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The heat capacity and the magnetic susceptibility between 1 and 33 K of antiferromagnetic
Rb2FeC15.H20 with spin S= 2 are reported. Examination of the possible superexchange paths and

analysis of the data allow us to conclude that the magnetic lattice presents low dimensionality at
higher temperatures and then orders three dimensionally at 10.0+0.02 K. The experimental results
have been fitted to a Heisenberg model with two effective intrachain and interchain exchange in-
teractions. Theoretical values for the thermodynamic functions and characteristic fitting parame-
ters J,' /k&T„J,' /k&T(P, „), and P,„have been calculated by means of high-temperature-series
analysis. The best fit gives J,' /k~ ———1.45+0.06 K and J„'~/k~ ———0. 15+0.07 K. Spin-wave
theory has been extended to this particular case of magnetic lattice crossover, the parameters result-
ing being in agreement with those from the paramagnetic region. A comparative analysis of the iso-
structural series 32FeC15 H20 (2 =K, NH4, Rb) is carried out within the same theoretical frame-
work.

I. INTRODUCTION

The series of compounds A2FeC15 H20 (2 =K, Rb,
Cs, and NH4) have received recent interest because of
their special magnetic characteristics. The compounds or-
der antiferromagnetically at temperatures below 20 K
which permits the determination with reasonable accuracy
of the magnetic contribution to the total heat capacity in
each compound. Moreover, the presence of the Fe(III) ion
in a high-spin, S=—,', octahedral coordination makes
these systems highly isotropic with respect to the magnet-
ic properties and, therefore, they are good representatives
of the Heisenberg model. Finally, an additional point of
interest comes from the fact that the number of Fe(III)
compounds studied showing magnetic ordering is rather
small.

The thermomagnetic properties of Cs2FeC15.H20 have
already been reported. ' The present contribution deals
with the series of isomorphous compounds AzFeC15 HzO
where A =K, Rb, and NHq. The main difference be-
tween this family of compounds and Cs2FeC15 H2O is
that the latter crystallizes in the Cmcm (Dz'7&) space
group, while the rest of the compounds belong to the
space group Pmna(Dzh). Since differences in the
magnetic behavior are expected, a separate study seemed
appropriate.

Previous measurements of the heat capacity and the
magnetic susceptibility for the K and NH4 (Ref. 6) com-
pounds and of the susceptibility for the Rb compound * '

were interpreted in terms of the presence of coupled anti-
ferromagnetic linear chains. However, there are some
features which point out that the problem remains un-

resolved. There are two sets of magnetic susceptibility
measurements of the Rb compound available in the litera-
ture differing from each other in magnitude by about 8%,
the model used to fit the experimental data for the three
members of the series has only qualitative value and, fi-
nally, no comparative study of the magnetic properties of
the series, showing the effects of the relatively small
structural variations, has appeared so far.

The paper is set up as follows: First, heat capacity and
magnetic susceptibility measurements for Rb2FeC15 H20
are reported. Then the magnetic superexchange pathways
are analyzed and the crossover theory for a Heisenberg
antiferromagnetic linear chain ferromagnetically or anti-
ferromagnetically coupled with neighboring chains is
presented. In the absence of high-temperature-series
(HTS) expansions for such a model with S=—,', the
S= Do case has been considered in the paramagnetic
phase and a comparison with the experimental data is per-
formed. In the next section predictions for the ordered
phase, by means of the spin-wave theory for an S= —,

'
Heisenberg system, are obtained and used to fit the experi-
mental data with the same parameters as in the paramag-
netic phase. Finally, the same theoretical model is used to
reanalyze the heat capacity and magnetic susceptibility
data available in the literature for the isomorphous K and
NH4 compounds. A good correlation between the crystal-
line structure and the magnetic properties is found.

II. EXPERIMENTAL

A. Heat capacity of Rb2FeC15.HqO

The heat capacity of Rb2FeCl5. H2O in the temperature
range 1& T &35 K has been measured in an adiabatic
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FIG. 1. Experimental heat-capacity data (open circles) and calculated lattice contribution (continuous line} for RbzFeC15 HzO. In
the evaluation of the lattice a value of A =O. 1 is used (see text).

calorimeter. ' The sample was prepared by powdering
crystals grown from an appropriate aqueous solution.
The results are shown in Fig. 1. A A, anomaly correspond-
ing to the para-antiferromagnetic transition is found
at T, = 10.00+0.02 K, in good agreement with
T, =10.10+0.02 K deduced from susceptibility data.
The shape of the high-temperature (HT) tail suggests the
presence of low dimensionality of the magnetic properties.

which each iron atom is surrounded by five Cl atoms and
the 0 from the water molecule. The octahedra are dis-
torted tetragonally along the Fe—0 bond, which is shorter
than the equatorial Fe—Cl ones. The four complex ions,
[FeC15(H2O)], are arranged within the unit cell in two
antiparallel pairs, the angle between the apical Fe—0
directions of the octahedra and the a axis being 38. In
Fig. 2 a composition of four unit cells is represented,

8. Magnetic susceptibility of RbqFeC15-820

Measurements of powdered- and single-crystal samples
of Rb2FeClz HzO have been performed at zero field and
selected temperature intervals with two different mutual
inductance bridges. The frequency used was 332 Hz while
the ac field amplitude never exceeded 0.5 Oe. The data
show a rounded maximum at T,„=j.2.5+0.3 K and
X,„=0.088+0.01 emu/mol. The easy axis for the anti-
ferromagnetic alignment was found to be the a axis of the
crystal, in agreement with previously reported measure-
ments. An extrapolated value of Xi(T=0 K)=0.089
emu/mol was obtained.

These data are about 2% higher than those measured
by O'Conner. Since the experimental accuracy of this
method is about 1%, the present data and that published
in Ref. 8 are comparable. Thus, whenever a comparison
is done below, only data of Ref. 8 will be considered.

III. SUPEREXCHANGE PATH%'AYS

28
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/

/
v
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R12Fecl5.HqO crystallizes in the orthorhombic space
group Pnma, with four molecules per unit cell (Z =4),
like the K and NH4 isostructural compounds. The ce11 di-
mensions of tlie three systems are collected in Table I.
The lattice is formed by discrete octahedral units, in

FIG. 2. Crystal structure of Rb2FeC15 H20. The unit cell is
doubled along the a and b axes. For clarity the Rb atoms are
not included in the figure. The differences in size of the atoms
indicate different a-b planes. +, Fe(+ ); I, Fe(1); II, Fe(2);. . .;
XIII, Fe(13).
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13.706
9.924
7.024

13.75
9.92
6.93

13.825
9.918
7.100

where, for clarity, the Rb atoms have not been included.
Distances between a reference ion Fe(e ) and any of its

14 nearest Fe neighbors range from 6 to 9 A. Several su-
perexchange paths, all involving two atoms, can be identi-
fied. The first path, labeled by the associated exchange
interaction J& (Fig. 3) would go through mixed oxygen-
chlorine bridges forming zig-zag chains parallel to the b
axis, connecting Fe(e ) to Fe(5) and Fe(6). On a compara-
tive basis this interaction path can be considered to be the
strongest, since it shows the minimum Cl-0 distance, 3.18
A. Moreover, hydrogen bonding involving the water mol-
ecule very likely contributes to the propagation of the in-
teraction through this path.

A second and third interaction, denoted by J2 and J3 in
Fig. 4, propagate in the a-c plane. Again double bridges
Fe( e )—Cl—0—Fe are formed for each interaction. Path
J2 connects Fe( e ) to Fe(1) and Fe(2) in a direction paral-
lel to the a axis, and interaction path J3 connects Fe(e )

0

TABLE I. Elementary cell dimensions, in A, of isostructural
AqFeC15. H20 ( A =Rb, K, and NH4) compounds.

A =NH4

to Fe(3) and Fe(4) in a direction parallel to the c axis.
Each path has a weaker alternative for the same
Fe(e)—Fe connection through double bridges Fe(e)—
Cl—Cl—Fe.

A fourth interaction, J4 in Fig. 3, propagates three di-
mensionally through the lattice. Again double bridges are
formed, this time of the type Fe(e ) —Cl—Cl—Fe connec-
tions Fe(e) to Fe(7), Fe(8), Fe(9), Fe(10), Fe(11), and
Fe(12). In Fig. 3 the connection between Fe(e) and
Fe(12) is represented. Finally the interaction with atoms
Fe(13) and Fe(14) may be considered almost negligible,
since their separation from the Fe( e ) is 9 A.

It has already been mentioned that J~ seems clearly to
be the strongest interaction path. It is not so clear, how-
ever, how to sort the J2, J3, and J4 interactions by their
relative strengths since the intensity of the exchange in-
teractions is very sensitive to distance. Also, oxygen
ligands provide exchange interactions stronger than
chlorine ones, in part because of the lower electronegativi-
ty of the chlorine as compared with that of the oxygen.
Therefore, the superexchange interaction path J2 seems to
be stronger than J3 since the Cl-0 distance in
Fe—Cl—0—Fe bridges is shorter in Jz (3.50 A) than in J3
(3.92 A). However, that difference might be partially
compensated by the shorter Cl-Cl distance in the
Fe—Cl—Cl—Fe bridges along J3 path (3.80 A in J3 versus
4.04 A in J2). On the other hand, J4 seems to be the
weakest interaction, since it propagates only through

FIG. 3. Superexchange interaction paths JI and J4 for Rb2FeC15 H2Q. Only the relevant distances and angles have been indicated.
Fe atoms are labeled as in Fig. 2.



31 MAGNETIC DIMENSIONALITY CROSSOVER. . . 519

b =1/4

FIG. 4. Superexchange interaction paths J2 and J3 for Rb2FeC15.820 along plane b = 4. Plane b = 4 shows a correspondingly

symmetric scheme. Fe atoms are labeled as in Fig. 2.

Fe—Cl—Cl—Fe bridges, with distances between the
chlorine ligands of dcici ——3.85 and 3.97 A. Moreover,
the Fe—Cl bond distances are over 10%%uo larger than the
Fe—0 one, supporting the assumption that J~ &
( J2 &J3) &Jq.

From the above analysis one can expect a certain low-
dimensional magnetic behavior for RbzFeClq. H20 because
of the larger strength of the J i superexchange interaction.
However, pure linear chainlike properties cannot be ex-
pected since the J2 and J3 paths propagate non-negligible
interactions to the four neighbors allocated in planes per-
pendicular to the J~ path.

The (intrachain) interaction J, will be identified with
the Ji one, and the (interchain) interaction J„„will be
identified with the average J„~=(Jz+J3)/2. In this
scheme, the interaction J4 is neglected. Discrepancies of
the data with the model will be a test of the adequacy of
the simplifications chosen.

IV. STUDY OF THE DIMENSIONALITY
CROSSOVER OF THE MAGNETIC LATTICE

The present problem belongs to the general case of a
magnetic lattice which has predominantly low-
dimensional interaction geometry with nearest-neighbor
atoms along one direction and a weaker interaction with
atoms placed in perpendicular planes. When the tempera-
ture is low enough for this secondary interaction to play a
competing role, the magnetic properties of the system pass
from low to higher dimensionality.

For all compounds of the A2FeC15 H20 series the
Fe(III) ions are surrounded by distorted octahedra and
have a S5~z ground state. Spin-orbit coupling splits that
state into three Kramers doublets with energy differences
negligible in comparison with the temperatures at which
the present measurements have been performed. In fact,
since the anisotropy parameter has values a=3.4&10
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for the Rb compound and a=8.5&& 10 for the K one
the anisotropy field cannot produce significant splitting.
The Lande g factor was measured with EPR spectroscopy
of Fe(III) in the diamagnetic isostructural matrix
(NH)4InC15. H20, obtaining a value of g =2.014+0.003. '

Consequently, an isotropic Heisenberg model with g =2
and S = —,

'
will be considered in what follows. The

present work develops the theoretical framework for the
(d =1) to (d =3) and (d =2) to (d =3) crossovers.

The only existing power-series expansions with ine-
quivalent neighbors (i.e., linear chains coupled three di-
mensionally) for the Heisenberg model are for S=no.
Only ten coefficients for the susceptibility and five for the
heat capacity have been calculated so far." Nevertheless,
this result is useful in the present case as it is physically
significant, above the critical temperature, to fit data for a
S =—,

'
system with the predictions for a S = ao one. This

is so because the coefficients of X and Cz as a function of
the reduced temperature, r=k&T/JS(S+1), tend
smoothly to the values for S = oo as S increases. In fact,
for all magnetic lattices' which have been studied the
values of the coefficients for S = —', are very close to those
fol' S= oo.

There are, nevertheless, qualitative differences between
the classical Heisenberg (CH) model and the quantum one
(finite S), even for the high-temperature-series results.
One of the Inost relevant peculiarities of the CH model is
that it gives the same position for the ferromagnetic (FM)
and antiferromagnetic (AFM) reduced critical ternpera-
ture, r, and rz, respectively, whereas for the S = —,

'

Heisenberg Hamiltonian r, is smaller than r~ (Ref. 13)
[r~/r, = 1.012 for the s'imple cubic (sc) lattice (Ref. 14)].

On the contrary, in the ordered region the S= ao model
yields to conceptual difficulties; therefore, spin-wave
theory for a Heisenberg Hamiltonian with S = —,

' and the

experimentally observed anisotropy will be used in the or-
dered region.

Cp /R —A B(1—K/X—, ) (2)

where —stands for "is asymptotically proportional to,"
and a is the critical exponent for the heat capacity. Then,
following Domb and Bowers, ' the ratio for each C~/R
series coefficient with the corresponding one from the ex-
pansion (1—K/X, ) has been calculated. If the series
converges properly for sufficiently high order of the coef-
ficients, these ratios should give the value of the critical
amplitude B. Using a= —0. 14, ' the sequence of ratios
for 1 &9t' &0.3, although increasingly scattered as A de-
creases, gives values of B reasonably consistent among
each other for high orders of the coefficients, while for
A & 0.3 the scatter in the coefficient ratios is so large that
it renders impossible the determination of B. Once the
parameters cx, K„and B have been selected or estimated,
the Cz curve can be extended down towards T, applying
PA to the expression

y=1.405 for the critical exponent' ' found for J, &0
and W = I has been taken, and the universality hypothesis
allows its use for any PI&1 (except for the limit 98=0
and oo). Since the above value for y is not the only one in
the literature, e.g., y = 1.375 as deduced by Bowers
et al. ,

' it is convenient to know the sensitivity of IC, to
changes in y. The calculations show that EC, changes
about 2% when y varies from 1.405 to 1.375, but this
change in E, is 'insignificant for the usual fitting pur-
poses.

Once K, is known, it is possible to calculate the
theoretical prediction for C~(T) for every value of &.
Applying PA directly to the series expansions and taking
into account the dispersion of the approximants, it is only
possible to obtain reasonably accurate Cz estimations well
away from the critical region. In order to have values of
Cz as near as possible to the critical region, a somewhat
different approach has been done. In the critical region
one may assume a behavior for Cz, as X tends to E,
(E (K, ), of the form'

A. Paramagnetic phase: Theoreticai study

In this section, the characteristic parameters of the sus-
ceptibility and heat capacity as well as theoretical predic-
tions for both g and Cz as a function of the temperature
are calculated. The calculations are based on the results
of Lambeth and Stanley, "who use the Harniltonian

where S; is a classical vector in three dimensions, the first
summation is over the nearest. -neighbor pairs in the x-y
plane, and the second summation runs over pairs along
the chain direction (z direction). The series expansion can
bc developed as a double series of the parameter
K =J& /kz T and the ratio A' =J& /J &, with J&

——J, and

J( ——J&y in the linear-chain —sc crossover, and J) ——J~~,
J&

——J, in the square-planar-sc crossover. '

To start with, the position of the FM singularity, EC,

has been analyzed, obtaining the roots of the Pade-
approximant (PA) denominators' of the transformed sus-
ceptibility series (X)'~r for different 9F values. The value

C&/R =(I'A )[(hts)+B(1—K/IC, ) ]—B(1—K/X, )

(3)

The PA's applied in order to obtain the Cz curves were
the [N/N —1], [N/N —2], [N —1/N], [N 2/N], and-
so on. They are expressed in the usual nomenclature of
[N/D] for the PA of order N in the numerator and D in
the denominator, with X and D compatible with the
available number of terms in the series. The representa-
tive curves are shown in Fig. 5, where the error bars below
T=1.2T, indicate the dispersion of the different PA at
that temperature. Above 1.3 T, the dispersion becomes
negligible.

The heat-capacity curves are independent of the signs
of either J, or A', since in the high-temperature series of
Cz, only the even powers of K and A are present for
S=oo. Then one cannot establish from C& data alone
whether J, corresponds to a FM or AFM interaction, or
determine the relative signs of J, and J„„.In order to de-
cide on this point it is necessary to use the susceptibility
series, since they contain both even and odd powers of K
and A'.
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that X(T) shows no singularity and that the J, exchange
predominates over J„», as discussed in Sec. II. The first
condition excludes alI cases belonging to octants I and 2
while the second one eliminates those covered by the oc-
tants 3, 6, and 7.

Then, the magnetic behavior of Rb2FeC15.H20 should
fit in one of the octants 4, 5, or 8; that is, it should corre-
spond to AFM chains, either ferromagnetically (octant 4)
or antiferromagnetically ordered (octant 5), or FM chains
antiferromagnetically ordered (octant 8).

One expects that the C~(T) and X(T) experimental data
may be fitted unambiguously with just one set of J, and
A' parameters. To obtain the fit, a first scan is done sub-

2 4 6 8 10 12 14

k BT /' l&, i

FIG. 7. Theoretical predictions for the susceptibility in the
paramagnetic phase (continuous lines), for several values of the
ratio J„~i'J„compared with data from Rb2Fec15 820 (open tri-
angle).

stituting the three values T, =(10.01+0.02) K,

T(X,„)=(12.5+0.3) K,

and Xm,„=(0.088+0.001) emu/mol in Table II, for vary-
ing A' values. The discrepancies of the J, values within
the set deduced for any W value belonging to octants 8
and 4 are so large that they exclude those cases.

On the other hand, a reasonable consistency (dispersion
of about 10%%uo in J, ) is obtained for A' =0.I, i.e., in octant
5, with the average value J,/ks ———8.4+0.5 K (CH
model S = oo ). One concludes that the system is formed
from antiferromagnetic linear chains, coupled antifer-
romagnetically.

The above values may be tested by substituting them
into the X(T) theoretical prediction and comparing the re-
sult to the experimental data in the whole temperature
range. This is depicted in Fig. 7, where one observes that
the experimental susceptibility follows the prediction for

0. I with a maximum discrepancy of 10%%uo.

The magnetic heat capacity C is also very sensitive to
the lattice dimensionality and therefore it can be used for
an independent determination of A. In fact, plotting the
experimental C /R versus T/T„ the shape becomes
dependent only on IA' I, allowing its determination by
comparison to theory, in principle. However, the lack of
a proper estimation of the lattice contribution for this case
precludes the determination of C . Notwithstanding, the
C» data may be useful to check pairs of J, and A' values
in the following way. The theoretical C curve for the
given crossover may be subtracted from the HT experi-
mental Cz data. The temperature range used in this
operation is limited to that in which the PA's of the HTS
for C has a dispersion smaller than 5%%uo. The lattice
heat capacity obtained, Ci, in this restricted region has
been fitted by least-square methods to an odd power poly-
nomial like /IT +BT +CT (Ref. 20) and is then extra-
polated down to 0 K. The difference between the experi-
mental C~ and the estimated C& is, consequently, the
magnetic contribution to the heat capacity in the whole
temperature range.

The anomalous entropy content obtained from C is
close to the theoretical one bS~ =R In(2S+ I)=1.79
only for values of W between %=0.1 (AS =1.88 R),
and 9F=0.2 (bS~ =1.72 R). Any other & value yields
an anomalous entropy content differing more than 10%
from the theoretical value. A lattice contribution calcu-
lated for &=0. I is depicted in Fig. 1.

From the analysis of the heat capacity and magnetic

TABLE II. Representative values of
I J, I /kz T„

octants 4, 5, and 8 of Fig. 9.
I
J.

I
/ks&(X -) a«X -=X-.

I
J. I /&I &g

J, &0, %)0

J, &0, %&0

Js)0, 9&0

I J, I/ksT,
I
J,

I
/AT(X, „)
+max

I J*
I
/ka&(X -)
+max

I J, I
/ksT(X, „)
+max

0.3213
0.217
0.0796
0.235
0.239
0.227
0.119

0.5

0.358
0.334
0.1183
0.350
0.231
0.34
0.240

0.3

0.479
0.437
0.145
0.45
0.224
0.50
0.397

0.1

0.840
0.616
0.182
0.627
0.214
0.84
1.24

0.05

1.17
0.97
0.192
0.67
0.207
1.2
2.5
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susceptibility in the paramagnetic region the value
J, /kz ———8.4+0.5 K (CH) is obtained. This value slight-
ly differs from the J,/kz ———7.7+0.4 K given in a pre-
liminary report' although it overlaps with it. The dis-
tinct procedure followed here in the evaluation of the data
accounts for the difference. The above J, /kz corresponds
in a S=5/2 system to J,'/kz= —1.45+0.06 K. Also
from the value of A' one obtains J„'z/kz ———0.14+0.04
K; that is, an order of magnitude lower, in agreement
with the expected relative intensities in the pathways dis-
cussed in Sec. II.

a b
+2J'y g S; SJ gpzHg g—Sg'+ QSJ''(')-» I =1 j=1

(6)

where J,' and J~ denote the intrachain and interchain in-
teractions, respectively. H„ is the anisotropy field, the
superscripts "a" and "b" label the two magnetic sublat-
tices, and S is equal to —,.

Using the Holstein-Primakoff relations to map the spin
deviations to the bosonic space (free magnons) and apply-
ing the usual Fourier transformation to the reciprocal
space, ' the Hamiltonian (6) may be expressed as a func-
tion of creation and annihilation operators for both sub-
lattices

~=Eo+2lxySq~ '~~X-„-„„)(a b +a b )k ~k("») k k k k

+2J' Sq "2
&,&(a b +a b )kk "& k k k k

+(2J' Sq' ~'+2J,'Sq"

with

+gpzH& )X-(a -a-„+b-b-)
k k k k k

(7)

Eo NS (q'"'~'J~+—q "——J,' ) gIJzH~SN, —
where higher-order terms have been neglected, q" and
q' '"~ are the number of nearest neighbors in the z direc-
tion and in the x-y plane, respectively, the y functions be-
ing

1 {z),{x,y)y„= ~,~~„~ g expi(k r ' '
)

{NN){z),{x,y)

with summations extended only to nearest neighbors.
If one defines the parameter g=q'"'"'J„~/q "J„and the

anisotropy parameter a=H&/Hz, then Hz ——2q"J,(1
+g)S/gpz and the effective number of nearest neighbors
becomes g' dependent, q =q~'(1+('). Consequently the
effective y function takes the form

y'-„'= (y'-„'+ q y'-"'"') /(1+ g),

C. Ordered phase: Spin-wave theory

In order to extend the study of the magnetic dimen-
sionality crossover to the ordered region, the suitable
spin-wave theory of AFM chains along the "z" direction
coupled antiferromagnetically in the "x-y" plane should
be developed. I.et us choose a Heisenberg Hamiltonian
with small anisotropy, such as

~=2J; g S,"S,
t'~; j&,

and the Hamiltonian Eq. (6) is transformed to another
with the same form as if it were for equivalent neighbors

A =Eo+Wz SqX (a b +a b )
I

k~k k k k k

+2J' Sq(1+a)X- (a a-+b b ) .zk k~k k k k k

This formal equivalence allows us the use of standard
spin-wave theory, ' adapting it for every crossover case.
Thus, for the case of AFM linear chains AFM coupled
with four neighbors the effective y function is

y =1/(1+/)[cosk, a, +g/2(cosk„a +costa~~)]

with

$=2J„'y/Jg ——298 .

In Figs. 8 —10 we have represented the heat capacity and
the parallel and perpendicular susceptibility

X~(=X(~J,'/Ng pz, Xi ——XiJ, /Ng pz
of RbqFeClq H20 for several values of & and the aniso-
tropy parameter a =3.4& 10, determined experimental-
ly. The curves are valid up to v &~, /2, since free spin-
wave theory loses its applicability above that temperature.

D. Ordered phase: Analysis of the
Rb2FeCls 82O data

With the spin-wave theory developed above it is now
possible to check whether 'the set of parameters J,' and A'
obtained in the paramagnetic region is compatible with
the low-temperature experimental results. In contrast to
the paramagnetic region, the absence of characteristic
points and the interdependency of J,'/kz and 9F in the
range r &a, /2 precludes the determination of an indepen-
dent set of parameters. However, a check can be done by
fixing J,'/kz ———1.45 K and comparing the theoretical
C~ curves, now only a function of & and v„with the
data. In Fig. 8 the experimental C deduced by subtrac-
tion of the estimated Ci, as a function of kz T/J,' togeth-
er with the theoretical predictions for a set of 9F values is
represented. From the figure it is clear that values be-
tween &=0.1 and 0.15 are the most appropriate to fit the
data, in accordance with the results of A' obtained for Cz
in the paramagnetic phase.

As a further check, considering the J,' constant fixed
above, the experimental X~~ (a crystallographic axis) and
Xi (b axis) data has been compared with the correspond-
ing theoretical prediction for different A'. The best fit for
X~~ and Xi lies about 9F=0.15 (see Figs. 9 and 10) in full
agreement with the C~ fit in the ordered phase and simi-
lar to the results obtained in the paramagnetic region.
This accordance validates the procedures applied in Secs.
IVB and IV 0, and, what is more important, proves that
the present system follows the model of AFM chains,
AFM coupled with four neighboring ones, unambiguous-
ly.

E. Analysis of the K2FeCl~-82O data

It is now possible to reanalyze the data for the isomor-
phous K and NHq compounds within the same theoretical
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S=5/2
"z / ks =-1.45-'0.06

p5 Rb2FeCt5 H20

Cp/R
O.4-

R=0.8 R-O-g

03-
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0.1-

k sT/I Jz~

FIG. 8. Theoretical predictions for the heat capacity in the antiferromagnetic phase (continuous lines), for several values of the ra-
tio J„«/J„compared with data from RbqFeClq. 820 (open triangle).

I

scheme and with the same procedure as with the Rb salt.
The relative differences in the cell dimensions, listed in

Table I, affect the distances and angles in the interaction
paths modifying the relative strengths of the exchange
paths discussed for the Rb compound. Therefore, the mi-
croscopic changes can be correlated qualitatively with
their effects in the thermodynamic (P and Cz) behavior.
In K2FeC15 H20 the unit-cell parameter c is 2.4% smaller
than in the Rb analog. Assuming a dependency of su-
perexchange paths with distance of the type r ",as is the
case for singly-bridged paths, an increase of at least 30%
in the value of J3 could be estimated. However, the
strength of the superexchange paths J& and J2 should
remain almost constant because the distances and angles
suffer smaller changes.

The above comparative analysis yields a magnetic
dimensionality crossover similar to the Rb one but with a
stronger coupling between neighboring chains. The com-
parison of the theoretical results for the paramagnetic

phase with the characteristic experimental values
T, =14.06+0.01 K, T(X-,„)=16.0+1.5 K, and +-,„
=0.068+0.001 emu/mol (Ref. 6) give a best value of J,
= —8.4+0.5 K for A'=0. 20—0.35. A difference of
about 10% in the maximum height of the susceptibility
should be noted.

In order to analyze the heat capacity data of the K
compound, the same indirect procedure as for the Rb case
has been used. First the calculated HT' magnetic tail for a
given value of A' is subtracted, and the difference, i.e.,
C~, is fitted with a polynomial. The anomalous magnetic
entropy is then estimated from the difference of the exper-
imental data and the polynomial, both extrapolated to 0
K. For the values of A'=0. 2 and 0.3, the magnetic entro-
py values hS /R = 1.87 and 1.91 are obtained, which are
a few percent higher than the theoretical ones. Because of
the errors involved in the procedure any value in the range
0.3 & W & 0. 1 is equally valid.

On the other hand, the analysis of the Cz data in the

0.03

R=O.Q 5 R=0.1 R=Q, 2

5= 512
Jz/k B=-I.45-Q.Q 6

0.02'

0.01 —.

10

k,T/I Jzt
F/Q. 9. Theoretical predictions for the pll(T) in the antiferromagnetic phase (continuous lines), for several values of the ratio

J«/J„compared with data from Rb2FeC15. H20 (open triangle) ~
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S= 5/2
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FIG. 10. Theoretical predictions for the gj (T) in the antifer-
romagnetic phase (continuous lines), for several values of the ra-
tio J„~/J„compared with data from Rb2FeC15 H20 (open trian-
gle).

spin-wave region carinot give a better determination for
A~, because the available data are still above the tempera-
ture range in which the spin-wave prediction holds. The
X~~ and Xj data at low temperature may be fitted with the
above W and J, parameters properly scaled, but the
discrepancy in the height of X, present already in the Rb
case, still remains.

F. Analysis of (NH4)2FeC15. H20 data

The compound (NHq)qFeC15. H20 shows differences
with respect to the Rb analog, in the unit-cell size, a and
c being smaller in the former by about 0.9% and 1.0%,
respectively. Such changes should increase the strength of
J& (see part III) and therefore should enhance the one-
dimensional character in the magnetic properties.

The published data of the heat capacity shows two
anomalies at T, =7.25+0.01 K and T,' =6.87+0.01 K

while in the susceptibility the double anomaly is not ap-
preciable. Besides, the measurements do not present an
AFM parallel easy axis. These problems make uncertain
the interpretation of the data. However, the tentative as-
sumption that the paramagnetic AFM ordering takes
place at the higher critical temperature, and that T,' is
due to a spin realignment allows us to test the crossover
theory,

The insertion of the experimental values T, =7.25
+0.01 K, T(X,„)= 11.7+0. 1 K and X~,„=0.083
+0.001 emu/mol to the predictions of Table II gives the
best value for the set, J, /k~ ———9.0+0.9 K in the range
0.03&%'&0.05. Since & is so low, this system appears
to have the lowest lattice dimensionality character of the
series. Indeed, the analysis of the heat capacity HT mag-
netic tail, in terms of the crossover theory, indicates that
A &0.08 for the most unfavorable subtraction of the lat-
tice heat capacity. All these facts agree with the expected
enhancement of the low dimensionality, discussed on the
basis of the larger contraction along the c axis. However,
the discrepancy between the theoretical prediction for
X(T) with the above J, and A yielding values 15% higher
than the experimental ones as in the Rb and K cases, is
again present.

In the ordered region only the perpendicular suscepti-
bility is considered in view of the difficulties mentioned
above. The best fit is obtained for J,' /kz ———1.5+0. 1 K
and &=—0.15+0.05, i.e., a higher ratio than that ob-
tained in the paramagnetic range. On the other hand, if
one substitutes in the theory the values of J,' /k~ ———1.50
K and W= —0.05 from the HT fit, the prediction be-
comes 15% higher than the experiment. This discrepancy
is similar to the rest of the susceptibility fits.

V. DISCUSSION

From the analysis of the available data for the series in
terms of the crossover theory developed here, a collection
of the exchange-interaction constants J,' and J„'~ is ob-
tained. They are listed in Table III, where for compar-
ison, the results obtained by McElearney and O' Connor
are included. Although reasonably similar values of J,'
have been derived, the difference in J„'~ is very pro-
nounced.

The reason for the difference lies in the approximation
made by these authors in their fit of the data. They con-
sider the S = 00 prediction for linear chains and couple
them with an interchain molecular field (MF). This ap-

TABLE III. Exchange constants as calculated from the fit in both the paramagnetic (PM) and ordered (S%') phases for the three
compounds of the series. For comparative purposes results from the molecular field (MF) approach of McElearney (Ref. 6) and
O' Connor {Ref.8) are also included.

From crossover
theory

PM phase

SW phase

Jg /kg
J„'y /kg
J,' /kg
J„'y /kg

RbpFeC15 H20

—1.45+0.06 K
—0.15+0.07 K
—1.45 K (fixed)
—0.15+0.08 K

KqFeC15.HqO

—1.44+0.05 K
—0.4 +0.1 K

(NH4)gFeC15. H20

—1.5 +0.1 K
—0.06+0.02 K

MF Theory J,' /kg
J„'y/kp

—1.39 K
—0.47 K

—1.55 K
—0.76 K

—1.24 K
0.72 K



526 J. A. PUERTOLAS et al. 31

proach has been useful for systems with
~

J„'~
~
((

~
J,'

~

in
the description of the linear-chain susceptibility.

The position of the maximum is then related practically
to J,', while its height is determined by J'z. As a conse-
quence, in the fit of the experimental data with the MF
model all errors and departures from the model are driven
to the value of the parameter J„'~. This results in values
of J'z which are much higher than those obtained with a
complete crossover theory. Other problems in the com-
parison are the inconsistencies in the susceptibility data
found in the literature already mentioned in the experi-
mental section, which affect the height of X,„and corre-
spondingly the deduced J~~ value.

The inadequacy of the linear-chain model corrected by
a MF is even more apparent in the magnetic heat capaci-
ty, as the A, anomalies are similar in height to those found
in three-dimensional systems and consequently that ap-
proach is not applicable, even though the X(T) data could
be fitted.

The present model overcomes this incompatibility as it
is capable of dealing quantitatively with C~ and X data
simultaneously, correlating microscopic and macroscopic
properties for all members of the series.

The trend of increasing intrachain interaction for de-
creasing value of the a edge of the unit cell is clearly ob-
tained. The interchain interaction follows the trend
K ~ Rb~ NH4 which is explained in terms of the relative
values of the exchange interactions J~ )J2 ——J3.

The model allows a reasonable fit of the heat capacity
and- susceptibility data although minor discrepancies
remain. In the K and NH4 compounds a systematic
discrepancy between the experimental 7 values and the
calculated ones with the deduced exchange constant is
detected.

It is convenient to analyze the alternative which could
lower these X values, improving the fit. First, J2&J3
may be considered, but this lowers the magnetic dimen-

sionality and then the calculated X values are expected to
be higher. On the contrary, if J4 is considered, as a non-
negligible superexchange interaction, the three-
dimensional character in the magnetic model increases
and hence, the expected values for the susceptibility would
decrease. In the analysis of the superexchange paths the
interaction path labeled as J4 was considered as negligible,
because the Fe-Cl-0-Fe bridges of the pathways J2 and
J3 were assumed to be stronger than the Fe-Cl-Cl-Fe
bridges of the J4 path. However, it seems reasonable that,
although weak, the large number of J4 pathways (six)
could, together, give a non-negligible contribution. Un-
fortunately, there is not a suitable model available with so
many inequivalent exchange constants.

A tentative estimation of a nonzero J4 exchange con-
stant was done, by means of a model considering nearest
and next-nearest neighbors. Though a fit was possible,
the J4 value was inconsistent with the data and the ex-
pected relative values of the exchange constants. It may
be concluded that the thermodynamic data analyzed here
are not adequate to determine so many parameters.

Finally, it should be noted that this is the first time that
crossover theory for the Heisenberg model has been ap-
plied. Previous work on the crossover study referred to
the Ising system. In this case, because we used S= oo ~n

the paramagnetic region, the fit between theory and exper-
iment only has meaning for S = —,

' ions, as is the case of
Fe(III).
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