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An estimate of the undercounted electrostatic energy terms in local-density-functional total-
energy calculations for nonmetallic systems with separated electron-hole pairs is used to derive a
simplified correction to density-functional —theory band gaps. The correction is evaluated for Ne,
Ar, Kr, LiF, NaC1, CsC1, MgO, CaS, BaS, C, A1P, and Si. The band-gap errors are reduced from
40—50%%uo to 10—15% for most of the systems studied. Conduction-band corrections are shown to
be nearly as large as valence-band corrections in free-electron-like semiconductors.

I. INTRODUCTION

The applicability of density-functional (DF) theory to
the calculation of excitation energies in semiconductors
and insulators has recently received intense scrutiny. '

It is by now generally believed that DF theory can pro-
duce correct band gaps, ' since these are differences be-
tween total energies of ground states of systems having
different numbers of electrons. However, even with the
exact DF one-electron ground-state potential, excitation
energies in insulators cannot be expressed directly as
differences between one-electron eigenvalues, since the po-
tential changes discontinuously across the band gap. '
Thus gradient corrections and other methods for obtain-
ing DF potentials more accurate than those given by the
local-density approximation (LDA) can alleviate only a
small part of the 40—50 %,band-gap underestimates
caused by the LDA. Methods proposed for obtaining
gaps superior to the LDA gaps include the use of (1)
frequency-dependent self-energies based on approximate
dielectric functions, which have achieved promising re-
sults for C and Si, ' (2) orbital-dependent self-interaction
corrections, ' "" which have produced accurate band
gaps for narrow-band insulators, and (3) screened empiri-
cally obtained atomic-interaction parameters.

In this paper we propose a physically transparent model
for the LDA band-gap discrepancies which applies to a
wide variety of solids, ranging from free-electron-like
semiconductors to narrow-band insulators. Rather than
attempting to calculate the correct frequency-dependent
quasiparticle potential for valence- and conduction-band
states, we focus directly on estimating the LDA underesti-
mate of the total energy for a system containing a separat-
ed electron-hole pair. We favor this approach because
density-functional theory is primarily aimed at obtaining
correct total energies and charge densities, rather than
quasiparticle potentials. As is pointed out in Ref. 13, the
use of the LDA implicitly assumes that the exchange-
correlation hole surrounding an electron is complete, i.e.,

J dr'[&n(r)n(r') &
—&n(r) &6(r—r')

—(n(r) ) (n(r') ) ]= —(n(r) )

for all r. Here n(r) is the electron number density opera-
tor. Equation (1) is satisfied in any many-electron system,
provided that the integral is taken over a region including
the whole system. In the uniform electron gas systems
used to obtain the LDA one-electron potential, the sum
rule (1) is actually exhausted over a distance of a few in-
terelectron spacings. This is also expected to be true in
atoms, molecules, metals, and insulators without free car-
riers, which is consistent with the success of the LDA in
calculating ground-state properties in these systems.
However, in insulators with free carriers it is necessary to
take the integral over a region whose volume is compar-
able to the volume per carrier in order to exhaust the sum
rule. Thus we expect errors to result from the application
of the LDA to such systems. It will be shown that the ex-
tra electrostatic energy associated with the incompleteness
of the exchange-correlation hole can in fact explain a
large part of the LDA band-gap underestimates.

II. DERIVATION OF MODEL

We obtain a simple estimate of the extra electrostatic
energy due to the incompleteness of the exchange-
correlation hole, 'beginning for simplicity with the case of
a Bravais lattice of atoms sufficiently widely spaced that
the crystal charge density is practically indistinguishable
from the atomic charge density. The fluctuating part of
the electron-electron interaction energy is given by

e I [p(r, r';t =0)—(n(r) ) (5(r—r') ) ]

p(r, r', t)= —,
' (In(r, t),n(r, 0)I ) —(n(r))(n(r'))

defining p. If there are no free carriers in the system,
then the lowest-lying excitations of the system are exciton
states, and the characteristic frequency scale associated
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with p(r, r', t) is an atomic frequency co„. However, if a
single free quasiparticle is present, another frequency
coband«mat appears, which is associated with intraband
transitions between different Bloch quasiparticle wave

I

states. %"e expect the errors induced by the LDA to be
most pronounced for the energy U„p associated with the
slower frequency scale, and thus focus on estimating
Uxc, o If cop satisfies Nband «~p «~at~ then

U„,o- f f p(r, r',co), dr dr'=
2 ~o 217 r —1'

e dt 1f f sin(toot )p(r, r',t), dr dr'
2 —~ art r r—'

e p(r, r';to)
dl' dl'

2 r —r'

where
—1 —1« tp «~band

A straightforward calculation shows that if to satisfies (2), so that the quasiparticle may be regarded as stationary, then

( n (r) ) =n„(r—R)+—5n,„(r—R)1

and

—,( In(r, to), n(r', 0)] ) = 1 ——n„(r—R)n„(r' —R')

+—[n,„(r—R)+5n„(r—R)][n,„(r'—R')+5n„(r' —R')] if R=R'

=(n(r))(n(r')) —
2 5n„(r—R)5n„(r' —R') otherwise .

Here R is the position of the nucleus closest to r, n„ is
the atomic dectron density, X is the number of atoms in
the system, and 6n„ is X times the charge-density change
associated with the quasiparticle, so that

1 (electron)
5n,„rdr=

atomic cell 1 (hole)

Thus, to order 1/Ã,

—[5n„(r—R)5n„(r' —R')] if R= R',
p(r, r', to) =

0 otherwise

I

uniform electron gas having the weighted average density
3

n = f5n„(r)n„(r)' d r

(We average n,', rather than n„because the screening
energy is nearly proportional to n,', .) We further ap-
proximate the pair distribution function by
g(

~

r —r'~;n) —1=—e " ' ', where a=(Sion)' This.
form for g guarantees that

j f5n„,(r)dr
~

=1 and that
g(O, n ) =0; the latter condition is well satisfied in electron
gases at typical valence electron densities. ' The error in
U„, p due to the LDA is then

2

AU„p ——

e 5n,„(r)5n„(r')
atomic cell

[5n „(r)5n„(r') 5n„(r)5—n„(r')]

In the LDA it is assumed that 5n„ is screened within a
metallic screening length and screening time, so that the
LDA charge-density change 6n „satisfies

f 5n„(r)dr=0 .
atomic cell

U„, p is therefore obtained incorrectly. To estimate the
LDA error in U„p, we estimate the LDA screening elec-
tron density 5n„, as follows:

5n„,(r)=n fdr'[g(
~

r —r' ~;n) l]5n„(r') . —

Here g(
~

r —r ~;n) is the pair distribution function for a

where 6n „=6n„+6n„,.
To treat the case of denser solids, we divide the electro-

static correction AU„, p by the observed static electronic
dielectric constar t E'o. This procedure would be rigorously
correct if AU„, p resulted from a static external charge
distribution having a very long wavelength (neglecting lat-
tice contributions to screening). The neglect of the fre-
quency and wave-vector dependence of the dielectric func-
tion should also be a reasonable approximation here be-
cause (1) we are primarily concerned with the low-
frequency part of U„, and (2) the discrepancy b, U„O has
its largest contributions at small wave vectors q. The
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atom over which the integrals in (4) are performed is tak-
en to be a unit cell, centered on the atom on which the
level under consideration has the greatest amplitude; in
cases such as Si and C in which the top of the valence
band has equal amplitude on both of the atoms in the unit
cell, one of the two equivalent nuclei is arbitrarily chosen
as the center of the "atom. " We approximate 5n„(r) by

!

the square of the appropriate LDA wave function, nor-
malized to the unit cell.

The corrected band gap is then given by

ELDA+ g

~here

e [5n„(r)5n„(r') —5n „(r)5n„(r')]drdr'
unit cell

5n„(r) =
! g, ,(r) dr

Es is the LDA band gap, and g, ,(r) are the LDA
wave functions for the quasihole and' the quasielectron.
The correction is the sum of two positive contributions,
coming from the incomplete screening of the electron and
the hole. By contrast, in frequency-dependent self-energy
methods, the correction is obtained as the difference be-
tween the self-energies in the valence and conduction
bands.

The approach suggested here, while similar in spirit to
that described in Ref. 9, differs in that no experimental
input other than eo is used, and that separate corrections
for the valence and conduction bands are calculated.
There are also formal similarities between Eq. (5) and the
self-interaction correction ' "" (SIC). However, the
physical assumptions underlying the derivation are quite
different:

(1) We treat the conduction and valence bands on an
equal footing. In the SIC method, the conduction-band
corrections are assumed to be negligible. The numerical
results to be discussed later indicate that 6, is comparable
in magnitude to A„particularly in broadband semicon-
ductors.

(2) We emphasize the errors in the total energy of the
excited final state containing an electron and a hole. The
SIC method focuses on obtaining an accurate potential for
valence-band electrons in the ground state.

(3) In extensions of the SIC method to solids, the atom-
ic wave functions have generally been replaced by Wan-
nier functions derived from the Bloch waves. Because we
emphasize the underestimate of the electron-electron in-
teraction energy in the LDA, we instead focus on the elec-
trostatic screening effects due to the solid environment.

III. RESULTS

We have evaluated (5) for a wide variety of nonmetallic
solids, ranging from atomiclike insulators to nearly-free-
electron-like semiconductors: Ne, Ar, Kr, LiF, NaC1,
CsC1, MgO, CaS, BaS, C, A1P, and Si. The systems stud-
ied are chosen (1) to sample each chemical group as com-
pletely as possible, but (2) to avoid complications due to
relativistic effects. ' Thus GaAs, for example, is not in-
cluded because the relativistic band energy shifts can be as

E'"p'-g &c

ELDA
g

IO-

IO-

Ne Ar Kr
1.23 I.62 I.82

LiF
l.94

NaCI CSCI MgO CaS BaS C

6o 2.38 2.70 3.0I 4.57 4.64 5.84
Al P Si

Co 8.5 I I.9

FICx. 1. Calculated valence- and conduction-band corrections A„and A„LDA band gaps Eg", and experimental band gaps Eg" '.
The zero-wave-vector static electronic dielectric constant eo (Ref. 25) is given for each substance.
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large as half of the band gap. ' The calculations are per-
formed using the self-consistent augmented-spherical-
wave (ASW) method, ' with empty spheres used for the
sodium chloride, zinc-blende, and diamond struc-
tures when used in this fashion, the ASW method
produces results in close agreement ' with those obtained
using state-of-the-art band-structure methods. The
Hedin-Lundqvist form of the exchange-correlation energy
functional is used. Relativistic effects are neglected.

We have used an approximate scheme for evaluating
the electrostatic integrals in (6), primarily because the ap-
proximations already made [such as the use of the static
dielectric constant eo and the restriction of the integrals in
(6) to exactly one unit cell] are sufficiently crude to render

improved accuracy in the electrostatic integrals of little
value. In this scheme the charge from the ASW spheres
other than the central sphere is approximated by spherical
shells with suitably chosen radii. We estimate " that this
procedure causes errors of & 10% in (6); since (6) is typi-
cally only half of the band gap, the resulting error in the
gap is (5%.

The results for b,„and b,, are shown raphically in
Fig. 1 along with the LDA band gaps Eg and the ex-
perimentally determined gaps Eg' '. In each case 6, is
less than but comparable to b„, with the ratio 6, /5„
varying from 0.3 in Ne to 0.9 in Si. The smaller value of
5,, is due to (1) the more diffuse charge density of the
conduction-band wave functions and (2) the lower valence
charge density in the spatial regions where the
conduction-band wave functions are concentrated. These
differences are much less pronounced in free-electron-like
semiconductors such as Si than in atomiclike insulators
such as Ne.

The electrostatic correction 5, +5, significantly im-
proves the agreement of the theoretical and experimental
gaps. Most of the discrepancies are reduced from

40—50% to 10—15%. The corrections are systematically
overestimated, in part because relaxation effects are un-
derestimated by the use of LDA wave functions in calcu-
lating b,, +b,, [cf. Eq. (6)]. The results for Ne, LiF,
Mgo, and C, all of which contain atoms in the first row
of the Periodic Table, are worse than for the remaining
systems. The difficulties with the first row atoms are
probably due to their highly localized 2p valence orbitals,
for which the LDA is a bad starting point. However, the
overall improvement in the calculated gaps for the wide
variety of solids studied here suggests that the physical. ef-
fects included in the model are in fact the dominant ones.

Achieving the utmost accuracy in excitation energies
will undoubtedly require elaborate many-body calcula-
tions building on the techniques developed in Refs. 2—6.
However, the simplicity of the model described here pro-
vides easy interpretability and enables one to study broad
classes of systems with comparatively little computational
effort. It would be desirable to apply the model to
pressure-induced band-overlap metallization and other
problems in which eo is not known. This will require a
self-consistent calculation of eo from the quasiparticle
band structure (which in turn is affected by eo). Success-
ful calculations of the dielectric functions of semicon-
ductors, based on semiempirically obtained band struc-
tures, indicate that this task is feasible.
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