, or by using the electrointercalation tech-
nique in which the chemical potential is easier to control
than in the two-zone vapor-transport technique used to in-
tercalate graphite.

Another interesting approach to the problem of stage
disorder is suggested by the recent high-pressure experi-
ments on staging. As was first pointed out by Clarke
et al. , ' a reversible transition from a lower to the
next-higher stage can be achieved by the application of
pressure to the sample. This change is accompanied by a
change in the in-plane density of the intercalant as well as
by an increase in the number of dislocations. The latter
observation is clearly in concordance with the Daumas-
Herold view of the role which dislocations should play in
staging phase transitions, and may provide a way of vary-
ing the domain size experimentally in a relatively predict-
able manner. It is to be expected in view of the increase in
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the number of dislocations (or domains) that stage disor-
der should be particularly pronounced during these phase
transitions. Indeed, Fuerst et a/. ' have recently reported
observing an intermediate-stage ( —', ) phase occurring in a
stage-1 —to—stage-2 pressure-induced transition. This
phase nominally consists of an alternating sequence of
stage-1 and -2 units, but the observed structure was highly
disordered, with the probability of an error occurring at
any unit being 20%. This implies that the probability of
two complete perfect unit cells of the stage- —', structure
occurring one after the other is only 50%. Therefore,
given the present lack of any theoretical basis for the ex-
istence of the unscreened interlayer repulsion required for

fractional stages to be stable, ' ' it is necessary to consid-
er the possibility that correlated stage disorder due to fin-
ite domain size (and not fractional staging) may be the
correct explanation of this phenomenon.
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