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Dielectric matrices in semiconductors: A direct approach
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A new method for the evaluation of dielectric screening matrices in semiconductors is proposed.
The present method is direct, in the sense that it avoids the use of slowly convergent perturbation
sums, just by treating the crystal with a built-in perturbation as a new system. The several advan-

tages of this approach with respect to previous ones are discussed. As a first application of the
method, we calculate the random-phase approximation (RPA) dielectric matrices of Si and GaAs at
the I, X, and L points; the results show the effectiveness and accuracy of the method. The possibil-

ity of extending beyond RPA is also discussed.

I. INTRODUCTION

The first-principles theory of the electronic dielectric
response in real solids has attracted much interest in re-
cent years. ' The theory can be compared against exper-
imental data —most directly in connection with
phonons —but also gives a thorough understanding of
basic (and nonmeasurable) features; for this reason, it is
essential to the formulation of realistic models.

Within linear regimes, the response is described by the
dielectric matrix. ' Calculations for real materials have
been possible only in recent times, starting from the
Adler-Wiser random-phase approximation (RPA) ap-
proach. Such calculations have proven to be quite
elaborate, even if a major simplification has been success-
fully reached with the use of the mean-value point tech-
nique for Brillouin-zone (BZ) integration. ' Two basic
features which make such calculations extremely time
consuming are the slow convergence of perturbation sums
and the need of evaluating one by one the independent
dielectric matrix elements. Because of the above reasons,
numerical results are available for a few materials
only' " and mostly at the BZ center ( q =0 or q ~0).

In this work we present an alternative approach to the
evaluation of dielectric matrices. We call it the "direct"
RPA, by contrast with the "standard" RPA, and by anal-
ogy with recent direct phonon calculations. ' ' Within
such an approach, one calculates a new ground state of
the solid with frozen-in perturbation, and evaluates the
response as the difference of perturbed minus unperturbed
quantities. The use of perturbation theory. and slowly
convergent perturbation sums is avoided; furthermore, a
whole column of the dielectric matrix is calculated at a
time.

As a test, we apply our method to Si and GaAs. In or-
der to get a quite accurate check of the present method,
we have chosen to work within exactly the same frame-
work as in Refs. 7 and 11, whose complete results are
available to us in a computer-usable format. For this
reason, our starting band structure is the Cohen-
Bergstresser' one, obtained through the empirical pseudo-
potential method. This is the same as in Refs. 7 and 11,
whose q =0 standard RPA results we reproduce here al-

most identically with much smaller computational effort.
Then we are able to go beyond and we calculate, at exactly
the same level of accuracy, the dielectric matrices at the X
and L points, thus supplementing the I" results previously
published. '" In the case of Si, we compare the main
screening features of our first-principle results against
some of the available model dielectric matrices; this is
done here using the concept of dielectric band structure
(DBS), proposed some years ago by Baldereschi and To-
satti's and which proves very useful for the purpose.

The present method is indeed a way to evaluate the
independent-particle polarizability; therefore it can be
straightforwardly applied beyond RPA, to calculate the
local-density-functional (LDF) dielectric response accord-
ing to a well-known prescription. ' ' Since LDF theory
predicts quite good frozen-phonon frequencies, ' ' we ex-
pect LDF dielectric matrices from self-consistent pseudo-
potentials to also be very accurate in lattice dynamics. In
this paper, which is a method one, we prefer not to use
such a pseudopotential, for the reasons explained above.

Section II contains the theory of the direct RPA
method, as applied to the calculation of the dielectric ma-
trix. In Sec. III, several features related to practical im-
plementation are discussed. In Sec. IV we present numeri-

. cal results for Si and GaAs. In Sec. V the DBS analysis is
performed to compare with some models. In Sec. VI we
analyze conclusions and perspectives.

II. DIRECT RPA METHOD

The response of a polarizable medium to a given bare
electrostatic potential Po(r ) is described, within the linear
theory, by

P(r)= f dr e '(r, r ')Po(r '),
where P is the screened electrostatic potential and the
operator e ' contains all the information about the linear
dielectric response of the medium. In compact notations
we write Eq. (1) as

4=& '4o.

We use a.u. (e =m, =A'=1) throughout. The total self-
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consistent one-electron Hamiltonian is

H =H()+6V,
where Ho is the unperturbed one, and at the RPA level,

(3)

(4)

The basic quantity to deal with is the independent-particle
polarizability, which is the linear density response to the
total potential acting on electrons:

n'"=X,6V.
The RPA inverse of e ' is then in operator form:

E= 1 —vc+o

where vc is the Coulomb potential; since in a periodic
solid vc and go do not commute, e is not Hermitian. For
computational and displaying purposes it is better to refer
to the Hermitian operator e, simply related to e by

—1/2 1/2 1/2 1/2e=vc evc ——1 —vc &ovc

which has been widely used in previous literature on the
subject ' ' '"

We have summarized up to now the features which are
common to the standard RPA and to the present ap-
proach. The basic difference is the way in which the
independent-particle polarizability Xo is evaluated.

Within the standard RPA, first-order perturbation
theory is used to obtain the wave functions of the per-
turbed Hamiltonian, Eq. (3), linearly in 5V. With these
wave functions the first-order change in the electron den-
sity is evaluated and an expression for Po is found from
Eq. (5); it only contains eigenvalues and eigenfunctions of
the unperturbed Hamiltonian Ho.

The direct RPA we are proposing in this paper consists
of directly solving for the eigenfunctions of the perturbed
Hamiltonian, Eq. (3), without use of perturbation theory.
The perturbation density is found by difference with the
unperturbed case. The calculation is performed with a
number of independent 6V's sufficient to reconstruct the

I

where G are reciprocal-lattice vectors and q is within the
BZ. In a periodic solid, the operators dealt with above are
invariant under lattice translation and assume in recipro-
cal space a matrix form. The matrix indices are recipro-
cal vectors and the matrix elements depend parametrically
on q. For instance, Eq. (5) reads

n'"(q+G)= QXp(q+G, q+G')6V(q+G') . (9)
G '

The Hermitian dielectric matrix (HDM) is obtained from
Eq. (10), which reads

e(q+G, q+G')=5- -,—
I q+GI q+G'

I

XXp(q+G, q+G') . (10)

The G&G' HDM elements are responsible for "um-
klapp" effects in the response, which are generally re-
ferred to as local-field effects they are due to lattice
periodicity, and are vanishing in a homogeneous system,
such as the electron gas.

The starting point of all the previous HDM calcula-
tions, according to the best of the authors' knowledge, is
the standard RPA expression for Xo, first given by Adler
and Wiser

desired features of Pp through Eq. (5), and sufficiently
small to ensure linearity. The present approach is in-
spired by recent direct solid-state calculations with built-
in perturbations, such as frozen phonons' and other
ones, ' ' ' but at variance with them it does not require
self-consistency in the perturbed case, since 6V is already
the total (screened) potential.

Now, we switch to reciprocal space. We use the follow-
ing notations throughout for the Fourier transform of any
function:

f(r)=(2~) g f dq f(q+G)e ' +

4 ~ dk (k+q, c ~e'q+ ''
~
k, v)(k, v ~e 'q+ ''

~
k+q, c)

(2'�) E,(k+q) —E,(k)

in terms of Bloch functions and band energies of Ho.
Such calculations are quite lengthy, owing basically to the
slow convergence of the summation in (11) over the con-
duction bands. This main problem is avoided within the
present approach, where we only use valence wave func-
tions of the perturbed and unperturbed crystal, as ex-
plained above. The authors of Refs. 7 and 11, who made
full use of symmetry at the I point, found the standard
RPA calculation still quite heavy. The symmetry benefit
applies to our direct RPA calculation too, as explained
below. Besides computer time, programming time is also
important: The standard RPA requires ad hoc manipula-
tion of matrix elements appearing in Eq. (11), which is
avoided here.

The essence of our method is as follows: we switch on

one monochromatic 6 V at a time, having a single nonvan-
ishing component at the vector q +G '. We diagonalize
the perturbed Hamiltonian and find the perturbation elec-
tron density; within the linear regime, this density has
nonvanishing Fourier components only at the umklapp
vectors q+G. Those components give us, from Eq. (9),
one entire column of Xo for each monochromatic pertur-
bation. The HDM is Hermitian (and real in centrosym-
metric solids), as clearly appears in Eqs. (10) and (11).
Within our scheme, it does not come out Hermitian by
construction, so we have a very simple accuracy test for
the method. For special q vectors the number of in-
dependent perturbations to be considered is greatly re-
duced by point symmetry (see below).
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III. CALCULATIONS

Some features concerning the practical implementation
of the above concepts to dielectric matrix calculations in
semiconductors are separately discussed in the following.

A. Hermiticity

When the perturbation potential 5V has a single Fourier
component at q+G', i.e., in real space

g V(~) i( q—+ca ') r (12)

the total Hamiltonian (3) is no longer Hermitian. This
problem is easily circumvented by considering the density
response to sine and cosine perturbations separately, each
of which is real. The linear response to the perturbation
(12) is then easily reconstructed. We notice at this point
that in centrosymmetric materials a cosine perturbation
always induces an even response, while a sine perturbation
induces an odd response only within the linear regime. In
a centrosymmetric material, the linear response to a
cosine can be expanded as a Fourier cosine series and
analogously for the sines, and this is the reason why we
obtain a real symmetric Xo. In noncentrosymmetric ma-
terials there are mixed sine-cosine responses, which are re-
sponsible for complex elements in the Hermitian matrix
Xo.

B. Linearity

C. Supercells

The perturbed Hamiltonian, Eq. (3), when q =0 has the
same lattice periodicity as the unperturbed crystal; but
when q&0 this is no longer true. Since the one-electron
states are easily obtained for a periodic Hamiltonian, we
are forced to use some special q values, such that the per-
turbed Hamiltonian is periodic over a suitable supercell
and the q+G vectors (for any G) are among the recipro-

Any linear response is, by definition, the linear term in
the response to a vanishingly small perturbation. In other
words, it is a functional derivative which we are evaluat-
ing in this work as a finite incremental ratio; we are there-
fore interested in choosing the strength of the perturba-
tion U as small as possible. But since the (small) perturba-
tion density is obtained as the difference of two large
quantities, we are faced with a cancellation problem. It
turns out that there is a large range of strengths which are
small enough to induce linear response, although large
enough to ensure cancellation muses no harm. This is in
agreement with previous successful mlculations for frozen
harmonic phonons' ' where basically the same problem
exists. Within this work, we have performed a prelimi-
nary study and we have chosen a value of v =5&10
hartree as the amplitude of our sine and cosine perturba-
tions 5V. The wisdom of this choice was assessed by
several a posteriori checks on the results. Two of them
have been already mentioned (Hermiticity of Xo or
equivalently of e; odd response to odd perturbations in
centrosymmetric crystals); others will be discussed below.

cal vectors of the new system (crystal plus perturbation).
The feature is exactly the same as in the context of pho-
nons' ' and will not be discussed further here. In the
calculations presented in this work we deal with the I
point (no supercell) and with the X and 1. points (super-
cell repeating twice the elementary cell in suitable direc-
tions).

A first comment concerns the zone-center case. A con-
stant potential induces zero density response, of course,
and our approach only gives the G&0 and G'&0 ele-
ments of Xo arid e; the missing elements are only defined
in the q ~0 limit and would require larger and larger su-
percells within the present scheme, while they are easily
obtained within the standard RPA scheme. " An exten-
sion of the method of Ref. 4 could also possibly be imple-
mented within the present approach.

A second comment concerns the zone-boundary cases,
either X or L. We continue to use the G letter with the
meaning of reciprocal vectors of the original lattice; then
the reciprocal vectors of the superlattice can be parti-
tioned in two sets: the G ones, and those having the form
q+ G. The unperturbed density has nonvanishing
Fourier components only at the G vec'..ors. If a mono-
chromatic perturbation at q+ G ' is switched on, the per-
turbed density has nonvanishing components at both sets,
and the Xo matrix is obtained from the q+G density
components only. The G components of the perturbed
density are equal to the unperturbed ones, within linear
regime, but can be different because of quadratic and
higher-order effects. So we obtain another accuracy check
of the present method.

n ( r ) =2(27T) y J d q ( r
~ q, U ) ( q, U

~

r ) (13)

and this is numerically performed with the mean-value
points technique. ' With an N-fold supercell, the BZ is
folded back N times and the volume has a factor 1/N, but
there are X as many valence bands. The problem is that,
in general, the set of special points depends upon the BZ
shape and there is, in general, no guarantee that we will
get the same accuracy for different N values. The choice
of special points performed in this work does guarantee
the same accuracy, and, even more, the doubled-cell re-
sults coincide exactly with the simple cell ones if a q =0
perturbation is dealt with in both schemes.

To this aim we have used the reciprocal-space uniform
orthogonal mesh of Monkhorst and Pack in their nota-
tion, we have chosen for the no-supercell case the (4,4,4)
mesh. This gives 64 points in a cube but only 32 of them
are not connected by a G vector and can be chosen in the
fcc BZ. These are exactly the two Chadi-Cohen special
points, when all their symmetrically equivalent ones are
separately considered (24+ 8). Of course, even at q=0
the point symmetry of the crystal with built-in perturba-

D. Brillouin-zone integration

The calculation of the electron density, for both the
perturbed and unperturbed crystal, requires a BZ integra-
tion:
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tion is lower than the unperturbed crystal and the 32
points no longer reduce to two only. For the most unsym-
metric perturbation, only time reversal can be invoked to
reduce from 32 to 16.

When considering either the X or L supercells ( X=2)
simple geometrical considerations show that the new re-

ciprocal vectors q+G connect in both cases any of these
32 points to another point in the same set; therefore only
16 are now independent and mn be chosen in the BZ of
the superlattice; time reversal lowers this number further.

E. Independent elements

We use the same cutoff as in Refs. 7 and 11, i.e.,
all matrices (Hamiltonian, Xp, e) are set to zero when

~
q+G

~

&21 in 2vrla units. This gives a matrix size of
113X 113 at I and of 108 && 108 at either X or L. But
since the matrices are totally symmetric under the opera-
tions of the small point group of q, the number of in-
dependent elements is reasonably small.

At the I point, the HDM is totally symmetric under all

crystal symmetry operations and the body of it (i.e., G&0
and G'&0) has only 201 independent elements. These
are separately evaluated within standard RPA in Refs. 7
and 11 using Eq. (11). But according to the present
method, we do not have to consider the response to 201
monochromatic perturbations, since each of them gen-
erates a whole column of Xp, after Eq. (9). Looking more
closely, the whole matrix mn be built out of only one
monochromatic perturbation per shell, i.e., 8 with the
presently chosen cutoff (twice as many when separately
considering sine and cosine, see Sec. III A).

At either the X or I. points, the symmetry is lower and
the number of independent elements higher. There are
468 of them at X and 598 at I; these mn be built out of
only 14 and 16 monochromatic perturbations, respective-
ly.

IV. RESULTS

We present in this section the results obtained for the
HDM's or Si and GaAs. For q =0, standard RPA results
to compare with have been obtained by Baldereschi and
Tosatti and by Resta and Baldereschi. " The problem of

TABLE II. Hermitian dielectric matrix at the X point,

q =(1,0,0) in units of 2m/a. Only some of the independent ele-
ments are shown.

000
200
111
111
002
111
002
022
111
111
200
022
200
222

000
000
000
111
111
111
002
002
111
111
111
022
022
022

Si

2.9484
0.0000
0.0829
2.0860

—0.0022
0.0185
1.4198

—0.0065
1.3305

—0.0109
0.0532
1.1819
0.0146

—0.0122

Real

2.8921
0.0000
0.1266
2.0621

—0.0006
—0.0010

1.4032
—0.0038

1.3178
—0.0067

0.0585
1.1796
0.0129

—0.0076

Imaginary

0.0000
0.4504

—0.0188
0.0000
0.0002
0.0039
0.0000
0.0167
0.0000
0.0192
0.0181
0.0000
0.0048
0.0094

the BZ integration appearing in Eq. (11) has been widely
discussed by these authors; the Chadi-Cohen two-point
scheme is the one to be chosen for the most meaningful
comparison, being compatible with the scheme used here
as explained in Sec. IIID. We present in Table I the
HDM elements calculated within direct and standard
RPA for GaAs, with the same Hp and the same cutoff.
It is easily seen that the agreement between the two calcu-
lations is excellent, the absolute difference being of the or-
der of 10 . Furthermore, from the several checks men-
tioned in the preceding section, we estimate the numerical
accuracy of the present results to be at least 1 order of
magnitude better. Therefore, we believe that most of the
very small discrepancy is a convergence error of the stan-
dard RPA perturbation sums, which have been calculated
in Refs. 7 and 11 summing over 90 conduction bands.
For q at the zone boundary, at either X or I. the standard

TABLE III. Hermitian dielectric matrix at the I point,
q =( 2, 2, 2 ) in units of 2~/a. Only some of the independent

elements are shown.

This work
Real, Imaginary

Resta and Baldereschi
Real Imaginary

111 111
111 111
111 111
1 I 1 111
200 111
200 111
200 200
200 200
020 200

1.6819
—0.0029
—0.0142
—0.1268

0.1122
0.0115
1.5250

—0.0119
—0.0093

0.0000
—0.0448

0.0000
—0.0829
—0.0391
—0.0128

0.0000
0.0000
0.0000

1.6820
—0.0029
—0.0143
—0.1264

0.1123
0.0112
1.5254

—0.0117
—0.0095

0
—0.0447

0
0.0830

—0.0390
—0.0128

0
0
0

TABLE I. Hermitian dielectric matrix at q=0 in GaAs.
Only some of the independent elements are reported. The Resta
and Baldereschi results, Ref. 11, shown in this table are those
calculated with a two-point integration scheme (see text).

000
111
222
111
200
111
111
002
202
002
111
113
111
222
202

000
000
000
111
111
111
111
111
111
002
002
002
111
111
111

Si

3.1683
0.7425

—0.1393
1.7969
0.1095
0.0232
1.4290
0.0628
0.0551
1.2775
0.0532

—0.0087
1.2711

—0.0197
0.0157

Real

3.0854
0.6818

—0.1425
1.7971
0.1443
0.0083
1.4200
0.0739
0.0648
1.2737
0.0617

—0.0018
1.2693

—0.0064
0.0128

GaAs
Imaginary

0.0000
0.4391

—0.0198
0.0000

—0.0543
0.0023
0.0000
0.0215

—0.0181
0.0000
0.0185

—0.0047
0.0000
0.0153
0.0027



31 DIELECTRIC MATRICES IN SEMICONDUCTORS: A. . . 5309

RPA of Refs. 7 and 11 becomes computationally rather
heavy, and we have no complete results to compare with.
In this work, we have calculated the HDM of Si and
GaAs both at the X and L points; some independent ele-
ments are shown in Tables II and III.

The diagonal elements e ( q +G, q +G) are a smooth
function of q+G, decreasing towards 1 with increasing

~
q+G . The other HDM elements are numbers where

trends and physical meanings are hardly detectable —a
feature noticed several times. ' ' '" Their significance be-
comes clear when applied to screen specific perturbations.
An overall look is most meaningfully obtained with a
DBS analysis, which is performed in Sec. V.

V. DIELECTRIC BAND STRUCTURE

.0.8

0.6

0.2

1
L'

L1
L&

—~L3
L

-L3
--LI

3

L'

]L')

«L'3
--L,

rL)
I-- L 1

Lq

L3

L3

Like any Hermitian operator, the HDM can be diago-
nalized. The eigenvectors at a given q point are a type of
normal coordinates in the screening problem, and have no
direct link to real physical perturbations. Nevertheless,
this concept of DBS, proposed some years ago by Bal-
dereschi and Tosatti'~ is a nice mathematical tool to ex-
tract some important trends from the HDM's. At high-
symmetry q points the HDM eigenvalues can be classi-
fied according to the small group of q, and the symmetry
of the most screened perturbations is straightforwardly
visualized. For instance, trends with increasing ionicity
for the isoelectronic series Ge-GaAs-ZnSe have been iden-
tified and their origin has been understood" through a
DBS analysis. %'hen dealing with one material, but
several different HDM models, the DBS gives a kind of
fingerprint of the main screening features of each model.
In the case of Si, a very detailed study has been published
by Car et a/. with reference to some of the existing
models

„0.8

0.6

0.4

0.2

--X
t

--X

--x

X,

==X~

X,

--X4
--X

--X
1

, X,
== X,+}(,

'X,

--X
--X

--X
1

--X
1

2

/X3

-- X

--X3

X~

X,
-- xgx„--X

X1
--X

'I

tQ (~ i (&j ()

FIG. 1. Eigenvalues of the inverse HDM at the X point in Si.
(a}: Present work; (b): Car-Selloni (Ref. 24); (c): local-density
model (Ref. 21}; (d): Johnson model (Ref. 23); and (e): Sinha
model (Ref. 22). Calculations (b), (c), (d), and (e) are taken from
Ref. 21.

t.) ig I) « t )

FIG. 2. Eigenvalues of the inverse HDM at the I. point in Si.
{a)—{e) represent different models as in Fig. I.

Before this work, first-principles results were only
available at q=0 or q~O; therefore at finite-q values
Car et al. were only allowed to compare different models
between themselves. In this section, we augment their
analysis by comparing at the X and L points the model
results with the present first-principle ones for Si. The re-
sults are presented in Figs. 1 and 2, where the most
screened eigenvalues of e ' are shown.

It can be seen that the model which looks overall most
similar to the first-principle result is the Car-Selloni
model, " even if the ordering of the eigenvalues is partly
different. This is not surprising, since this model has been
fitted after the first-principle HDM of Ref. 7, while the
other ones have been proposed for a "specialized" use in
lattice dynamics. In order to calculate phonon frequen-
cies, only a limited amount of the information embedded
in the HDM is used. Some models are able to predict
good frequencies, although being strongly unsatisfactory
for the physics of the screening process as a whole. The
reasons why have been investigated in much detail by Car
et al. ,

' to whom we refer to for a discussion on this
point. In addition, we only wish to point out the fact that
a typical fingerprint of local-field effects is the gap be-
tween the two most screened eigenvalues at the L point,
since a diagonal HDM has an "empty lattice" DBS, and a
closed gap. The Car-Selloni model gives the right order-
ing of levels, although it underestimates the I gap. In
general, both the Car-Selloni and the local-density '

models underestimate local-field effects, while Sinha's
model overestimates them. The Johnson model is
strongly unphysical, as already realized by Car et al. '

VI. DISCUSSION AND CONCLUSIONS

In this work we have presented a novel approach to cal-
culate first-principle dielectric matrices in solids. The
main limitations of the standard RPA, as applied to real
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solids and realistic band structures, are overcome by our
direct RPA methods, which allows much simpler compu-
tations without losing accuracy. One of the features mak-
ing the present method very appealing is that we are able
to get the fully converged perturbation sum without actu-
ally summing over empty states, while the standard RPA
requires explicitly dealing with very high conduction
bands. '" The problem of slowly convergent perturbation
sums, indeed, was recently circumvented also by Van
Camp et a/. who used a moment expansion approach,
but since their expansion is actually cut at a given order,
the numerical results only approximate the RPA value.
On the contrary, we have shown here that we can easily
obtain numerically the exact standard RPA results.

ln this first application of the method, we have calcu-
lated the RPA dielectric matrices of Si and GaAs, with
the use of Cohen-Bergstresser' band structure, in order to
closely compare with previously published standard RPA
calculations. "" Besides reproducing them, we are now
able to extend beyond; the results reported in Tables II
and III and in Figs. 1 and 2, therefore, supplement those
of Refs. 7, 11, and 18.

The shortcomings of the present approach are exactly
the same as in any calculation based on supercell tech-
niques. ' ' The system (crystal plus perturbation) must
have a periodicity which is commensurate to the unper-
turbed lattice. The supercell size cannot be arbitrarily
large, but within the present computational possibilities,
the attainable q points in the BZ form a mesh which is
dense enough in order to interpolate or extrapolate the

HDM elements. There is presently a need for simple and
yet realistic HDM models; ab initio calculations within
the present methods can provide a reference frame for
them.

Finally we briefly outline the possible extension of the
method beyond RPA. Suppose we know the self-
consistent one-electron potential obtained for the unper-
turbed crystal within the LDF scheme. ' ' Then our ap-
proach yields the independent-electron polarizability Xo',
the LDF dielectric matrix is then related to this Po by a
relationship which is not the simple RPA one, but which
is nevertheless tractable and easily implementable. ' '
Notice that Xo is obtained here through ground-state cal-
culations for the crystal with a frozen-in perturbation, but
these must not be self-consistent. This is an important
new feature of our method: To the best of our knowledge,
all of the existing direct LDF treatments of perturbed
crystals do require self-consistency for each perturbation
considered. We are referring here to frozen phonons'
and generalizations, ' ' as well as to very recent work on
dielectric screening.

' ' A direct evaluation of the inverse
HDM, having several features related to the present work
but based on self-consistent LDF calculations, is presently
being performed by Kunc and Tosatti.
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