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We derive an expression for the indirect nuclear coupling tensor (A. '~) including spin-orbit and
many-body effects. We use a finite-temperature Green's-function method where the thermodynamic
potential is expressed in terms of the exact one-particle propagator and the proper self-energy, and
derive a general expression for A~~'~ in the Bloch representation. While the effects of spin-orbit in-

teraction appear in our expression through the modification of the one-particle eigenvalues and
eigenstates and through a change in the orbital hyperfine interaction via the modification of the
electronic momentum operator, the many-body effects are more subtle. We find that the many-body
corrections to A "~ in the quasiparticle approximation are cancelled in part by the inclusion of ex-

change and correlation effects. We also show, by making drastic assumptions while solving the ma-

trix integral equations for the nuclear spin-dependent part of the self-energy, that the exchange
enhancement effects in a band model on A~'~ are different for different terms. The remarkability of
the theory is that for the first time a systematic effort has been made to study the effects of
electron-electron interaction on the various contributions to A '~. We also discuss the importance of
relativistic and electron-electron interaction effects in the calculation of the coupling constant in real
systems. The theory is general and can be applied to metals, semiconductors, and insulators.

I. INTRODUCTION

A first principles analysis of the indirect nuclear in-
teractions' which were discovered independently by
Hahn and Maxwell and Gutowsky et al. " is of impor-
tance in solids, mainly for two reasons. First, since the in-
direct nuclear interactions depend rather sensitively on
both the wave functions as well as features of the band
structure and Fermi surface of the metal, they could pro-
vide a more detailed assessment of the applicability of
band calculations than properties which depend only on
the shape and dimensions of the Fermi surface. Second,
they also depend on a variety of mechanisms involving
both single-particie and many-particle effects connected
with interactions among conduction electrons and between
the conduction and core electrons. Thus a study of these
interactions could sharpen our understanding not only of
the electronic structure of solids, but also of electron-
electron interaction effects. Furthermore, a detailed study
of theoretically simpler nuclear exchange may serve to
elucidate problems in magnetism related to electron spin
exchange.

The basic mechanism contributing to the indirect nu-
clear interactions can be understood as follows. The nu-
clear moment at the lattice site RJ creates a local magnet-
ic perturbation which induces an electronic magnetization
varying in space, which in turn interacts with another nu-
clear moment at RJ'. The net result of this effect may be
described by a static coupling between the nuclear mo-
ments. In general, these interactions may be written as

where AJJ~ is a tensor. Its components are functions of

distance RJJ' between the nuclei and also of the orienta-
tion of the unit vector nJJ directed along the line joining
the two nuclei with respect to the crystalline axis. The
isotropic part of this coupling between the nuclei gives
rise to the Ruderman-Kittel (RK) interaction

(1.2)

which has the same form as the electrostatic exchange
coupling. Since the physical origin is not an exchange in-
teraction, it is often referred to as pseudoexchange cou-
pling. In addition to the isotropic interaction there can be
a dipolar-like coupling between the nuclei of the form

HpD g'B~~'[I~"IJ ———3(IJ RJJ )

(1.3)

This interaction is referred to in the literature as the pseu-
do dipolar (PD) interaction, and the dominant contribu-
tion to B~~' arises (in the relativistic theory) from a com-
bination of the contact and dipolar hyperfine interactions.
There is an additional contribution to BJ~' from second-
order effects of the dipolar hyperfine interactions alone.

Besides this basic mechanism, the other mechanisms
contributing to the indirect interactions are due to spin-
orbit and other relativistic effects, exchange-core-
polarization effects, ' and electron-electron interac-
tions. " The one-electron description is inaccurate insofar
as it disregards the spatial correlations between the elec-
trons, as demonstrated for instance by the grossly in-
correct results it yields for the magnetic susceptibili-
ty. ' '6 The importance of exchange-enhancement effects
has also been emphasized in the case of the Knight
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shift. ' ' Moriya and, with improved numerical accura-
cy, Narath and Weaver ' have shown that electron-
electron interaction leads to an enhancement of the relaxa-
tion rate, which is different from the way the Knight shift
is enhanced. Furthermore, up to now there has been no
systematic effort to include the effects of orbital hyperfine
interaction on AJJ~. This is particularly important for
solids in which the electronic wave functions have appre-
ciable p character. For example, in case of PbTe, which is
a narrow-gap semiconductor with large spin-orbit interac-
tion, the conduction bands transform like atomic p states
about the Pb nucleus and the orbital hyperfine matrix ele-
ments are known to be comparable to the contact hyper-
fine matrix elements. ' It is worthwhile to mention,
further, that the earlier calculations have concentrated ei-
ther on the RK or the pseudodipolar types of nuclear-spin
interactions, but no attempt has been made to combine all
three hyperfine interactions and study their mutual effects
on the indirect coupling tensor. In addition, most of the
previous theories are applicable to systems which are
nearly-free-electron-like with a single occupied band.

It is clear, thus, from the foregoing remarks that, while
the effects of electron-electron interaction on the magnetic
susceptibility (X), Knight shift (K), and relaxation rate
(T& ) have been fairly well understood, a theory of in-
direct nuclear interactions, starting from first principles,
particularly for a many-band system including periodic
potential, spin-orbit interaction, electron-electron interac-
tion, and all the electron-nuclear hyperfine interactions, is
still lacking in the literature. The present work was car-

ried out as an attempt to fill this gap, and we believe that
we have been able to derive a reasonably satisfactory
theory for Azz~, which analyzes all the contributions care-
fully.

Our approach is different from the earlier methods in
the sense that we have used a finite-temperature Green's-
function formalism, where the thermodynamic potential
Q for an interacting electron system in the presence of a
periodic potential, spin-orbit interaction, and electron-
nuclear hyperfine interaction is expressed in terms of the
exact one-particle propagator 6 and the proper self-
energy X. We have constructed in k space, using the
81och representation, the equation of motion of the
Green's function in the presence of electron-electron and
hyperfine interactions and have evaluated 0, and hence
A&i~. We have also shown that our theory reduces the
Ruderman-Kittel result in appropriate limits.

The organization of the paper is as follows. In Sec. II
we have constructed the effective equation of motion of
the Green's function in the Bloch representation in the
presence of a periodic potential, spin-orbit, electron-
electron, and electron-nuclear hyperfine interactions. In
Sec. III we derive a general expression for the indirect
coupling tensor A&~~. Finally, in Sec. IV we summarize
and discuss the results. Further, in Appendix 8 we have
discussed, in brief, the exchange-enhancement effects on
the various constituent terms of AJJ~ and, in Appendix C,
we have shown that our results reduce to the RK con-
stant, if we ignore the orbital and dipolar hyperfine in-
teractions.

II. EFFECTIVE EQUATION OF MOTION IN BLOCH REPRESENTATION

The exact one-particle propagator 6(r, r, gi) for an interacting electron system in the presence of a periodic potential
V(r), spin-orbit interaction, and electron-nuclear hyperfine interactions satisfies the equation

(gi —a)6 (r, r', I,g&)+ J' dr"X(r, r",I,gi)6 (r",r', I,gi) =5(r—r'), (2.1)

where X is the proper self-energy operator, gi is the complex energy,

+p, l =0, +1,+2, . . .
(2l+1)in

(2.2)

p being the chemical potential, and H is the one-particle Hamiltonian,

H= +V(r)+
~ ~

o"VV)&p+
~ 2

V' V+gpopo~giI~X~
p
2p71 4m c 8m c J (2.3)

where summation over j includes all the nuclei. In Fq. (2.3), the first four terms are the well-known terms for a one-
electron Hamiltonian in the presence of a periodic potential and spin-orbit interaction, where o. is the Pauli spin matrix,
and the last term describes the electron-nuclear hyperfine interactions, where po and poz are the electron and nuclear
Bohr magnetons, respectively, gz is the nuclear g factor for the jth nucleus with spin IJ, and

3[o"(r—RJ )](r—RJ ) (r RJ )~mr— .
3 + 5 +2e~py (2.4)

fr —RJ J
ir —R, f' Air —R, i'

Xi~ —— o 5(r —Ri)+

In Eq. (2.4) the terms from left to right on the right-hand side form the parts of contact, dipolar, and orbital hyperfine
interactions for the jth nucleus at RJ. e ~& is an antisymmetric tensor of third rank and we follow the Einstein summa-
tion convention. m. is the electronic momentum operator modified by the spin-orbit interaction and is defined as
~=p+(A'/4mc )o'XVV

It is shown in Appendix A that Eq. (2.1) can be written in the Bloch representation, i.e., in terms of the basis functions

g„k =e' 'U„l (r), (2.5)
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where g„~ is a periodic two-component function, n is the band index, k is the reduced wave vector, and p is the spin in-
dex as

[g( —H(k, k', I,gl )]G (k, k', I,g( ) =5gg . (2.6)

We emphasize that, since large changes in k for conduction electrons between the initial and intermediate states may be
involved, the hyperfine interaction cannot be treated in the effective-mass approximation and must be taken with
respect to Bloch states.

In Eq. (2.6),

H(kk', g~)= +V(r)+ 2 2 cf VVXp+ 2 2V V+jjpjjm ggl IjX (r)e j+X(kk', I gi) .r P —i(k —k').R

2171 4m c Sm c
(2.7)

It should be pointed out that X is a 2&(2 matrix, an operator in k space, and has implicit dependence on nuclear spin.
We can, therefore, expand X(k,k', I,gl ) as

X(k k' I g() =X (k k' (I )+QIj Xj' (k k' (I )+ g'Ij I~~Xjj' P+ (2.8)
J,a JJ',aP

where the prime over the summation sign in the third term implies j&j'.
From Eqs. (2.7) and (2.8), we write

H(k, k', gi) =Hp(k, g()+H'(k, k', gi),
where

2

H, = +V(r)+, , o"VVXp+, , V' V+X(pkg, )
2Pl 4m c 8m c

(2.9)

(2.10)

H'= gS, (P, e
"""j+X")+g' I, I,AX,';. ~(k, k') .

J,a jj',ap

In Eq. (2.11)

Ij =ppppxgi X(r).
J

Further, in obtaining Eq. (2.10), we have approximated

X (k, k', gl) =X (k, gi)5~ .

For nontrivial solutions, Eq. (2.6) can be solved by a perturbation expansion

G ( k, k', gI ) =Gp(k, gi )+Gp(k, g()H'Gp(k, g~)+ Gp(k, g~ )H'Gp(k, gi )H'Gp(k, g~ ) +. . .

where

(2.11)

(2.12)

(2.13)

(2.14)

Gp '(k k)=[4—Hp(k k)] (2.15)

and is diagonal in the basis Q„I . In the expansion equation (2.14), we have retained terms up to the second order in H .
From Eqs. (2.11) and (2.14), we obtain

G(k, k', g~) = Gp(k 4)+QIj Gp(k, k)(Pj e '+Xj' )Gp(k, (I)
J,a

I

+. g' Ij Ij'[GP(k, g()Xjj (k, k')GP(k, g()+GP(k, g()(I'j e j+Xj' )GP(k, g()
jj',ap

k') R
X(&,~e j+Xj'~)Gp(k, g()], (2.16)

where we have retained terms up to second order in the
nuclear spin I. p . BQ

AJJ —hm
o or ar'

j ~0

(3.1)

III. DERIVATION OF A~~'

We shall now derive an expression for AJJ from the ex-
pression

where Q(T, V,p, I) is the thermodynamic potential for an
interacting electron system in the presence of a periodic
potential V(r), spin-orbit interaction, and electron-nuclear
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hyperfine interaction. 0 can be evaluated from the Lut-
tinger and Ward expression

0=—[Tr ln( —G~, ) —TrX~, G~, +P( G~, ) ] .
1

In Eq. (3.2), G~ and X~, are the abbreviated notations for
the exact one-particle Green's function and proper self-
energy defined earlier. Tr is defined as g&Tr, where Tr
refers to summation over a complete one-particle set, and
the functional P(G~ ) is defined as

written as

~a~ ~a~ pa
4JJ ~jj qP +~JJ coI1

where

Q2

as;as,I!

aPAJ~'„„=——Tr

(3.5)

(3.6)

(3.7)

P(G~, ) = lim TrX„X~",'Gg (3.3)

In Eq. (3.3), Xg"' is the nth-order self-energy part, where

the interaction parameter I, occurring explicitly in Eq.
(3.3) is used to determine the order. In fact P(G~ ) is de-

fined through the decomposition of X~"' into skeleton dia-

grams. There are 2nG~ lines for the nth-order diagrams
I

in P(G~, ). Differentiating P(G~, ) with respect to G~, has
the effect of "opening" any of the 2n lines of the nth-
order diagram, and each will give the same contribution
when Tr is taken. Using Eqs. (3.2) and (3.3) in Eq. (3.1),
we have

y(g) = ——ln(1+ e -~'~-&')1
(3.9)

We now proceed to derive an expression for Ajjqp by
assuming the self-energy to be independent of frequency,
which is valid in a static screening approximation. We
use, in order to carry out the frequency sums appearing in
2 "~„,the identity

—Trln( —G~ ) = — TrjP(g)G(g)dg, (3.8)
1 1

13 ' 2~j c

where

AJJ~ ———
&

Trln( —G~, )
~p 1

p as, as~

8 Xg OX', BGg,——Tr 6
ar ar'' " as ar~

J J J J
(3.4)

and the contour |" encircles the imaginary axis in an anti-
clockwise direction. The advantage of using Eq. (3.8) is
that after substituting the perturbation expansion G(g)
[Eq. (2.16)], the free energy can be easily evaluated. The
one-particle trace is evaluated over g„+ which are eigen-
functions of Ho. In this basis Go is diagonal and is given
by

The first term in the right-hand side of Eq. (3.4), which
has exactly the same form as that for the noninteracting
Fermi system, except for the replacement of the nonin-
teracting G~ by the exact G&, is the quasiparticle contri-

I I'
bution, and the second term is the contribution due to ex-
change and correlation effects. Thus Eq. (3.4) can be

Go (3.10)

where E„k is the eigenvalue corresponding to Ho. After
performing the trace, we perform the contour integration
to obtain

—Trln( —G~, )= gP(E„q)+ g IJ (nkp ~PJ +XJ'
~
nkp)f(E„q)

J, CX

n, k,p

+ g' Ig I~~ —,
' (nkp

~
PJ. +X&'

~

n kp)(nkp'
~

Pz~+XJ'
~

nkp)f'(E„q)
JJ', ~13

n, n', k, k', p, p'
n&n', k~k'

(nkp
I

P +X"
~

n'kp')(n'kp'
~

P~+X"~~ nkp)
nk

Enk En'k

+( (nkp
~ PJ e '+XJ"

~

nk'p')

f (E„g)

Enk +nk'

+( (nkp
~ PJ e '+XJ'

~

n'k'p')

&((n'k'p'
~

Pj~e '+X ~~ nJkp)) E k + 'k'
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+&nkP
I &j) j'I nkP&f(Enk)

+( (nkp
I
P~'e '+Xj"

I

n'k'p')

&& ( n 'k'p'
I Pj e '+ Xj"

I
nkp )

—(nkp IPj e '+&j)' In'k'p')

(b(E„k)

E.k —E'k
(3.1 1)

where f is the Fermi function. From Eqs. (3.6) and (3.11), we obtain

gap
JJ QP

k, k', n, n', p,p'
n&n', k&k'

(Pj +Xj' )„k „k (Pj~+Xj~:~)„k „k f'(E„k)

a 1a P 1P P 1,P a l, a(Pj +~j )nkp, n'kp'(Pj' +~j' )n'kp', nkp ( j' +~j' )nkpn kp (,j '+'~j )n'kp', nkp f(E„k)
Enk En'k E.k —E'k

—i(k —k') R 1 a P i(k —k') R" 1 P+[(P, e '+&, ' ).kp, nkp(P, 'e j+&,' ).kp, nkp

p
—i (k —k') 'R ) p & i(k —k')'R ) & f(Enk)+ (P, e '+&, ' ).kp, .k p(Pj e '+&, )nk p'.kp),E„k—Enk

—i(k —k').R 1 a P i(k —k').R&~ 1 P+[(P' i+~') ~ k (P' '+~' ) ~

p —i(k —k') R 1 p+(P, e j+&,' ).kp, .kp

i(k —k') RJ ) ~ f( nk) Z ~pX (P,'e j+&,').kp, .k, j +&,;.kp, .kpf(Enk) (3.12)

We note that in the absence of e1ectron-electron interaction the X terms become zero and E„k reduces to the correspond-
ing value for the noninteracting Bloch electron.

In order to derive an expression for Ajj~„,„we obtain from Eqs. (2.8), (2.16), and (3.7)

JJ Cofl'
p

(3.13)

Assuming, as before, the self-energy to be independent of frequency and following the prescription

1 1 1 f(g)
p g (gi E„) 2n'i ro (g——E„)

(3.14)

we obtain from Eq. (3.13)
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gaP
jj'corr =

n, n, k, k,p, p
k&k', n&n'

~jnkpnkp'( j'+~j' )nkp', nkpf (+nk)l, a 1P

l, a P 1P P 1P 1 a
+ ' ' ' ' f(&,k)

~jnkpn'kp( j' +~j' )n'kp', nkp+ (Pj' +~j ' )nkpn'kp'~j n'kp', nkp

nk n'k

l, a P i(k —k') R' 1 P P —i(k —k').R 1 P~jnkpnk'p'( j' +~j' )nk p n'k'p, (Pj'e +~j' )nkpnk'p'ink'p', nkp f(Enk)E,k
—Enk E.k-E.k

P —(k—k').R. 1 P~jnkpn'k'p'( j'e +~j' )n k p ,'n'kp'

Ek—E k

p —i(k —k') R ) p

nk n'k'
(3.15)

Ajj „„vanishes in the absence of electron-electron interaction, as it should. From Eqs. (3.5), (3.12), and (3.15), we obtain

aP3JJ
k, k', n, n', p, p'
k&k', n&n'

jnkp, nkp'( j'+~j' )nkp', nkpf ( nk)

a 13 1,P P 1,P a
jnkp, n'kp'( j' +~j' )n kp nkp'', ( j' +~j' )nkp, n'kp'Pjn'kp', nkp+ ' ' f(E„k)

nk En'k Enk En'k

—i(k —k')-R. a P i(k —k').R 1 P+ t e jnkpnk'p'( j,' +~j' )nk'p', nkp

p —i(k —k') R ( p & i(k —k')'R f( nk)f(E
+(Pj'e +j' )nkp, nk'p'Pjnk'p', nkpe )

nk nk'

—i(k —k') R a P i(k —k') R 1 P+[e Pjnkp, n'k'p'(Pj'e +~j' )n k p nkp''',

p —i(k —k') Ri ( p ~ i(k —k').R f (&nk)
+(Pj' +~j' )nkpn'k'p' jn'k'p', nke ]

i] I

(3.16)

In Eq. (3.16) we have obtained a general expression for
the indirect nuclear coupling tensor in the presence of a
periodic potential, spin-orbit interaction, and electron-
electron interaction. Furthermore, it includes all three hy-
perfine interactions. Had we considered only the quasi-
particle contribution, we would have obtained exactly the
same expression as in Eq. (3.16), except for the replace-
ment of Pj by Pj +X&' . Thus, while in the quasiparticle
approximation both the hyperfine vertices become renor-
malized, the effect of exchange and correlation is to can-
cel precisely the many-body corrections to one of the hy-
perfine vertices and keep the renormalization of the other
vertex intact. The source of this apparent asymmetry be-
tween the two hyperfine vertices is in Eq. (3.4). If we
would have interchanged IJ and I~~ in the last term of Eq.

(3 4), we would have obtained in the final expression the
renormalization of I'J instead of I'J'. But, as can be seen
later, our final result would be independent of these renor-
malizations. Thus one has to consider both the quasipar-
ticle and correlation contributions in order to obtain phys-
ically meaningful results. Furthermore, unlike the case of
the Knight shift (K), ' ' where we obtain an additional
contribution due to spin-orbit interaction, its effect in the
present case manifests through the modification of one-
particle eigenvalues and eigenfunctions and through a
change in the orbital hyperfine interaction via the modifi-
cation of the electronic momentum operator. It may be
noted that the spin-orbit interaction, due to its dependence
on the magnetic field, has a profound effect on both the
magnetic susceptibility' and the Knight shift. ' In addi-
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tion to modifying the free-electron g factor, which is due
to the effect of spin-orbit interaction on the spin of the
Bloch electron, the spin-orbit interaction gives rise to ex-
tra contributions to both the magnetic susceptibility and
the Knight shift, which we attribute to the effect of spin-
orbit interaction on the orbital motion of Bloch electrons.
Although such effects do not occur in AJJ~, the mere
modifications of one-particle eigenvalues and eigenfunc-
tions are expected to be important for heavy metals,
semimetals, and narrow-gap semiconductors.

It is also interesting to note that, while the first two
terms in the expression for Ajj, do not show any oscilla-
tory behavior, the last two terms do. Thus whether or not
the coupling constant is oscillatory depends on the com-
petition between these two types. The expression for AJJ~,
obtained in Eq. (3.16), is not in a form from which com-
putations can be done. In order to make the formula
tractable, we need to express the matrix elements of the
self-energy operator in physically meaningful quantities.
Since these matrix elements are different in different
terms, they require markedly different methods of
theoretical treatment. However, once we obtain an ex-
pression for the most general matrix element X„'k „kp, we
can obtain the other matrix elements from this in ap-
proII)riate limits. In Appendix 8 we have shown that
X„'k „kp can be expressed in the following form:

a„„(k,k') = —g U„„(k,k', k",k"')
kll kilt

U being the average interparticle interaction.
Similarly, one can obtain

a„„(k)
~j'nkp, n'kp' ~j'nkp, n'kp'

1 —a„„(k)

] p an (nk~k ) p —i(k —k') R,
j'nkp, nk'p'

1 (k ki) j'nkp, nk'p'

an(k) p
j'nkp, nkp j'nkp, nkp ~

1 —a„(k)
where

(E„k ) — (E„k )
a„„(k)= —+Un„(k, k')

Enk' En'k'

a„„(k,k') = —g U„„(k,k', k",k"')
/I I ki I i pll E kill

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

j'nkp, n'k'p'
1 (k kg) j'nkp, n kp''

0'nn' a„(k)=—gun„(k, k')f'(Enk) .
k'

(3.24)

where

(3.17)
Using Eqs. (3.17), (3.19), (3.20), and (3.21) in Eq. (3.16),
we obtain

AJJ
aP

jnkp, nkp' j 'nkp', kp f nk +
n, n', k, k', p, p' - —&nn'
n+n', k&k'

jnkp n'kp'~ j'n'kp' nkp +~ j'nkp n'kp'Pjn'kp' nkp f«.k)
nk n'k

1 ~ p
—i(k —k') R. , p ~ i (k —k') R, f (Fnk)+, «, » ( jnkp, nk'p' j'nk'p', nkpe + j'nkp, nk'p' jnk'p', nkpel —Ann (K~k J

1 —„„(k,k' jnkp nk p j n 'p
f(E )—i(k —k').R, p ~ i(k —k') R", f+ j 'nkp, n'k'p' j n'k'p', nkpe

~nk ~n'k'

(3.25)

Thus different terms in Azj are exchange-enhanced in different ways. We use Eq. (2.12) and, combining all four terms,
we write

1 & p —i(k —k') R" p ~ i(k —k') R, f (Fnk)
jj' =&OPOE&l.gl! X k k„(+nkpn k'p +n k p , n, k'p ''''++nkpn k p +n k p ,,nk'p'e''''J„„kk 1 —ann kk) Enk —E, k

(3.26)
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This is a reasonably complete expression for the indirect
nuclear coupling tensor including spin-orbit interaction,
electron-electron interaction, and all the three electron-
nuclear hyperfine interactions. We shall show in Appen-
dix C that our coupling constant reduces to the
Ruderman-Kittel constant in appropriate limits.

IV. SUMMARY AND CONCLUSION

In this paper we have presented what we believe to be a
reasonably complete theory of the indirect nuclear interac-
tions for a many-band system including the effects of
electron-electron and spin-orbit interactions. While the
effect of spin-orbit interaction on Azz~ appears in our ex-
pression via the modification of one-particle eigenvalues
and eigenfunctions, and through a change in the orbital
hyperfine interactions, the many-body effects are more
subtle. We have shown that, due to significant cancella-
tion effects, one has to consider both the quasiparticle
contribution and the contributions due to exchange-
correlation effects for obtaining physically meaningful re-
sults. It has also been emphasized in our theory that one
cannot interpret the exchange-enhancement effects on
A&&~ in an intuitive way, because they are different for dif-
ferent terms. Moreover, the present attempt is the first of
its kind involving the finite-temperature Cireen s function
technique to derive a tractable expression for the indirect
coupling tensor A&&~ including spin-orbit and many-body
effects.

The theory is general and can be applied to metals,
semiconductors, and diamagnetic solids. For dielectrics,
however, the first term is zero and the coupling constant
is accounted for by the other three terms. We have also
considered the effect of orbital hyperfine interaction on
the electron-coupled nuclear-spin interaction. This effect
is particularly important for solids whose wave functions
have appreciable p character. The theory, in view of
rigorous treatment of spin-orbit and many-body effects,
could be applied to heavy metals. For example, while the
previous theories which deal with a single occupied band
are quite good for nearly-free-electron systems, the
present theory would be more suitable in. the analysis of
A~~~ of polyvalent metals such as lead, platinum, and thal-
lium. It is also expected to work equally well for semi-
conductors like the lead salts which are many-band sys-
tems having multiple conduction and valence bands, large
spin-orbit interactions, and appreciable p character, since
the conduction bands in these systems transform like
atomic p states around the lead nucleus. We note that we
have not considered the electron core-polarization effect
but it can be incorporated in the application of this theory
to any real system through the use of one-electron pro-
cedures available in the literature. ' The other mecha-
nism which we have also not considered is the core-
conduction correlation effects. A quantitative analysis of
core-conduction correlation effects would be rather diffi-
cult. However, in view of the dynamic independence of
core and conduction electrons, its effect may be expected
to be small.

Before we conclude, we would like to discuss the experi-

mental situation vis-a-vis theoretical calculations of the
indirect nuclear coupling constants. Although the in-
direct exchange coupling between nuclear spins exists in
all metals with finite nuclear spin, its magnitude is large
enough to be experimentally detectable only in the case of
relatively heavy metals. The various metals where the
coupling has been measured so far are rubidium, cesi-
um, platinum, silver, tin, and thallium, and in these
systems the effects of spin-orbit interaction are expected
to be important. Moreover, the importance of relativistic
effects on the indirect nuclear spin-spin interactions can
further be understood from the fact that a nonrelativistic
calculation of 3 &2 in case of Rb and Cs shows a poor
agreement with experiment. Furthermore, while a relativ-
istic calculation of 2 &2 compares well with experiment in
case of Cs, there is no marked improvement in case of Rb.
The calculation also shows that in the calculation of 8&2
the overall situation both for Rb and Cs is far from satis-
factory, even after inclusion of relativistic effects. One of
the reasons for this discrepancy may be attributed to the
fact that, since the B&2 values are rather small in alkali
metals, there might be inaccuracies in the measurement of
these parameters. There have also been calculations ' of
3 &2 and B&2 for lead and a near exact agreement with ex-
periment has been reported. However, the agreement is
fortuitous and is due, as pointed out by the authors, to the
use of arbitrary weighting factors in utilizing a superposi-
tion of results from radial integrations in the symmetry
directions I X' and I L, and to the neglect of correlation
and core-polarization effects. Thus the mechanisms con-
tributing to the indirect nuclear interactions necessitate a
fresh treatment with regard, first, to the development of a
suitable theory including relativistic and electron-electron
interaction effects and, second, to the incorporation of
suitable electronic structure calculations as appropriate to
the system under study. The present work, we believe,
takes care of the first aspect of this treatment and we are
planning at present to apply this theory, as a test, to the
alkali metals. It may be noted, in this connection, that we
have recently calculated the Knight shift of alkali met-
als, using a nonlocal pseudopotential formalism and de-
generate perturbation theory, which shows excellent agree-
ment with experiment for all the alkali metals including
Rb and Cs. We have also found out from the calculations
that electron-electron interaction effects contribute about
20% to the result. We are of the opinion, therefore, that
the effects of electron-electron interaction on the coupling
constants would be equally important.

In conclusion, we note that we have derived a general
expression for the indirect nuclear coupling tensor, where
the effects of electron-electron interaction have been care-
fully analyzed on each of the constituent terms. It is also
pointed out that the effects of spin-orbit interaction are
important insofar as they modify the one-electron eigen-
values and eigenfunctions and change the orbital hyper-
fine interaction through modifications of the momentum
operator for the electron. Finally, in contrast to previous
theories, where efforts have been made to concentrate only
on particular types of indirect nuclear interactions, our at-
tempt is general and could be more useful in studying the
electron-coupled nuclear-spin interactions in solids.
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APPENDIX A

The Bloch functions [Eq. (2.5)] form a complete set and have the properties

g l(„&(r)P„~(r')=5(r—r')
n, k,p

(Al)

dr P„~(r)f„gp (r) =5„„5gg5pp . (A2)

Denoting the first term as T~ and the second as T2 in Eq. (A3), we have
r

T, = f drdr'3ft~(r) g, —~
2m

—V(r)— cr.VVxp — 7 V go@ON—+gI If X (r —RJ)
4m c Sm c Jj,a

In the Bloch representation, Eq. (2.1) can be written as

f drdr P r(r)('g,„H)G(r r', I—,g, )I„(rr'r)+ fdrdr dr g ('"rr)X„(r r Ig&)"G, (,r",r', I,g&)d„(rr'd)=5„„5 5~rr. (A3)

XG(r, r', I,g, )y„„p(r') .

Using the transformation properties of the Bloch function and the Green's function

G(r, r', I,g~) =G(r+R, r'+R, I,(I),
where R is the crystal translation vector, Eq. (A4) can be written as

(A5)

T, =fdrdr'f„&(r) g&
— —V(r) — a"V'VXp — V Vp

2m 4m c 8m c

—i(k —k') -R.—VOVON+gi. l,'X (r)e ' G(r, r', I,g~)g. ~p(r') .jj,a
(A6)

Equation (A6) can further be written through the use of the completeness property of the Bloch function [Eq. (Al)] as

p
2

——V(r)— o'V VXp— V V
2m 4m c sm c

where

—i(k —k') R.—popoN ggI IJ X (r)e ' G(r",r', I,g~)„q, p
J,Q

nkvd, n "k"p"
(A7)

—V(r)—P
2m

—i(k —k') R
&dr VVXP —

z 2
7 V POPON+gi, .Ij X—(r)e

4m c Sm c JCX f IIkII II
plkp, 1l p

=fdr/„~(r) g~
— —V(r) — cr *VVX p — V V

fi g2

2m 4m c 8m c

—i(k —k').R
f OI ON Qgl IJ X «)e . ' 4.-k"p"«)

J J
j,a

(AS)

G(r",r', I,g~)„-„-p- „qp = fdr'dr"g„-q-p-(r")G(r", r', I,gi)g„qp(r') .

Similarly, T2 can be written as

(A9)
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T2= g [X«r" »k)lnkp, n"k"p"«r"' r' »k)n"k"p", 'k'p' (A10)

[X(r,r",I,JE)]„k „k-p- ——I««"g„k (r)X(r, r",I,gt)f„-k p
(r") . (A 1 1)

From Eqs. (A3), (A7), and (A10) we can write the equation of motion of the Green s function in the Bloch representation
as

[g) —H(k, k', g) )]6(k,k', g() =5kk . (A12)

APPENDIX 8

In configuration space, the exchange self-energy is nonlocal and is expressed as

X(r, r', (I ) = ——g u, ff(r —r')6(r, r', gt —g) ), (81)

where a simple static screening approximation is made in obtaining v,ff(r, r ) from u(r, r ). In this approximation the
self-energy is independent of g) and one has

X(r, r') = — g—,u r(rr, r')6(r, r', gI) .
p ~

(82)

Assuming v,rr(r, r') to be independent of nuclear spin, Eq. (82) can be written as

X(r, r', I)= ——gu, rt(r, r')6 (r, r', I,g) ) .
j3 ~

X and G can be expanded in terms of the Bloch states as

X(r, r', I)= g Xnk „kp(k, k', 1)g„k (r)g„kp(r')
n, n', k, k'

PP

(84)

6(r, r', I)= g G„k,, kp(k, k', 1)g„kp(r)Q, kp(r')
n, n', k, k'

PtP

Substituting Eqs. (84) and (85) in Eq. (83), we obtain

Xnkp, n k p
(k, k', I)pnkp(r)p„k ~(r') = ——g g u,ff(r, r')6 —,(k, k', I)lt) &(r)p k,—,(r') .

n, n', k, k'
g( p, q, k, k'

PtP PP

If the effective electron-electron interaction is spin independent, then p =p, p'= p ', and we have

(86)

X„k „kp (k, k', I)= ——y y (nn'
~
u,ff(k, k', k",k'")

~ pq )pp Gpp qp
(k",k"',I),

g& p, q, k",k"'

where

( nn'
t
v,fr(k, k', k",k'")

~ pq )pp
——fdr dr'g„kp(r)P„k p (r')u, ff(r, r')Ppk«p(r)(ttqk p

(r') .

VVe make the approximation

( nn'
~
v,rr(k, k', k",k"')

~
pq) =-v„„(k,k', k",k"')5„p5„q .

Using Eq. (89) in Eq. (87), we obtain

(87)

X„k „kp(k, k', I)= ——g g u„„(k,k', k",k"')G„p „p(k", k"', I) .
k" k"'

(810)

Substituting the expression of G from Eq. (2.16) in Eq. (810), using (2.8) and (3.14), and comparing the coefficients of
IJ', we obtain

XJ'nkp k(nk, k')= —g v..(k, k', k",k"')(P~ k „- e
ktt kltl

(811)
t(k k) R— ,—p f(Enk ) f(E, k-)—

+~Jnk pnk p) E E
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We rriake an average exchange-enhancement ansatz, which is equivalent to the assumption that X'~ is independent of k,
to obtain

/ p +nn'( k ) p —(k —k').Rj
j'nkp, n'k'p'

1 (k ~p) j'nkp, n'k'p'e—0'nn'

where

(B12)

„„(k,k') = —g „„(k,k', k",k'")
kit ktl t kll —E lktli

(B13)

APPENDIX C

If we ignore the dipolar and orbital hyperfine interactions, the electron-electron interaction, and the interband terms,
we have from Eq. (3.26)

2

3JJ
aP j oj oxgijgjj, +I [~ @r)).kp,.kp[~ &«)f.kp, .kpe

PP, .

k, k'

—i(k —k') R '

p ~ ((k —k') R", f (&nk)+[~ &(r)j.kp, k'p'[o @r)i.kp, .kpe
Enk —E.k (C 1)

In the absence of spin-orbit interaction, Eq. (C 1) can be written as
2

8m
I '0I ONgI)gI

&XI [&O.k(I~ @r)
I
f«k(&&Ink(I~p&(r)

I P.k(&+&4.k(I ~ @r) If.k(&&@.k(I~p@r)14.«&~e
k, k'

+[ &@.k( I
~ ~«)

I f.k(&&4.k( I
~ &«)

I W.k(&+ &@.k( I

~ @r)
I @.s (&&@.k ( I

~ &«)
I @.k(&3

i(k —k').R ' f«.k)
Xe "+c.c. I

nk nk'

where t =(o) and t =(().
In this case, the coupling constant is isotropic and we have, using Eq. (2 5),

~'

zz xx pg
AJJ AJJ AJJ 4

3
po(uoxgi gi.,+ I

U.k(o)
I I U.k(0)

I
cos[«—k') Rjj ~

22 2 2

k, k' Enk Enk'

f(&„k)
g y, y y' g I U„k(0)1 I U„k(0)1 cos[(k—k').Rjj']

k, k' E.k —Enkt

where y„y, and y ' are the gyromagnetic ratios for the electron, jth and (j')th nuclei. Equation (C3) is the hderman-
Kittel result.
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