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Multiple-scattering theory is used to evaluate the effective dielectric function e(~) for disordered

systems in which spherical inclusions are densely packed in a host medium. We compare the well-

known quasicrystalline approximation (QCA) with Roth s effective-medium approximation (EMA).

Both approaches are studied in the long-wavelength limit and, also, in the regime where the wave-

length and particle diameter are comparable. In the long-wavelength case, the QCA reduces to the

elementary Maxwell-Garnett formula. By contrast, the EMA is shown to include the effects of
local-field fluctuations. The QCA aud EMA are applied to two situations of experimental interest:

(1) a strong-scattering system comprised of metal spheres embedded in a KC1 matrix, and (2) a
weak-scattering system made of pressed A1203 particles. In both cases there are significant differ-

ences between the two approximation schemes and the EMA is generally to be preferred.

I. INTRODUCTION

The description of electromagnetic propagation in two-
component disordered materials in terms of the properties
of the constituents is a problem with a long history. Re-
cent interest in the technological properties' of these sys-
tems has led to renewed experimental and theoreti-
cal ' study of this classic problem.

In this paper we are concerned with composites whose
microgeometry is that of a suspension. In suspensions
only one of the two components (the host) forms percolat-
ing paths through the system. The other component is
present in the form of nonoverlapping grains. Having as-
sumed this geometry, the propagation of electromagnetic
waves can be described within the framework of
multiple-scattering theory. ' ' ' ' For simplicity, we
will assume that all the inclusions are spheres of the same
radii. (This last assumption implies that the relative
packing fraction q of the inclusions is limited to the range
0&ti &0.62.) In multiple-scattering theory the wave in-
teracts with a sequence of isolated scattering centers, and
the effective dielectric function of the composite is ob-
tained by averaging over the allowed configurations of the
system. The advantage of this approach is that the for-
mulation of the central equations does not require any as-
sumptions regarding either the magnitude of the packing
fraction' or the strength of the scattering. Of course, if
neither of these parameters is small, considerable care
must be taken in developing suitable approximation
schemes.

The theoretical description of disordered composites
usually proceeds in terms of three distinct mean-field
theories, all of which can be understood in terms of basic
multiple-scattering theory. These are the average —t-
matrix approximation (ATA), the coherent-potential ap-
proximation ' (CPA), and the iterated dilute approxima-
tion (IDA). The ATA is also known as the Maxwell-

Garnett or Clausius-Mossotti approximation, and the
CPA is often referred to as the effective-medium approxi-
mation (EMA). (Here, we use the less familiar name,
CPA, to avoid confusion with an entirely different EMA
to be discussed below. ) The IDA, which is sometimes re-
fered to as the self-similar approximation, is based on suc-
cessive applications of either the ATA or the CPA. (As
both approximations are correct in the dilute limit, ' ei-
ther can be used to generate the IDA. ) The equations de-

fining these approximations are the following:

3&[(e' —ep)/(2e'p+ 6 )]' =1+ for the ATA, (1)
ep 1 —q[(e, —ep)/(2ep+ e, )]

~s jeff &0 jeff+(1—tl) =0 for the CPA,
26eff +~s jeff+ 0

(2)
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Here, ep(co) and e, (co) are the dielectric functions for the
host and inclusions, respectively, and e,tt(co) is the corre-
sponding effective dielectric function for the composite.
[In general, all of these quantities may be frequency (co)
dependent. ] The ATA, CPA, and IDA are to be used
under different circumstance. The ATA and IDA are ap-
propriate in a suspension geometry, while the CPA is
applicable when the two components are interspersed on
an equal footing. ' Nevertheless, there are important simi-
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larities between these approximations: (1) they are all
long-wavelength approximations, (2) they all describe
scattering processes within the dipole approximation, and
(3) the only information about the structure of the system
which enters these approximations is the packing fraction
g, i.e., none of them make use of higher-order density-
correlation functions. Regarding point (1) we note that
there are systems of experimental interest in which the
wavelength of the radiation is comparable to the size of
the individual grains. In connection with point (2),
several authors have stressed the importance of including
higher multipoles in an accurate calculation of the long
wavelength properties of composite systems. "' [At
higher frequencies, classical arguments imply that mul-
tipoles up to j,„—2 kd must be included (here, k is the
host wave vector and d is a typical particle diameter). ]
Finally, over the entire frequency range, it is natural to
ask how information regarding density-correlation func-
tions can be included in a calculation of e,tt(co).

Previous efforts to address these questions within
multiple-scattering theory have focused on the application
of Lax's quasicrystalline approximation (QCA). '

The QCA is a reasonable approximation on physical
grounds and has the advantage that it can be applied in a
straightforward manner to a variety of physical systems.
We have found, however, that the effective-medium ap-
proximation (EMA) developed by Roth has several
important advantages over the QCA. (The application of
the EMA to the calculation of electrical conductivity in a
related class of disordered systems has been discussed in
Ref. 9.) This is particularly evident in systems with a
high density of strong scatterers, as is often the case when
metal particles are embedded in an insulating ma-
trix. ' ' Here, the EMA leads to a more realistic
description of the structure in both the real and imaginary
parts of e,tt(to). (This is analogous to the situation en-
countered in calculating the electronic properties of liquid
and amorphous metals with resonant d bands. ' ) In the
long-wavelength limit there are also important distinc-
tions between the EMA and QCA. In this limit it can be
shown that the QCA reduces to the ATA result of Eq.
(1).' By contrast, we show that, as kd~O, the EMA
dielectric function depends on contributions from the
pair-distribution function g(R) and higher-multipole
terms in the single-sphere scattering matrix. Thus the
EMA is the only available theory of structurally disor-
dered systems which includes proximity effects in the cal-
culation of e,tt(co).

In Sec. II the general equations of multiple-scattering
theory are reviewed briefly and the QCA and EMA
prescriptions for evaluating e,tt(co) are formulated. We
also discuss the limiting form of these equations as
kd ~0 and show that the form predicted by the EMA is
reasonable on physical grounds. In Sec. III the applica-
tion of these approximations to two experimental situa-
tions is discussed. The first is a strong-scattering system
of silver spheres embedded in potassium chloride. We ex-
amine the position and shape of the plasrnon resonance
and find that the EMA provides the most realistic
description. The need for an adequate theory of these res-
onances has recently been emphasized by Leibsch and co-

A. general equations

In a given configuration of a disordered suspension and
in the absence of external currents, the (vector) wave equa-
tion satisfied by the electric field is

VXVX 8'(x) —k e(x,co)$'(x)=0 . (4)

Here, k =eo(to)(co /c ), and e(x, co) is the scaled dielec-
tric function equal to 1 for x in the host material and
E (co)/eo(co) for x within the spheres. (Both the host and
the inclusions are assumed to be nonmagnetic. ) The
(dyadic) equation for the configuration depende-nt Green's

function $(x,x ) can be written either in differential
form,

V X V X 9(x,x') —k e(x, co)9(x,x') =15(x—x'), (5)

or as an integral equation,

9 (x,x') =Go(x —x')+ f dx& Go(x, xi) e(xi, co)S(xi,x') .

[The host Green's function Go(x —x') is defined by an
equation identical to (5) in which e(x,co)~1.]

The physical properties of the system are determined by
G(x —x')—:( $(x,x') ), the average of S(x,x') over all al-
lowed configurations of the suspension. This quantity can
be written in terms of either the average total scattering
operator T(x—x') or the self-energy X(x—x'):

G(x —x')=Go(x —x')+ f dxidx2GO(x —xi)

T(xi —x2) Go(x2 —x'),

G(x —x')=Go(x —x')+ f dxidx2Go(x —xi)

(7a)

X(xi —x2) G(xp —x') . (7b)

Because the average system is translationally invariant, it
is convenient to transform the above equations to the
momentum representation. Equations (7) can then be
rewritten as

G(p) =GQ(p)+Go(p) T(p) GQ(p),

G(p) =Go(p)+Go(p) &(p).G(p)

(8b)

workers. ' The second material is a close-packed weak-
scattering system of Alz03 pressed grains in air. In recent
experimental work the dielectric function of this system
has been studied over an extremely wide frequency range
(0.78 & kd & 94.25). Unfortunately, the methods em-
ployed in the present paper can be used to describe only a
small part of this range (0.0&kd &3.5). Within this
limited regime, our calculations indicate that the EMA is
in somewhat better agreement with the experimental re-
sults than the QCA. It is clear, however, that further
work must be done before either approximation can be
used efficiently over the entire frequency range covered in
Ref. 7.

II. FORMALISM
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6 ff( co ) —1 +XJ (p ff ( co ) ) /k (9)

[Thus, if we are interested only in the dispersion relation,
we can work with an effective dielectric function that de-
pends on just the frequency and avoid dealing with
momentum-dependent quantities like X(p).] In general,

To compute the effective dielectric function e,ff(co), we re-
call that the wave-vector —versus —frequency relation
governing wave propagation in a disordered system is
determined by the singularities of the average Green's
function. in the (p, co) plane. ' ' [It is clear from Eq. (8a)
that the singularities of G(p) and T(p) are identical. ] In
other words, for each co we find the value of p:—p,ff(co)

that leads to a singularity in the transverse part of G(p).
Once p,ff(co) is known, we have egff(co) =k p ff(co), or
alternatively,

the value of p,ff(co) will be complex. In most cases of in-
terest, however, the imaginary part of p,ff(co) will be small
compared to its real part and, rather than searching for
poles in the complex plane, we can simply scan real p and
look for peaks in the transverse part of G(p). The corre-
sponding real value of p is then used in Eq. (9) to calcu-
late e,ff(co). This approach will provide an accurate
description of the effective propagation as long as the
imaginary part of p,ff(co) is small and Xj (p) is a smooth
function in the region near the pole of G(p ).

Within the framework of multiple-scattering theory,
the quantity T(x—x') introduced in Eq. (7a) is obtained
by averaging the configuration depen-dent total scattering
operator u (x,x'). The latter quantity is most convenient-
ly written as a series expansion in terms of the operators
t that describe scattering by a single inclusion centered at
Ra:

M = + t + g t 'Go'tp+ g t Go'tp'Go'tr+ g t 'Go'tp'Go'tr'Go'ts+
a a a a

P~a P@a P@a
y~P rwP

$@y

(10)

B. Single-particle scattering

The Mie scattering operator t~(k) describes the interac-
tion of an electromagnetic wave (with frequency co =ck)
with an isolated grain centered at R . Because the grains
are assumed to be spherical, the most convenient represen-
tation for these operators is in terms of vector spherical
harmonics. ' We use the following definitions:

Yjm'(» =r ~jm(x»

YJ~~(x)= rVFJ~(x),j(j+1)
Yj~ '(x) = V)& [rFj (x)],&j(j+1)

(12a)

(12b)

(12c)

where YJ (x) are the usual scalar spherical harmonics.
To simplify our notation we adopt the composite indices
J=(j,m) and L =(k,J) (k runs over the values 0, e, and
m). Suppressing the explicit dependence on k, the
momentum-space matrix elements of t can be written as

1'(P' —P) R

&pit ip')= (47r)' g YJ(p)fJ (p,p')YJ (p'},

(13)

where the explicit dependence on x, x~, . . . , x' has been
suppressed. Approximation schemes for computing the
configuration average of this series are discussed below.
Once T(p ) is known, the self-energy can be evaluated as

&(p) =T(p)[&+Go'T(p)]

and the calculation of e,ff(co) is essentially straightfor-
ward.

where Q is the volume of the system. The structure of the
matrix tz (p,p') is

t"(p,p') t' (p p ) 0

ti (p,p') = fj"(p,p') ti"(p,p') 0 . (14)

0 0 tj (p,p')

The elements of this matrix are given in detail in Ref. 14.
Note that the only off-diagonal elements are tj"(p,p') and

gt'(p, p') It can e. asily be shown that these quantities do
not contribute to the transverse part of either T(p ) or
G(p). Accordingly, the Mie scattering operator can be
treated as a vector indexed by l=(k,j) rather than as a
dyad.

C. Approximate decoupling procedures

In dense suspensions there are important correlations
between the average positions of the scattering centers. In
practice, however, the available information is usually
limited to the two-particle or pair distribution g(R).
[Given a grain centered at the origin, g(R) gives the rela-
tive probability to find another grain centered a distance
R away from the origin; g (R )=0 for R less than the
grain diameter and g(R)—&I as R~oo.] In developing
expressions for the average total-scattering operator,
higher-order correlations must be described (approximate-
ly) in terms of g(R). Two such decoupling schemes are
the QCA (Refs. 12, 14, and 24) and the EMA (Refs.
25—28). [Previous calculations, all of which are based on
the QCA, have estimated g(R) with either the hole
correction [g(R)=0 for R ~d and g(R)=1 for R &d]
(Refs. 12 and 14) or the Percus-Yevick distribution (Refs.
14 and 17). The present calculations are based on a close-
packed distribution which is somewhat smoother than the
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Percus-Yevick g(R) (Ref. 30).]
In both the QCA and EMA, T is written as an integral

over all possible initial- and final-site indices:

T= f dR dR T(a
~

a') . (15)

(Note that we have suppressed the explicit dyad notation. )
In the QCA, g( )

R —Rp
~

) =g(a
~
P) is used to correlate

each pair of consecutive scatterings. This leads to an ex-
pression of the form:

T&c"(a
~

a') = nt 5(R —R )+n't g(a
~

a')G, t

+n dka tag a a~

)& Gpt g(a1
~

a')Gpt ~ +
(16)

where n is the number density of inclusions. A more so-
phisticated decoupling procedure is given by the
EMA. -Here, T is described by a series similar in
structure to (16), but in which the propagators and
scattering operators are replaced by renormalized quanti-
ties:

T (a
~

a')= nT 5(R —R )+n T G(a
~

a' )T ~

+n f dR, T G(a
~

a1)

(17)

series introduces fluctuation effects. In the EMA the
structure of these two terms is reproduced within the
Kirkwood approximation

g(a
~
a,

~

a') g(a
~
a1)g(a1

~

a')g(a
~

a') .

By contrast, within the QCA these two third-order pro-
cesses are represented by a single term and no distinction
regarding the first and last sites is made. It will be seen
below that such distinctions are important in describing
what are usually referred to as local-field fluctua-

ons 137 22, 23, 28

In order to put the preceding operator equations in a
form suitable for calculations, we work in the angular-
momentum representation:

T(P)=(47r)'n g Yz(p)Q (p)YL (p) .
L,L'

Because p is on the z axis, the transverse part of T comes
only from the e and m parts of Q. It is easily seen that Q
is diagonal in its azimuthal indices, so that we need only
retain the m =+1 terms. Thus we can write

T1(p, k) Tt (kp)
Q (P) = Tt(P P)5LL'+i 'TLL'(P)

~I Tl'

(21a)

and

T~ and G(a
~

a') are determined by the self-consistent
equations

Tzz(p)=TtIB(p)[1 —TB(p)l 'Izz T1 .

where Tt = &/(k, k).
The QCA is obtained by substituting

(2lb)

G(a
~

a')= g(a
~

a')Gp+h(a
~

a')

&& f dR dR G(a
~
a1)T(a1

~
a2)G(a2

~

a'),

(18a)
and

Tt(P1 P2) tl(P1 P2)

Bzz'(P )~BLL'(P ) i

(22a)

(22b)

where h(a
~

a')—:g(a
~

a') —1, and

T~ =t~+t~Gp f dR, dR, T(a1 i a2)G(a2
~

a)T
Bzz (p)=n f dR e 'g(a ~a')BLI (a

~

a'), (22c)

(18b) B (a
~
P) = —4i7rk(1 —52p52 p)

To compare the QCA and EMA, we consider the exact
expansion of T(a

~

a') in terms of Gp and the Mie scatter-
ing operators. ' Working through third order in the
scattering strength, we have

T(a
~

a') = nt 5(R —R )+n t g(a
~

a')Gpt

+n f dR~ t~g(a
~ a1)Gpt~, Gpt 5(R R~)—

+n f dR, g(a
~
a1

~

a' )t Gpt Gpt (19)

where g(a
~
a1

~

a') is the normalized three-particle distri-
bution function. The first two terms on the right-hand
side of (19) are given correctly by both the QCA and
EMA. Physically, the third term describes the repeated
scattering sequence e~o:&~a., while the fourth term de-
scribes the case in which a, a~, and a' are all distinct.
These last two terms illustrate the way in which the
averaging of higher-order terms in the multiple-scattering

y .J—J J(( ~i

J)

)&hj, (k
i
R —Rpi )I'J* (R~—Rp),

(22d)

C,", = f [Y*(R)Y (k)]&,(R)d&-, (22e)

and h (x) is the spherical Hankel function. The Cxaunt
l&

coefficient CLL provides constraints on the allowed J&
values for any L, and L, '. For all A, values, j+j'&j&)

~j —j '
~

and m =m'+m1. The coupling between the A,

values provide the additional constraints: For
j +j '+j1 is even, and for A, &A, ', j +j '+j

1 is odd. The
form of Bzz prevents A, =O from contributing to Q",
Q', Q ', or Q™,and so A, =0 is eliminated from the
problem.

In the EMA, BLL and T~ are defined by
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1 dp)
BLL(p)=BLL(p)+ g —f, h(

l p —P1I )
(2m )

+ Tl TLL1(P1)BL1L'(Pl ) «

(23a)

where h(
~ p ~

) is the Fourier transform of h(a a'), and

Tl(71&$'2) =f1(P1&P2 )+~1(P1«k)ff(k)&1(k«P2 ) ~ (23b)

Of the various forms in which the equation defining f1(k)
can be written, the most convenient for computation is

dp)f1= g
(27r)

BLL (P1) I TL L(P1) ! [BL L(P1) LL(—P1)/Tl l1 2 1 1

L(

n dR, g(a a1)h(a
~
a1)BLL,(a a1)T1 BL L(a1 a)T~,

L I j. 1

1

(23c)

where r1 =f1(k,k). The angular integrals eliminate the
elements of f which are off diagonal in A, . That f is diag-
onal in k immediately implies that the renormalized
single-site scattering operator T is diagonal in k and can
be treated as a vector (rather than a dyad).

To find e&ff(c«1) we numerically, self-consistently solve
for T~ and BLL (p). Finding the poles of T(p) consists of
looking for a zero in the determinant of 1 —TfBLL (pz).
Only terms with azimuthal indices m =+1 contribute to
the transverse solution. Since 8 is diagonal in its azimu-
thal indices, and invariant under the transformation
m —+ —m, it follows that the m = 1 and —1 blocks of the
determinant are identical and we can limit our attention
to just one of these blocks. To calculate X(p) we use T1
and BLL (pz) along with Eqs. (11), (20), and (21). To ob-
tain the transverse X, we again only need the m = 1 com-
ponent of B(p).

es —eO
p;= R (E+E;)—:y(E+E;) .

&s + 2&O
(24)

4m
i = near Ep Enear +

3

The expression for E„„,is

(25)

(3R;JR;~ B,q I) pJ- .

Enear =
JA& R

Here, p; is the induced dipole moment, E is the macro-
scopic electric field, E; is the local field acting in the ith
dipole, and y is the polarizability of a sphere of radius
R. In introducing the local field, the average polariza-
tion field Ef associated with a large sphere (centered at
R;) is subtracted out and the dipoles within the sphere are
treated exactly:

D. Long-wavelength limit

1. Static considerations

As we pointed out in the Introduction, the standard
treatments of the long-wavelength susceptibility in com-
posite media involve two related approximations: (1) only
dipole scattering is included, and (2) only the lowest-order
density-correlation function (i.e., the packing fraction 11)
enters the theory. The fact that a proper description of
the static dielectric function must involve multipoles of
all orders has been discussed in several recent pa-
pers. "' ' In this subsection we will show how higher-
order distribution functions enter the calculation of
E ff(co —0). The essential point is that these quantities are
involved in the description of fluctuations in the local
fields. In the following subsection we will see that such
fluctuations are neglected in the QCA but are included
approximately by the EMA. In addition, it will be seen
that these fluctuation terms couple to the higher mul-
tipoles.

To keep the equations as simple as possible, let us work
within the dipole approximation. Standard derivations of
the ATA equation begin with an array of (spherical) po-
larizable objects, each of which satisfies

(26)

(27)

Once this assumption is made, the symmetry of the tensor
A(R;~) guarantees that the final sum in Eq. (27) vanishes.
Combining Eqs. (24), (25), and (27), we find that the aver-
age polarization P is given by

P=n (p) = E=XOE .
1 (4'/3 )ny—. (2g)

[The ATA susceptibility Xo and the dielectric function of
Eq. (2) are related by e= 1+41rXo.] More generally, the
equations determining the local polarization are

where the sum extends over all dipoles within the sphere.
Clearly, E„„„depends on the local enviornment of the ith
dipole. To derive the ATA one must argue that its contri-
bution can be neglected. This assumption is usually based
on the neglect of fluctuations:
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p=y E+ 3P+y+A;, p,
J+l

=y 1+y +Aq+y g A;1 Ajk+y g A~J Ajk Aki+
J+l J+I J+I

k&j k~j
l@k

E+ P4~
3

(29)

Note that the structure of this expansion is quite similar to that of the multiple-scattering series (10). The various terms
in the large square brackets of Eq. (29) must be averaged over the different configurations of the neighboring dipoles.
The contribution of the two-site term can be evaluated exactly in terms of g(R), and we find

(30)

[The vanishing of this term is often used as a justification for the approximation (27).] Note, however, that the contribu-
tion due to the third-order term does not vanish:

A,,'Ak = A,, A, , +

= f dRJg(ilj)A;, A,;+ f dR, «kg(~ ~j~ k)Ai'Ajk (31)

Here we have written separately those terms that involve
the average positions of two and three sites. Note the
similarity of these terms and the fluctuation term con-
sidered in Eq. (19). Suppose we write, schematically,

A,J pj =A,P, (32)

where the parameter A, monitors the influence of the
local-field fluctuations. Then the resulting expression for
the susceptibility is

P= E=n &o E=+E
1 (4m /3)n y—

nay�

— , 1 —Ago
(33)

2. kd —+0 limit of multiple scattering theory-

In other words, I, can be viewed as leading to an enhance-
ment of the susceptibility over the ATA value given by
Xo. It is clear from Eqs. (31) that the leading contribu-
tions (in powers of y) to A, can be calculated in terms of
the two- and three-site distribution functions.

&s —&o (kd )7~)=d i-d(kd)
s+ 2' 24

while for higher j we have

&s —&o

e, +(j+1)eo (kd) J ~ -d(kd) J+

j)
8, ,

(p)-—1 1 p

+ f dR R jj (pR )hj (kR )h(R) .

The expression for BLI (p) [defined by Eq. (22c)] is

BI.I. (p) = gi 'CLL ~ Bi~(P—) FJ*, (p),
J)

where, as kd —+0, and pd ~0,

(35a)

(35b)

(36a)

(36b)

On physical grounds we expect that the effects
described above can be understood in terms of the long-
wavelength limit of the dynamic multiple-scattering equa-
tions discussed in Secs. IIA—IIC. It is clear from Eqs.
(21) that, over the entire frequency range, the spectrum is
obtlned by solving an equation of the form

1 —TB(1 ) fl =0 (34)

where the determinant refers to (implicit) partial-wave in-
dices. In the long-wavelength limit the analysis of this
determinant is complicated by the fact that T~ vanishes as
kd —+0 while BLt (p) diverges. Care must be taken to
keep all contributions of order unity in the kd~0 expan-
sion of the (matrix) product TB(p).

Consider first the QCA [T~r and 8(p)~8(p)]. As
kd —+0, the dipole components of ~ behave as

Here, ji (x) is a spherical Bessel function and a is the ef-J)
fective "hard-sphere" diameter [i.e., g(R (o.) =0]. Since
8(p)-1/k for all j, it is clear that the only components
of r that contribute to the determinant

~
~1 —rB(p)

~ ~

are
those which do not approach zero faster than k . The
only such component is the electric dipole (A, =e, j=1).
The surviving term of 8(p) does not involve g(R), and so
the resulting , e(tot) cwill be independent of g(R). It is
easily shown that evaluation of the QCA determinant

~
~1 —rB(p)

~ ~

gives the ATA result of Eq. (1) or (28). This
solution ignores all higher-multipole and local-environ-
ment effects.

Turning to the kd —+0 limit of the EMA, we find that
the coupling between the e and m components of the ma-
trix 8(p) guarantees that magnetic terms drop out as
kd~0 and the problem is essentially scalar. The leading
contribution to 8(p) is
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a dP1
Bi.i (P) =BLx (P)+~LL, +-

(2m)'
h( Pi )Tr TI.I. (Pi)BI L(p&) ~

Li
1

(37)

Note that the second term on the right-hand side is diagonal in l. and independent of p. [As h(R) is nonzero only for
R (Rp where Rp is of order a few grain diameters, the dependence on p in Eq. (23a) disappears. ] There are contribu-
tions that are off diagonal in l., but these vanish as kd~0 and do not couple to the dipole term. Thus in the EMA, as
in the @CA, the spectrum is calculated from just the j= 1 part of the determinant in Eq. (34). However, in the present
case higher multipoles contribute through the renormalization of T~ and B(p). (In the Appendix we show that the effect
of the jth multipole is scaled down by a factor of roughly 1/4', so that we are dealing with a convergent expansion. )

To make contact with the results of the first part of this subsection, let us expand B(p) and T in powers of g and r:

Tel re 1+re 1 y n f dRg(R )Be 1 l, ejm (R)rej Bejm, e 1 1( R)re] (38a)
j,m

Bell, lel(p) =Bell, e 11(p)+ g &' f dRdRi h(
I
R—Ri

I )g«»ell, eon(R)rejg(R1)Bejm e 11(RI)
J,m

(38b)

Note that both terms involve g(R) and a sum over internal angular indices. Using Eqs. (35) and (36), we find that Eqs.
(38) can be rewritten as

and

2 2 3 &s —&O
T, 1

———k a
3 Es +2E'p

Es CO 6s Go
1 —'77 . aje+2ep . (j +1)e +pj's,

(39a)

4~n 1+—1 P 4~n &s —&O

p' —k' 2 k' k' (j+1)Ep+je,J

Here, a& and bJ are geometrical parameters given by
2j+1

a g(o.x )a ~ ~ dx
0 2j+2

and

(39b)

(40a)

2J —2
Qb—J

where

f dxdxl h(a
I

x—x~
I
)+(x)F(x&) (40b)

F(x)= .
2 I'J+( )(x)

g(o.x )
(40c)XJ+2

and we have neglected all factors of order 1 or j. If we restrict ourselves to j=1 we can write @EM~ to third order in
(Ee —Ep) as

3q[(e, —ep)/(e, +2ep)], e, —ep
&EMA & + —3~'

1 r)[(e, —ep—)/(E +2ep)] E +26p

3

(a, +2r)b, ) . (41)

10—

'n KC]
= 0.192

10—

E(~)
5—

ATA
---- CPA

IDA

Part

FIG. l. Real and imaginary parts of the Ag dielectric func-
tion used in the Ag-KCl calculation are shown as a function of
the frequency (eV). The discontinuity at 4 eV in the real part is
due to the mismatch in the models of the dielectric function
above and below 4 eV.

FICx. 2. Real parts of the ATA, CPA, and IDA dielectric
functions for Ag spheres in KCl (g=0. 192).
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Ag in KC1

77 = 0.192

Ag in KC1

77 = 0.192

ATA
---- CPA

IDA

QCA
---- EMA

4

FIG. 3. ATA, CPA, and IDA conductivities for Ag spheres
embedded in KCl (q =0.192).

0
0

~(ev)
FIG. 5. QCA and EMA conductivities for Ag spheres in KCI

(Y/ =0.192).

This correction is consistent with the form predicted by
Eq. (33). Here, however, the three-particle distribution is
approximated by the Kirkwood product of three two-
particle distributions [recall Eq. (38b)]. Thus, as kd~O,
the EMA yields results that include correlation effects in
a physically reasonable way. Equations (39)—(41) are re-
lated to the equations presented in Sec. 5 of Ref. 9. There,
Hori and Yonezawa show how cumulant averages that
describe short-range correlations lead to corrections to the
effective conductivity of a disordered system. '

III. CALCULATIONS

A. Metal spheres

To examine the behavior of the QCA and EMA, we
first considered a system of silver spheres embedded in the
dielectric KC1. Many experiments have been carried out
with metal-insulator composites of this kind. ' Because
these systems have a strong absorption band in the visible,
they are promising candidates for use on the absorbing
surface of solar cells. The experiments provide a range of
results for the position, strength, and shape of the
plasmon ' resonance. This variation refiects the fact
that the composites are not always synthesized in a way
that guarantees a suspension geometry. However, in the
cases where the metal particles are known to be nonover-

Ag in KCl

0.192

lapping, the data suggest that the plasmon resonance is
appreciably broader and is shifted to lower frequencies
than the resonance predicted by the ATA.

We have studied the effective dielectric function for a
suspension of Ag spheres of radius 120 A in a KC1 host
(co=2. 1) with a packing fraction of rI =0.192. (The in-
put data for this calculation correspond to one of the sys-
tems considered in Ref. 8.) The dielectric function of the
spheres was modeled using a combination of the Drude
model (frequencies below 4 eV) and experimental data
(frequencies above 4 eV) in order to include the effects of
the interband transitions. The Drude formula is

2
Q)p

q(CO) =Eb—'
CO —l CO/V

(42)

2.5—
Alz 0~ Composite

q = 0.47

To model silver, we used eb ——6.4, co~=9.06 eV, and
I/r=0. 0918 eV. The value for r is greater than the bulk
value in order to include the effects of scattering from the
surface of the sphere. Figure 1 shows the Ag dielectric
function. Unfortunately, in the real part of this function
the segment obtained from the experimental data does not
join smoothly with the segment obtained from the Drude
model. This small jump will cause a similar jump in the
calculated effective dielectric function of the suspension,

QCA
---- EMA

1.5
0.5

kd
1.5

QCAj=B
--- @CA j=1

I

2.5

FICx. 4. Real parts of the QCA and EMA dielectric functions
for Ag spheres embedded in KC1 (YI =0.192).

FICr. 6. QCA dielectric function for the Alz03 composite
with YI =0.47 compared with experiment (Ref. 7). Calculations
with j,„=1 and 2 are shown.
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2.5—
Al& 0~ Composite

= 0.

0.7-

0.5—

Alz 08 Composite

2.0— A 0.1—

1.5
0 0.5

I

1.5

EMA j=2
--- EMA j=1

—0.1—

FIG-. 9. Real part of k~ for j=1 shown as a function of fre-
quency.

FICx. 7. EMA dielectric function for the A12O3 composite
with g=0.47 compared with experiment (Ref. 7). Calculations
with j,„=1and 2 are shown.

but as the resonance is significantly below 4 eV it does not
interfere with the resonance position or shape.

In Figs. 2 and 3 calculations based on the ATA, CPA,
and IDA for this system are compared. The ATA shows
very strong resonance behavior in a narrow frequency
range, while the CPA shows a weak resonance shifted
very far to the left. The IDA predicts a resonance with a
position and shape roughly intermediate between the
ATA and CPA results. Of the three, the IDA results are
closest to those of the experiments, but the shift appears
to be too large and the shape of the curves does not match
well.

Our results for the frequency dependence of the dielec-
tric function and conductivity of the suspension are
shown in Figs. 4 and 5. The QCA results are very similar
to the ATA results, as expected for longer-wavelength cal-
culations. The QCA peak in o.(co) is slightly broadened
and shifted to higher frequencies. The shift is much
smaller than the experimentally observed shift and is in
the wrong direction. By contrast, the EMA peak in o.(co)
is significantly broadened and shifted to the left and is, in
fact, quite similar to the relevant experimental re-
sults. ' ' The shape of the EMA peak is also similar to

that of the measured peak, being somewhat broader on the
higher-frequency side.

B. A1203 pressed powder

The second system we examined is a suspension of
A1203 spheres in air where the Alz03 forms a volume
fraction of 0.47 of the suspension. Our results are com-
pared with experimental data taken by Egan and Aspnes.
Their system was a compressed powder of A1203 formed
into pellets, so it is not clear how well our calculations
model the microgeometry of their samples. We show the
results of QCA and EMA calculations compared with the
experimental data in Figs. 6 and 7. For these calculations
the measured values for the dielectric function of A1203
given in Ref. 7 were employed. The experimental data for
the composite have a great deal of scatter, so it is difficult
to draw unambiguous conclusions as to the level of agree-
ment between theory and experiment.

In the light of the discussion in Sec. II D, this system is
of interest because it allows us to compare the behavior of
QCA and EMA calculations with different values ofj,„.
Figure 6 shows that for the smaller kd values the QCA
results for a calculation where only j= 1 is included are
not very different from the results when both j= 1 and 2
are employed. By contrast, Fig. 7 shows that j=2 does
significantly contribute to the EMA results, even for the
longest wavelength. We believe that these are the first

2.5-
A12 08 Composite

.47
0.7-i A12 O~ Composite

0.5—

1.5

kd

A 01-

-0.1—
kd

I

5
l

\

FICx. 8. QCA and EMA dielectric functions for the A1203
composite with j „=2, q=0.47, and e, =3.4 (frequency in-

dependent).
FIG. 10. Real part of kw for j=2 shown as a function of fre-

quency.
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calculations which show the influence of higher mul-
tipoles in calculating the long-wavelength dielectric prop-
erties of disordered suspensions.

In order to isolate the effects of the frequency depen-
dence of the A1203 dielectric function from the effects of
the changing wavelength to sphere-size ratio, we repeated
our calculations using a constant dielectric function of
e, =3.4. The results with j „=2 are shown in Fig. 8.
At least some of the structure above kd =2.2 appears to
be due to rapid changes in the l =m 1 component of r. In
Figs. 9 and 10 we show how the real part of ~ varies with
frequency for j= 1 and 2. Note that the structure in r ap-
pears at higher frequencies than the corresponding struc-

ture in e,rf(co). This shift may be analogous to the shift in
the resonance position found in the Ag-KC1 composite.

ACKNOWLEDGMENTS

We would like to thank D. Johnson for several impor-
tant conversations. We are grateful to D. Stroud and W.
Chew for discussions in the early stages of this work.
K. Cummins and D. Tanner provided us with data on the
dielectric function for Ag grains. One of us (V.A.D.)
would like to acknowledge support from the National Sci-
ence Foundation and from Schlumberger-Doll Research.

APPENDIX

Here we estimate the contribution of higher multipoles to the EMA correction to B(p) and 1. in the long-wavelength
limit. All multipoles contribute even at long wavelengths, but as we show below the terms for the higher multipoles de-

crease by a factor of roughly I/4j. To provide an estimate of how the coefficient decreases, we examine only the first-
order correction:

1 dP&
Bell, e 11(P)—Bell, e 1 1(P)= g 3 h (P 1 )Be 1 l, ejm (Pl )rejBej m, e 11(P1)

(21r)

and

f''= g n f dRg(R)B, ll,j (R)r,jB,j,ll( —R), (A lb)

where f is written as a real-space integral for clarity. In the long-wavelength limit we have

B„,, (R)=4nk( —1)j 1X3X5X . X(2j+1) Cj+1, 'Ye, , (R), (A2a)

2 j+1,1 — 4 3 1X3X5X X(2j+1)
B,ll, (pl)=ijk(41r) Cj,+, ,' ™Y*,, (p, )noe,egm e,ejm J, —m (k~)j+2 +(P 1 ),

where

jj (pl cr) jj+1(p 1
o.x )Il (ox )

I'(pl ) = + dx
p& 1 x~

and

(A2b)

1 (j+1)(ka )"+' &s —&0

k [1X 3 X 5 X X (2j —1)]2(2j+ 1) (j+ 1)~0+jr,
(A2c)

To estimate the behavior of B, we must understand how

1 dpi
C,.=—+- (Pl ) e1 1,ejm(P1) ej ejm, e 1 1 Pl)

(21r)3
(A3)

varies with j. The angular integral gives 1 by orthogonality. The integral over p& is
'2

2 jj(plo) ~ j j(+p1lo)x(ho)x
Ij = dpi pl/1 (pl ) + dxJ 0 p&a 1 x~

(A4)

This integral does not have a strong dependence on j, but slightly decreases with increasing j. We estimate the j depen-
dence of the Cxaunt factor sum over the azimuthal index to be roughly 2j + 1, as, for each j value, there are 2j + 1 values
of m. (This is almost certainly an overestimate, as the larger j values have less overlap between the spherical harmonics
in the integrals. ) Thus,

g Ce 1 l, ejm Cejm, el 1 j+
m

(A5)
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&s —&O

(j+ 1)en+I@,
C, -(2j+1)'(j+1)

ko-

and the j-dependent part of the correction factor is
2J

(A6)

where the primary j dependence comes from the a lo factor. For any close-packed distribution, a/o = —,, and so the
overall dependence of the correction varies as 1/4J. An analogous calculation shows that corrections to r) fall off simi-
larly with increasing j.
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