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Laughlin’s state v, is shown to be the exact nondegenerate ground state for repulsive interactions
of vanishing range. In this limit, his quasihole states are not exact, and some previously proposed
states are ruled out. An experimental prediction is made concerning the competition of ¥, with
charge-density waves. Several exact properties are shared by systems with interactions of shorter
range than r~2, for which the center-of-mass motion separates from the other degrees of freedom.
These include new invariant subspaces, an operator that creates exact eigenstates, and a subset prop-

erty of the energy eigenvalues.

I. INTRODUCTION

Experiments on the two-dimensional electron system in
GaAs-Ga,Al,_,As heterojunctions at large magnetic
fields have found a quantized Hall conductivity at some
simple rational multiples of e2/h.! It has been suggested
that the mutual repulsion of the electrons results in a
number of unique properties,>3 including a discontinuity
in the chemical potential at certain fractional fillings of a
Landau level.

Laughlin* has proposed a correlated wave function {1/
to explain the quantization of the Hall conductivity at
fractions 1/m and 1—1/m for odd m. The states 1,, are
close to the ground state for small numbers of particles N,
but they are not exact.* Tao has suggested, however, that
the states 1,, become poor for large numbers of particles.’
In addition to Laughlin’s 1,,, there have been a growing
number of other proposals for ground states.>®~% It has
been unclear how accurate any of these states are, or in
general how to improve them.

To clarify this situation, we present several exact re-
sults. Laughlin’s states 9, are shown to be exact for any
number of particles in the limit in which the particles
have a repulsive interaction of vanishing range. Some
other proposed states are ruled out in this same limit. A
number of exact properties are shown to be shared by all
interactions of shorter range than »~2 (those that do not
require a compensating background), and by the log in-
teraction.

The paper is organized as follows: Sec. II discusses ex-
act results for general interactions that are shorter range
than r 2. Section III discusses interactions of vanishing
range, including the exactness of ¥,,, a constraint on
states at other filling factors, the competition of ,, with
charge-density waves, a hierarchy in the ordering of gaps,
an exact (but trivial) solution for attractive interactions,
and Laughlin’s quasihole states. Section IV lists con-
clusions.

We consider the model Hamiltonian

2
1 eA;
H= m*E[Pf— CJ‘+2V2(|rj—rkf)

Jj<k

+ 375, (1)
j

where we have chosen the symmetric gauge A=+BXT.
The boundary conditions are the “open” boundary condi-
tions of a plane used in Ref. 4. There is no need for hard
walls, since the system is confined to a region of space by
angular momentum conservation. Since we are interested
in the limit of high magnetic field, we make the usual ap-
proximation of projecting H onto the lowest (spin-
polarized) Landau level. As a result, the first term in H is
simply a constant. The problem is generally modeled by
the two-body Coulomb interaction between electrons,
V,(r)=e?/(er), with the corresponding one-body back-
ground potential V| due to a uniform density of positive
charge. It is expected, however, that many qualitative
features of the problem will remain for other choices of
V, and ¥V, so long as they describe a repulsive interaction
between particles. Laughlin has in fact found similar re-
sults for repulsive Coulomb, Gaussian, and logarithmic
interactions between particles. In addition, interactions
other than Coulomb may be physically realizable; a near-
by conducting plane, for example, would result in a r 3
dipole-dipole interaction at large r. The silicon-doped
Al,Ga,_,As layer, which is approximately 300 A from
the two-dimensional (2D) electron gas, conducts very
poorly in the samples of Ref. 1, so that it acts as a ground
plane only on long time scales. A discussion of time
scales is contained in Ref. 9.

A complete set of single-particle states for the lowest
Landau level is given by

|m)=02"* em )~ 2zmexp(— |z |2/4),

where the angular momentum m is a non-negative integer
and z is the coordinate (x,y) represented as a complex
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number z =(x —iy)/ay. The Landau length aq is equal
to (fic/eB)'/?. A basis for the antisymmetric N-particle
states can be written in several ways:

1/}=[m1,m2,...,mN> (2a)
—g(zy...,zv)exp |— 3 |zj|2/4 (2b)
J
= H(zj—zk) f(Zl,...,ZN)
Jj<k
X exp —2|z]~|2/4 . (20
J

Equation (2a) is a Slater determinant of single-particle
states, g is a completely antisymmetric polynomial, and f
is a completely symmetric polynomial. The form (2¢) fol-
lows because the quantity in small parentheses is a factor
of any antisymmetric polynomial.!®

The total angular momentum M is a good quantum
number, where M =m,+m,+ - +my; M is also
equal to the degree of the polynomial g. We use the con-
ventional definition of the filling factor v=N(N —1)/
2M. 4510 Since v is the dimensionless particle density
v=N/(Q/27), where Q is the dimensionless volume, the
definition implies that volume changes are proportional to
the change in M. For fixed N, it is convenient to consider
the ground-state energy of a system either as a function of
volume (equivalently M), or as a function of pressure P
by defining the free energy G =E +PQ. With this defi-
nition, applying pressure corresponds to adding an exter-
nal potential of the form V = +kr?.

Laughlin has suggested that the state 1, in which

g= 11 (z;—z)"
Jj<k
is a good approximation for the ground state for positive
odd integers m, and that additional approximate eigen-
states can be obtained by operating with a quasihole
operator

22 H(Zj—Zo)
J

(and an analogous quasiparticle operator) which create
quasiparticles of charge *+1/m. Equation (2c) implies
that the Hilbert space #(N,M) for N particles and M
units of angular momentum is isomorphic to the space
SM' of symmetric polynomials in N variables of degree
M'=M —N (N —1)/2. A standard basis for the space of
symmetric polynomials f in N variables can be written in

terms of the elementary symmetric functions
S1, ..., SN, % where
s1=zy+z+ " +zn,
(3)
Sk=. 2 .ZjIZjZ“'ij,
Ji<ip< e <y
SN=2Z125 """ 2Zy .

It is a theorem in algebra that any completely symmetric
polynomial can be written as a unique polynomial of the
factors sy, . .., sy.[0®

II. GENERAL INTERACTIONS
WITH NO BACKGROUND POTENTIAL

Because angular momentum is conserved, an eigenfunc-
tion of the Hamiltonian (1) corresponds to a homogeneous
polynomial f, with all terms of degree M'=M
— N(N —1)/2. Without numerically diagonalizing the
Hamiltonian, one can make essentially no further state-
ments about which linear combinations of basis functions
correspond to eigenstates for general interactions ¥, and
backgrounds ¥;. If, however, the background potential
V, vanishes, additional properties of the eigenstates ap-
pear because the center-of-mass motion separates from the
other degrees of freedom.

A system with long-range interactions may fail to have
a thermodynamic limit unless a background potential is
included. If the particles give rise to a potential ¢(7), then
the background potential ¢,(#) is defined as the potential
that would result from a uniform density of particles each
with a potential —¢(r). If ¢(r) is shorter range than r 2
as r— oo (and sufficiently well behaved elsewhere), the
background potential will simply be a constant, except
close to the edges. For these systems, it is convenient to
extend the background density to infinity so that ¢, is
everywhere a constant, which can be chosen to be zero. In
the remainder of this paper, unless specifically mentioned,
we will assume a system with no background potential.

The Hamiltonian can be written
2

L +H(Z, ...

T oMt

_eA
c

P ,Zy) . (4)

The first term is the kinetic energy associated with the
center-of-mass coordinate R =N "' ;2j- The remaining
term H is a function of the coordinates relative to the
center of mass, Z;=z; —R (only N —1 of the coordinates

J

Z; are independent). Equation (4) implies that all eigen-

functions can be written in the form
¢=Rme"1R‘2/41Z(21,...,ZN). (5)

The interaction ¥, operates only on the 9 piece of .
It is convenient to replace the elementary symmetric
functions s; by a (nonstandard) set #;, where

tl =S, =NR N
(6)

ty=si (z;—Z;) for2<k <N .
The notation means that z; is replaced by Z; wherever it
appears. One can prove that as for the s;, any symmetric
polynomial f can be written as a unique polynomial func-
tion of the factors ¢, ..., ty.

We define S (k =0,1,...,M’) to be the subspace of
SM’ spanned by all polynomial functions of ti,..., 1ty
that contain precisely k factors of ¢;. Some polynomials
have the translation invariance (TI) property that they are
unchanged when all of the variables are shifted,
z;—z;+c, where c is an arbitrary complex number. [Ex-
ample: (z; —z,)3 has the property, z,z,(z; —z,) does not.]

One can then prove the following assertions: (a) S is
the TI subspace. Note that although the polynomials in
this subspace are translation invariant, the corresponding
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wave functions are not, because they contain an additional
exponential factor. (b) The dimension of S™ is n (N,M’),
the number of distinct ways that N nondecreasing, non-
negative integers can be chosen that add up to M’'. The
dimension of S is n(N,M')—n(N,M’'—1). (c) Two
vectors in different subspaces are orthogonal (the inner
product is defined as the usual inner product (¥, |,) of
the wave functions that correspond to the polynomials).
(d) Each subspace Si! is left invariant by the interaction
potential ¥,. (e) If |4) is an eigenvector, then R |¢) is
also an eigenvector with the same eigenvalue.

These statements (with minor additions) imply several
exact properties of the eigenstates. One has the subset
property that the list of energy eigenvalues for angular
momentum M contains the eigenvalue of any state with
lower angular momentum. The subset property arises be-
cause one can define many of the eigenstates with angular
momentum M +1 inductively from those with angular
momentum M. Let |j,k,M ) be an eigenvector from sub-
space k of J7(N,M) with eigenvalue €(j,k,M). Every
eigenstate with angular momentum M can be mapped
onto an eigenstate with angular momentum M +1 by
multiplying by R: R |jk,M )~ |jk +1,M +1). (Mul-
tiplication by R results in a state with a smaller filling
factor.) The new state is in the k 41 subspace, and has
the same eigenvalue, €(j,k +1,M +1)=¢€(j,k,M). The
only states with angular momentum M + 1 that cannot be
constructed inductively from those with angular momen-
tum M are those with kK =0 (those vectors in the TI sub-
space). See Fig. 1. It has not been possible to determine
a priori which vectors in the TI subspace are eigenvectors
without resorting to numerical diagonalization. When
this is done, the eigenvectors and eigenvalues are observed
to change as one changes the interaction potential V,.

Because one need diagonalize only the TI subspace
rather than the entire (N,M) Hilbert space, the range of
feasible numerical study is expanded. (We have not ex-
ploited this property in the limited numerics presented
here.) The invariance property of the TI subspace also
constrains the choice of physically relevant operators
(Laughlin’s quasihole operator 4, for example, does not
respect this invariance).

Multiplication of a state by R” increases its volume by
n units, but does not change any of its internal properties,
including any k-point function that gives the probability
of finding k particles in given positions relative to each
other. A state that includes a factor R" acts somewhat
like a marble rattling around in a box that is too large for
it.

If the external potential is nonzero, most of the proper-
ties discussed above do not hold. One exception is the
quadratic external potential V,=(k /2)2]. | zj |2, which
simply adds a constant to the Hamiltonian in a given
(NV,M) sector. The same results are obtained as in the
V=0 case, except that k(M +N) must be subtracted
from all eigenvalues before the subset property holds.
Note that if the particles have log interactions, the poten-
tial arising from a uniform background charge is precisely
quadratic. Particles with a 1/r interaction have a back-
ground potential that is nearly quadratic away from
edges.
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FIG. 1. Numerically obtained eigenvalues are plotted above
the angular momentum M for four particles; for clarity, only
the ground and first excited states are included for M =14
through 17. For this figure and for Table I, particles interact
via a repulsive interaction ¥, of vanishing range,
V,(r)=V?8(r); there is no background potential ¥;. Open cir-
cles indicate TI states and closed circles non-TI states. A solid
line connects the ground state for every M, and a dashed line
connects those ground states that are stable under pressure. The
following properties of this figure are shared by all systems with
V1=0: (1) Non-TI ground states have zero bulk modulus and
cannot be stable under pressure. (2) The eigenvalues for angular
momentum M are a subset of those for any M’ > M. (3) Multi-
plying an eigenstate by the center-of-mass operator R results in
an exact eigenstate with the same eigenvalue and one more unit
of angular momentum. All eigenstates that cannot be created
by applying R to a state of lower angular momentum are in the
TI subspace.

III. SHORT-RANGE INTERACTIONS

Additional properties emerge in the limit that the range
of the interaction potential goes to zero. It is convenient
to expand a short-range potential ¥,(|r|) in powers of its
range b,

Valr)= 3 c;b¥V¥s¥(r) . (7)
j=0

V, is assumed repulsive (non-negative), so that (¥,) > 0.
As the range b of the interaction goes to zero, only the
leading nonvanishing term in Eq. (7) contributes to the en-
ergy. Note that (c,8%r)) vanishes identically in any
(spin-polarized) antisymmetric wave function, so that the
pure delta-function term never contributes. All matrix
elements of ¥V, are O(b?) or higher. The O (b2 term,
V28%(r), is the interaction used in Fig. 1. For m odd and
v< 1/m, the energy of the exact ground state vanishes to
order b*"~2. This can be seen by constructing a trial
function =1, f(zy,...,zy), where f is a symmetric

polynomial. (Note that for m >1, most wave functions

cannot be written in the form #,,f.) Integration by parts
gives zero for (¥,) unless 2m factors of V operate on
Ypm¥m. For v=1/m, the only state that can be written as
Y=1,,f, and hence the only state for which (¥,) van-
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ishes to order b*™ 2, is =1,,. ¥,, then has lower ener-
gy as b—0 [0 (b?®™)] than any other state with the same
M=N(N—1)/2v. As a consequence, for all N,
Laughlin’s state 1, is the exact nondegenerate ground
state in the limit that the potential range goes to zero.!!
We emphasize that for short-range interactions and open
boundary conditions, the exact ground state is nondegen-
erate once the trivial degeneracy that corresponds to mov-
ing the center of mass is factored out. With periodic
boundary conditions, the ground state for v=1/m has
been shown to be m-fold degenerate;'? this degeneracy
can, however, be interpreted as a displacement of the
center of mass. It also follows that in the limit b—0, the
ground state for v<1/m must contain the factor 1,,.
This places a nontrivial constraint on the ground state for
v<+. For example, for v < 5, the new states proposed by
Hu,®? the unperturbed state of Tao and Thouless,® and
some (but not all) of those proposed by Halperin® have the
property that their energy divided by the correct ground-
state energy becomes infinite as b—0.

Since the ground-state energy is O(b¥"~% as
v—(1/m)* and O(b*™) as v—(1/m)~, the chemical po-
tential is discontinuous at v=1/m for sufficiently small
b. We believe, but have not yet proven, that for large N
this discontinuity is of order N° (does not vanish as
N— ). This belief is supported by an analytical argu-
ment and by numerical data. Using the N— o particle-
hole identity E(1—v)=E(v)+(1—2v)E(1), a discon-
tinuity at v=1/m implies one at v=1—1/m. Table I
lists filling factors that are stable under pressure (those at
which the chemical potential is discontinuous) for small
systems with short-range interactions. Because v, is the
only state at filling factor 1/m with an energy of order
b?™, it also follows that there is a gap in the neutral exci-
tation spectrum (excitations at fixed M) at v=1/m.

At a filling factor v=1/m, the Hilbert space has grown
just large enough to contain a single state (1,,) for which
the leading term in the short distance two-point function
is proportional to »?™. For v> 1/m, the two-point func-
tion is qualitatively different and must have a leading
term of order ™ ~* or less. An interaction of vanishing
range is sensitive only to the »—0 behavior of the two-

‘ point function, and renders the state ¢, exact.

There may be filling factors other than those at 1/m
(and 1—1/m) at which y is discontinuous (there is a gap).
For small b, however, the filling factors 1/m are special
and separate the spectrum into a hierarchy. As v de-
creases, the discontinuity at 1/m is the last one of
strength b2m—* those that follow are all weaker, of order
b?™ or higher.

The exact states v, provide a rigorous starting point
from which to do perturbation theory in the range of the
interaction. As v—0 for interactions of vanishing range,
the states v¢,, remain exact ground states and are never
preempted by a charge-density wave (CDW). This is in
contrast to the long-range 1/7 interaction for which a
CDW has a lower energy when v <v,.; Lam and Givin®®
estimate v, ~~.*!> We propose the following picture:

At v=1/m, as the range of the interaction increases, the
ground state ¥ evolves continuously from v,,, maintain-
ing a gap. This behavior persists until there is a transition
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TABLE 1. For systems of N particles, numerically obtained
filling factors v=N(N —1)/2M are listed which are stable at
some pressure. For N >6, some filling factors listed may be
rendered metastable by states at lower density than the smallest
investigated. Note that filling factors with even denominators
are obtained, and that some filling factors are impossible for in-
teger M (such as v==2 for N =6).

N v

3 13 3 b4
4 A

5 1 ¥ 5 7% 7
6 A

7 1 4+ &

8 1 7 % ¥

10 1 &

v
)

to a CDW, which occurs first for the smallest filling fac-
tors. By performing experiments on different time scales’
or on samples with and without nearby conducting planes,
it may be possible to test the prediction that a CDW first
appears at lower filling factors for a shorter-range (r ~3)
interaction than for a longer-range (r —!) interaction. To
substantially stabilize the states v,,, a conducting plane
should not be much farther from the 2D electrons gas
than the order of the electron-electron separation.

One might hope that a short-range repulsive interaction
would result in a ground state with a simple analytical
form at general filling factors, just as it does at v=1/m
and v=1—1/m. We have been unable to demonstrate
that this is true. One can show, however, that multiplying
Y by f1=S(z), f2=S(z,—2,)% and f3=S(2z,—z,
—z3)%, where S is the symmetrization operator, results in
exact ground states with 1, 2, or 3 units of angular
momentum greater than v,,. This applies for all repulsive
interactions with ¥;=0. It is also true that if the force
between particles is attractive, the exact ground state at
any M is R™);, with the energy independent of n and
n=M —N(N —1)/2. This statement is illustrated by in-
verting the y axis in Fig. 1. With the exception of f, f5,
and f; above, it is not generally true, even for an interac-
tion of vanishing range, that if fv,, is an eigenstate, then
f z/;,,,z will also be an eigenstate when m,s£m .

We note that if V=0, the Hamiltonian [Eq. (1)] im-
plies a strictly linear Hall conductivity o, =ve?/h for all
v. There are no plateaus, even at those v for which u is
discontinuous. Also, o,, is zero for all v. This follows
because in a reference frame moving at speed
u=c(EyXB)/B? the Hall field Ej is transformed
away, and the exact operator identity for the center-of-
mass velocity holds,

d
dt
(there is no restriction to the lowest Landau level). An

external pinning potential must be present for plateaus to
appear in 0y,. Similar observations were made by Halpe-

Vem. =(eB/m*c) XVe.m.
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rin in Ref. 2.

Finally, we consider Laughlin’s quasihole operator A.
A creates a superposition of states with the angular
momentum M increased by from O to N units. A particu-
lar angular momentum component of 21&,,, cannot be an
exact eigenstate, even as b—0, because it is~a mixture of
TI and non-TI vectors. The state Ay, [where
A= Hj(ij —zg)] is a pure TI state with improved overlap
against the ground state for small N, but it is still not ex-
act as b—0.

Although Laughlin’s quasihole state 21/1,,, is not exact,
it is a good approximate ground state for small numbers
of particles with short-range interactions. For N =3, 4,
and 5, a quasihole centered at the origin has a good over-
lap (n=0.9) against the exact ground state with AM =N
units of angular momentum more than the state ¥;. (The
quasihole state has a definite angular momentum if it is at
the origin.) The ground state in the sector AM =N is
stable under pressure. However, for N =6 and 7 the
ground state in that sector is only metastable under pres-
sure. This means that as the pressure is reduced, the sys-
tem jumps past the one-quasihole sector without sticking
there. For N =8 and 9, the one-quasihole sector is locally

unstable under pressure. Finally, for N =10, 11, and 12.

(N =12 is the largest system we simulated), a level cross-
ing occurs so that Laughlin’s quasihole state is very nearly
an excited state, rather than the ground state in its sector.
(The overlap with the ground state is 7=0.91 for N =9
and 7=0.005 for N =10.) A plot of the single-particle
density of states suggests that for N > 10, the system may
be phase separating into a v=1 phase near the center and
a v <1 phase near the edge, although the system is too
small to make a definite statement. A phenomenological
theory that explains the anomolous quantum Hall effect
in terms of phase separation rather than quasiparticles is
contained in Ref. 9.

IV. CONCLUSION

We have shown that for repulsive interactions of van-
ishing range, Laughlin’s state 1,, is the exact, nondegen-
erate ground state at filling factor v=1/m. For filling
factors less than 1/m, the exact ground state ) must con-
tain v, as a factor. This places a nontrivial constraint on
o for filling factors less than +, and rules out some pro-
posed ground states. In contrast to ,,, Laughlin’s
quasihole states are not exact for interactions of vanishing
range.

Although a Coulomb interaction is thought to result in
a charge-density-wave ground state for filling factors
smaller than v, (with one estimate of v, the order of %),
short-range interactions result in a ground state that is 9,
for arbitrarily small filling factors. A nearby conducting
plane should stabilize v,, compared to charge density
waves, reducing v,.

Several exact properties apply to systems with a vanish-
ing background potential, which corresponds to interac-
tions of shorter range than 1/r2 if there is to be a thermo-
dynamic limit. Such systems should be physically realiz-
able. These properties include a set of invariant sub-
spaces, and the center-of-mass operator R that creates ex-
act eigenstates when it operates on eigenstates. The ener-
gy eigenvalues are arranged in subsets, so that any eigen-
value for a particular filling factor is an eigenvalue for
any lower filling factor.
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