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Theoretical study of laser-induced surface excitations on a grating
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Laser-induced surface excitations on a grating are studied in terms of the solutions to Maxwell s

equations. A rigorous theory, derived originally for a lamellar grating, is used to study the reso-

nance phenomenon for deep gratings. The generalization of the square-well grating to gratings of
arbitrary shapes is examined numerically. A new diffraction anomaly is seen to occur when the

grating depth is approximately equal to half of the wavelength of the incident laser radiation.

I. INTRODUCTION

It is well established that light impinging on a rough
metallic surface may lead to resonant excitation of surface
plasma oscillations, which play an important role in in-
teresting surface phenomena, such as surface-enhanced
Raman scattering' and laser-induced periodic pattern
deposition. In particular, the spatial oscillation of photo-
chemically deposited metal films is identified as the
fingerprint of the oscillation of a surface plasma wave
(SPW). These surface waves are related or similar to
those found in Wood's anomalies ' or Brewster's waves,
which all satisfy the same mathematical equation but with
media of different electric properties. Moreover, all of
these waves have the same characteristics in that they
propagate along the surface of a dielectric medium, with
amplitudes decaying exponentially with increasing dis-
tance from the surface into the dielectrics and into the
vacuum in contact with it. In the second quantization ter-
minology, these surface waves are labeled as surface polar-
itons. Resonant excitation of these quasistationary modes
can lead to orders of magnitude of enhancement of molec-
ular processes occurring near or on the surface. (It has
been suggested by Tsang and Kirtley and later by Mill
and Weber that the maximum value of electric fields near
gratings may be limited by grating-induced radiative
damping. ) Thus, a detailed understanding of the forma-
tion and the properties of these surface waves would be
helpful in better understanding and controlling surface
molecular rate processes and diagnosis of the properties of
surfaces. (A comprehensive review of the diagnosis of
surface properties can be found in Ref. 9.)

A general understanding of the physical properties of
these surface waves has been reviewed by Fano, and re-
cent advances in research, both theoretically and experi-
mentally, have been reviewed by Agranovich and Mills. '

These quasistationary modes are controlled by the follow-
ing elements: (a) the wavelength of the incident radiation,
(b) the angle of incidence, (c) the geometry of the surface
roughness, (d) the electric properties of the surface, and (e)
the polarization.

One approach to the theory of surface plasma oscilla-
tions has been in terms of the collective motion of elec-
trons in the solid. " It has been found, however, that the
problem of resonant excitation of SPW can be treated

more easily as an optical problem than as the collective
motion of the electrons. In fact, both the problems of
surface-enhanced Raman scattering' and laser-induced
pattern deposition have been examined by Rayleigh's per-
turbative diffraction theory. '

The formation of these evanescent waves originates a
momentum transfer from the grating (roughness) to the
impinging waves. Since the frequency of the impinging
laser radiation is unaffected by the roughness, the
modulus of the momentum of any wave must equal the
one in the vacuum. Thus, momentum transfer by the
roughness can only change the direction of momentum.
This means that when the tangential component of the
momentum of the diffractive wave,

2wm
km' kt +

(where k, is the tangential component of the incident
wave, d is the period of the grating, and m is an integer),
is larger than the modulus of the incident momentum, ko,
then the normal component of the diffractive wave,

k„=(k —k, )'

becomes imaginary. This corresponds to evanescent
waves travelling with momentum k~, along the surface
and exponentially damped in the normal direction. More-
over, if the geometry is chosen so certain kinematical con-
ditions are met, the incident photon will resonantly couple
to these surface polaritons.

The effect of the grating depth on the resonant condi-
tions has been studied recently by Garcia' and Neviere
and Reinisch. ' While Garcia found that the intensities of
the reAectivity and the diffraction beams have their
minimum at resonance, but that the reflectivity becomes a
maximum for a particular value of the grating depth,
Neviere and Reinisch' pointed out that there exists an
optimum value of the grating depth for which the elec-
tromagnetic (EM) resonance contribution to the enhance-
ment of the nonlinear optical process is the greatest, and
the optimization is achieved with very shallow modula-
tion. More recently, Glass, Weber, and Mills, ' utilizing
the extinction theorem of Toigo, Marvin, Celli, and Hill, '
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studied the grating-induced radiative damping of the sur-
face polariton for grating profiles with various shapes and
depths, and compared the results with those of perturba-
tion theory. Good agreement was found for those systems
investigated. All of the calculations mentioned above fall
in- the regime that the grating amplitude is much smaller
than the incident wavelength. In this paper, we employ
the square-well grating theory of Sheng, Stepleman, and
Sanda, ' which is based on the formalism of a stratified
medium, ' to study a new kind of resonance condition for
a grating depth comparable to the incident wavelength.

Recently, various numerical techniques have been
developed for the solution of diffraction problems. AI-
though most of these are rigorous in formulation, they ex-
hibit various degrees of effectiveness in actual calcula-
tions. Very often numerical difficulties are found either
when the grating depth becomes too large ' or when the
conductivity of the grating is large. The square-well
grating approach' has been demonstrated to be numeri-
cally stable even in the regime of good conductivity and
also to work well for the case of a deep grating. However,
the method is restricted to a lamellar grating. %'e have
suggested a generalization of the square-well grating
theory to gratings of arbitrary shape. In this paper, the
numerical applicability of this generalized theory is exam-
ined. Recently, the diffraction from gratings of arbitrary
shape has attracted much attention. Moharan and Gay-
lord have applied their coupled-wave theory to a mul-
tilayered grating formalism, while Suratteau, Cadilhac,
and Petit formulated a "multistep lamellar grating"
(MSLG) method by extending the work of Botten and co-
workers. The MSI.G method, which has only been ap-
plied to lossless dielectrics, is believed to be closely related
to the present work. In Sec. II, the theory of the square-
well grating and its generalization to a multilayered grat-
ing is brieAy reviewed. The results and discussion are
given in Sec. III, and a summary is presented in Sec. IV.

II. THEORY

A. Square-well grating

The square-well grating formalism is based on a strati-
fied medium model, ' and a detailed account of the
derivation can be found in a paper by Sheng, Stepleman,
and Sanda. ' Our main purpose in this part of Sec. II is
to set up the notation for the generalization of the
square-well grating to a multilayered grating.

Following Rayleigh's approach, the entire space is
separated into three regions: the vacuum region (region I),
the dielectric region (region III), and the corrugation re-
gion (region II). The geometry and the coordinate system
of the lamellar grating are shown in Fig. 1. In regions I
and III, the EM fields are expressed in terms of Rayleigh
waves,

rd

FIG. 1. Geometry and coordinate system for a p-wave in-
cident on a square-well grating.

4'= exp I iko[sin(8; )x —cos(8; )z] I

R„expIiko[y„x+(1 —y„)'~ z]) (2)

and

T„exp I iko [y„x—(c—y„)'~2z]
I .

For p-wave scattering, '0 is the y component of the mag-
netic vector, ko ——2m/1, is the free-space wave vector of
the incident laser radiation, e is the dielectric constant of
the grating, R„and T„are the amplitudes of the nth re-
flected and transmitted diffracted orders, 8; is the angle
of incidence, and

y„=sin8;+n A, /d, (4)

g2q(II g2gpIE ae" d
, +~( )k', q"= 1 [~( )], (5)

Bz Bx BX dx

where e(x) =e for
~

x nd
~

(rd/2—, and 1 otherwise (r is
a number between 0 and 1). At this stage, the problem be-
comes identical to that of a periodically stratified medium
with a piecewise constant e. ' Thus, the field in region II
can be expressed in general as

4"=+Xi(x)[Alexp(iAIz)+Blexp( iAiz)], —

where A~ are the eigenvalues satisfying the transcendental
equation

where d is the period of the grating. (The square root
with positive imaginary part mill always be chosen in this
paper. ) The field in region II satisfies'

1 ai Acos(kod sin8;)+cos(pard)cos[al(1 r)d]+ —e + sin(pr—rd)sin[aI(1 —r)d]=0,
2 pi 6ai'

and the associated eigenfunctions Xi(x) are given by
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x,(x)=

rd
cos pi x +

2

I rd
U cos cxI x—

2

, ekp rd+ivp sin P, x+
I

ik0+i V& sin aI x—

X/( rd
2

rd r(x( 1 ——d
2 2

where X~( —vd/2) is normalized to 1, with

Vp
——[exp( ikpd sin8; ) —M~ ]/N~,

V, = sin(p~vd)+ Vpcos(/3ivd),
pl I

ko &

I 1 ~k0
U =cos(p, vd)+iV, sm(p, vd),

M( —cos(P(vd)cos[cx(( 1 —v)d]

l
sin[a~(1 —v)d]sin(P&vd),

CCXI

1
N~ =ikp cos(P~vd)sin[al(1 v)d]—

CXI

+ sin(PI vd)cos[a~(1 v)d]—

(9)

(10)

(12)

(13)

D —R =I -'X(A+B),
I 'X(XX+X 'B)=b T
—U(R+D) =r-'n(w —B),
r-'n(zw —r-'B) = —gaT

where

I ~„=exp(ik py „xj),
Xii ——X((XJ),

AI
niI = Xi(XJ.),

XJI =exp( i AI h)5JI, —

II„)——kp(1 —y„)' 5„J,
A„J =exp[ikp(e —y„)'~ h]5„1,

0 2 1/2(e—y„) 5J .

(20)

(21)

(22)

(23)

(24)

(27)

(28)

(29)

(30)

aI =(kp —AI )'~~,

P( ——(ekp —A( )'~2 .

(14)

(15)

D is defined a,s D =5 p. After some manipulation, we
have the expressions for R and T in matrix form as

+exp(l kpp X~)(5'p —R )= QX~( X)(Jc4 I B+ )I,
n

g XI(x, )[A~exp( i A~h)+B—~exp(iAIh)]

(16)

= gexPIikp[y„x~+(e —y„)'~ h] J T„, (17)

The remaining task is to determine the expansion coef-
ficients, R„, T„, AI, and BI, by matching the analytic
solutions of Maxwell's equations at the boundaries; name-
ly, the continuity of tangential E and H fields at z=0 and
z= —h. This gives four simultaneous equations which
are valid for all x:

R =(e—11)-'(e+11)D

with

e= —
I
(r-'n+ g r-'x)z
+[(r-'n gr 'x—)r ']-n-'r -I

x [(r-'n+gr-'x)r
—(r-'n —gr-'x)z-']x -'r

and

(31)

(32)

ikp[cos(—8; )5„p+(1—y„)'~ R„exP(ikpy„xj )]
TABLE I. Diffraction amplitudes of the first three orders for

different number of layers in the square-well grating and for dif-
ferent ratios of the amplitude to the period.

Xigi (XJ )AI(A( B(), (18)— Numbers of layers
1 4

Xi(XJ )
i Al[A(exp( i Aih) ——B(exp(iAIh)]

E

ik (e y„—)' T„—
n

Xexp[ikpy„XJ+(E —y„)'~ h] . (19)

Employing the point matching method, we can rewrite
Eqs. (16)—(19) in matrix notation as

[Rg J

0.10
0.20
0.28

0.10
0.20
0.28

0.10
0.20
0.28

0.9712
0.9551
0.2367
0.1744
0.2298
0.8551

0.0251
0.0411
0.2775

0.9739
0.9588
0.1969
0.1567
0.2110
0.8478

0.0310
0.0430
0.2055

0.9739
0.9588
0.1969
0.1567
0.2110
0.8478

0.0310
0.0430
0.2054
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T=2~-&Z-&X-~r(D —R),
where

(33) 4nm = g XI (x)[AI exp(i AI z)+B~ exp( —i AI z)],
1

(37)

and

R =(f+II) '(f —II)D (35)

T=D —R, (36)

which are the correct expressions for flat surfaces. In the
case of a very deep grating, h —+no, and for AI with an
imaginary part of any size, X~~~ oo, then Q can be re-
duced to a simple form, —QX ', and the partial field
[hT]~ goes to zero. The resonant excitation conditions
are given mathematically by the zero's of the expression
(Q+II) '(Q —II) and physically are governed by the five
parameters given in Sec. I. Although these parameters
have different degrees of importance in the control of the
resonant excitation of the surface plasma oscillations, one
can, with appropriate choice of these five parameters, en-

gineer some interesting surface phenomena. Here, we
focus on how the depth of the square-well grating may in-
troduce such phenomena.

K=X-'(X 'I —Q
—'I' f)+X(X—'I +Q —'If) .

For h =0, both X and h. reduce to identity matrices. In
this case, Q becomes —f, which directly implies

where m is the layer index. The characteristic equation of
each layer is the same as Eq. (7). However, layers differ
from each other by different values of r, which is a mea-
sure of the amount of metal within a grating period. Fol-
lowing the methodology of the square-well grating, we
match the fields at the boundaries of each region and
subregion. Hence, we have

I' 'X (A +B )=D —R, (38)

r-'x„(x„„„w„+x„-„'„B„)=ST,
r-'Q, (w, —B,) = —II(D+R ),
r-'Q„(X„„,w„—X„-„'„B„)= —faT,
Xm —1(Xm —I,m~m —1+Km —1, m m —1)

(39)

(40)

(41)

with m =1, . . . , n, and the grating has n+1 layers with
a thickness of h. The elements of the X matrix are given
as

=X +)(X A +X ' B ), (42)

Qm —1(Xm —1,m m —1 Xm —1,mBm —1)

=Q +,(X A X' B—), (43)

B. Multilayered grating (X„„)q
——exp( i A~vh)—5~q . (44)

We now extend the square-well grating formalism to a
multilayered grating theory which can model gratings of
arbitrary shape. This involves the extension of the con-
cept of a periodic stratified medium to a two-dimensional
scheme. A schematic diagram of the multilayered grating
is illustrated in Fig. 2, where region II is divided into
subregions. In each subregion, the electromagnetic field is
expressed as in Eq. (6),

(45)

All other matrices are defined as in Sec. IIA but with a
subregion index. It is trivial to generalize the formalism
to treat a different thickness for each layer. For simplici-

ty, we choose each layer to have the same thickness.
In order to find expressions for R and T, we construct

the two supermatrix equations,

r-'x, r-'x,
r-'Q, —r-'Q, B, — —II(D+R)

(a)

and

Xn &n, n+1 r 'X„X„n'+1

—n nn+1—r-]n r-'
A„

B„ fb,T—
Y//ZF/FYFZZFZ/FF//Fr e

We notice that the A's and B's are related by the recursive
relationship

Xn, n

X—n, n

(C)

YXA arrirzxuza v'xzxux irzzxzxxzxx ~&YDD1///&///8 A'D'Zr&

—1Xn Xn —1~n —1,n

n-'n x—n —n —1—n —1,n

Hence, we have

X Xn —1~n —1 n

—o-'o
n —n —1 n —1,n

A„

(47)

FIG. 2. (a) Sinusoidal grating. The cross-hatched area
represents the metal. {b) Square-well grating showing a separa-
tion into three layers, one of which is periodic in the x direction
and two of which are uniform. {c) Generalization of the
square-well grating in which there are three periodic layers.

B„

where

T

ah Ao

c d Bp
(48)
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a b y —1

1)n Xnn

X„„

—1
~nn Xn Xn —1 ~n —1, n

—1
nn n n —1~n —1,n

—1 —1
Xn Xn —1~n —1,n

—Qn 'Q„X„'1„

~ —1~n —l, n —1

X —n —l, n —1

~ —1~n —l, n —1

~n —l, n —1

X-' X Xn —1 —n —2 n —2, n —1

~—1 A—n —l~"n —2~n —2, n —1

X-'X r—n —1 n —2 n —2, n —1

n —1+n —2~n —2, n —1

Xl 'Xo&o, 1

X X
Xl 'XpXo 1

—Q1QPXo 1

(49)

where

K I -'X X —1 —1—n n, n+1 ~ Xn ~n, n+1

Substituting Eqs. (46) and (48) into (45), we have

K I. ~ R 5T
M N II(D+R) = ghZ' (50)

To understand this behavior, one can draw an analogy
to resonant scattering theory, in particular, the bound-
continuum interaction problem, where a quasibound
state plays the role as a coupling between the bound state
and the continuum states. At the resonant energy, an in-

terference structure, which is due to a competition be-

tween two equally possible pathways, occurs in the cross

M

a 6 Xo'
X

0

+1 —~ n&n, n+1

I 0, 'r
r —n, 'r (51) 1.0-

The expressions for R and T are then given as R
0

R = [(g'K+M)+(gL+N)II)]

x [()K+M) (fL+N)II]D— 0.5 I- (a)

and

Z'=g '(L, '+N 'g) '(L 'K N'M)(D —R) . —
(53)

0.0
0.1

R
2

0.2 0.3 0.4

Equations (52) and (53) are now all we require to calculate
the fields at the peaks and troughs of the grating.

III. RESULTS AND DISCUSSION
1.0-

A. Square-well grating

Numerical calculations have been carried out for a dif'-

fraction system with an incident wavelength of A. =6471
A, a grating periodicity of d= 1 pm, and the incident an-

gle fixed perpendicular to the grating surface. Under this
configuration, the (first-order) perturbation theory pre-
dicts no resonant excitation. The diffraction amplitudes
are computed as a function of the groove depth for a
silver grating with the dielectric constant, e= —17.42
+0.58i, chosen to fit experimental data. ' Results are

plotted in Fig. 3 for the three lowest diffraction orders.
Since the angle of emergence for Rq is complex, Rz is a
surface wave. As shown in Fig. 3, for a ratio of the grat-

ing amplitude to the period of 0.283, the reflected beam is
at its minimum, while the first- and second-order diffrac-
tion beams are at their maxima.

05- (b)

0.0 —' I

0.1
h/d

0,3 04

FIG. 3. (a) Magnitudes of the zeroth- and second-order dif-
fraction amplitudes plotted as a function of the ratio of the am-

plitude to the period (d=1000 nm). (b) Magnitude of the first-
order amplitude plotted as a function of the ratio of the ampli-
tude to the period (d=1000 nm), with r=0.5.
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TABLE II. Average field intensity at the peak and at the
trough, as a function of the ratio of the grating amplitude to the
period, for a three-layered grating with a profile as described in
Fig. 2(c).

h/d

0.003
0.006
0.009
0.012
0.015
0.018
0.021
0.024
0.027
0.030
0.060
0.090
0.120
0.150
0.180

peak

1.020
1.057
1.089
1.117
1.114
1.168
1.191
1.211
1.230
1.248
1.363
1.419
1.452
1.473
1.491

~

4
~

' trough

0.137
0.923(—1)
0.646{—1)
0.469(—1)
0.352{—1)
0.270( —1)
0.212(—1)
0.170(—1)
0.139(—1)
0.115(—1)
0.288( —2)
0.112(—2)
0.515(—2)
0.250( —3)
0.120(—3)

B. Layered grating

In this part, we discuss the numerical applicability of
the formalism derived in Sec. II B. We test the formalism
by separating the square-well grating into a fictitious lay-
ered grating, as shown in Fig. 4. We then apply the mul-
tilayered grating formalism to this fictitious layered grat-
ing for four and ten layers. Numerical results are com-
pared with those of the square-well grating in Table I for
the first three orders of diffraction beams at various grat-
ing depth. First, the results for four layers are almost
identical with those for ten layers. This implies that the
method is stable for a multilayered configuration, which
is important for modeling gratings of different shapes.
Second, the layered grating results are, in general, in good

section. In the present case, the grating roughness serves
as the coupling between the incident wave and the surface
waves. At an optimum depth, the incident wave couples
strongly with the surface waves. Thus, the resonance
occurs. Moreover, the direct and indirect diffraction
channels interfere with each other and construct the
Fano-type interference structure in the first-order diffrac-
tion beam. The resonance arises when the cavity (the
groove) has a depth of approximately half of the incident
wavelength, which is analogous to the case of acoustic res-
onances in an open-ended organ pipe occurring when
(n+ 2 )A, equals the length of the pipe, where n is an in-

teger. In the present case, we believe that the deviation
from precisely a half is partially due to the fact that the
delectric constant of the Ag grating has a finite nonzero
imaginary part, such that the damping mechanism leads
to a width as well as a shift in the resonant condition. A
calculation similar to the one of Glass, Weber, and Mill'
would be helpful to further understand these frequency
shifts and damping rates, which is being carried out in our
laboratory. As far as we know, this Fano-type interfer-
ence resonance phenomenon by diffraction from a grating
has never been reported before.

II

1I

lI
3
Il

FIG. 4. Schematic diagram for a fictitious square-well lay-
ered grating.

agreement with the square-well grating results, except
near resonance, especially when the numbers are small.
We believe this discrepancy is due to the degree of accura-
cy of the matrix inversion, since in the layered grating
formalism one needs to invert matrices which are twice
the size of those in the square-well grating approach.
These matrices appear to become singular whenever the
scattering is at resanance. Moreover, we find that the ex-
pression for T„, Eq. (53), is unstable, especially when the
grating amplitude is large. This also occurs in the
square-well case when T„ takes the form of Eq. (53). A
more stable expression might be achieved by first evaluat-
ing the 2 and B coefficients.

We now turn to a calculation on a three-layered grating.
The surface profile has a structure somewhat between a
sawtooth grating and a sinusoidal grating, as shown in
Fig. 2(c). We have calculated the average field at the peak
and at the trough of the grating as a function of the grat-
ing depth, with the same scattering parameters as above
with values of r (see Fig. 1) as 0.1, 0.3, and 0.5. The re-
sults are presented in Table II. We find that T„begins to
exhibit unstable behavior as the ratio of the grating ampli-
tude to the period reaches 0.2. Otherwise, both fields are
convergent and stable.

The difficulties in this layered grating approach arise
fram the evaluation of the nonlinear eigenvalues of Eq.
(7). As mentioned by Sheng, Stepleman, and Sanda, '8

eigenfunctions whose eigenvalues form complex conjugate
pairs should not be separated. While truncation of the
matrices is inevitable and the number of eigenfunctions
used for each layer should be equal, a tremendous amount
of manual labor and computer time are required to match
these two criteria. This is a potential problem in model-
ing a realistic profile.

IV. SUMMARY

A new diffraction anomaly is seen to occur when the
grating amplitude is approximately equal to half of the in-
cident wavelength. When the resonance condition is met,
the radiated energy (the scattered light) changes its "pre-
ferred" direction, and at the same time surface waves are
excited.

A new multilayered grating method has been formulat-
ed to model grating profiles of arbitrary shape. The field
at the peak remains stable as the grating depth increases,
while the field at the trough (inside the metal) does not.
Difficulties are found in choosing an optimum basis set.
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A supercomputer mould be helpful for applying this mul-
tilayered grating formalism to model specific surface pro-
files.
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